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WA R N I N G - U S E AT OW N R I S K

¿is is the solutions manual to the book modern coding theory . It contains
contributions by (in alphabetical order) Abdelaziz Amraoui, Cyril Méasson, Vish-
wambar Rathi, and Ruediger Urbanke. ¿ese notes are work in progress and change
daily. To get the current version please contact ruediger.urbanke@ep�.ch. Contribu-
tions to make this solutions manual more complete and accurate are very welcome.

If you have exercises that you are willing to share with others please send them
to us.
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Chapter 1

I N T R O D U C T I O N

Solution 1.1 (Inner Product). Parts 1, 2, and 3 are immediate. For the coun-
terexample take F � F2, n � 2, and u � 11. ¿en `u,ue � 0. Recall that the
set of solutions to GxT � 0T equals CÙ. By explicit calculation we see that CÙ ��0000,0011,1100,1111� � C. ¿is implies that C is self-dual. ¥ � ��
Solution 1.2 (Hamming Distance). Since the distance d�x, y� is de�ned as the
sum of the distances of the components it su�ces to assume that x, y > F. We need
to check that for all x, y, z > F, d�x, y� B d�x, z� � d�z, y�. Since d��, �� is non-
negative the statement is correct if x � y. And if x x y, so that d�x, y� � 1 the
statement is valid as well since in this case at least one of the two terms on the right
must take the value 1. ¥ � ��
Solution 1.3 (Extending, Puncturing and Shortening).
Extending: results in a �n � 1,M,d�� code where d� C d and d� � d � 1 if d is odd
Puncturing: results in a �n � 1,M,d�� code where d� � d or d � 1
Shortening: results in a �n � 1,M�,d�� code whereM�

B M and d� C d
Under extending and puncturing linear codes stay linear. Under shortening a linear
code stays linear if the common symbol which is chosen is the zero symbol. ¥ � ��
Solution 1.4 (u � v Construction). ¿e non-trivial part is to show that d �

min�2d1,d2�. Let u1,u2 > C1 and v1,v2 > C2. Clearly, minu1xu2,v1�v2 d��u1,u1 �
v1�,�u2,u2 � v2�� � 2d1 and minu1�u2,v1xv2 d��u1,u1 � v1�,�u2,u2 � v2�� � d2.
Hence,

d � min�2d1,d2, min
u1xu2,v1xv2

d��u1,u1 � v1�,�u2,u2 � v2��.
Now minu1xu2,v1xv2 d��u1,u1 � v1�,�u2,u2 � v2�� C d1. If d1 C d2, then d � d2
and we are done. If, on the other hand, d1 B d2, then the minimization can be
decomposed into two minimizations:

min
u1xu2,v1xv2

� min� min
d1Bd�u1,u2�Bd2, min

d�u1,u2�Cd2�
To calculate d��u1 � v1�,�u2 � v2��, we observe that only those components con-
tribute for which u1i � u2i � v1i � v2i � 1, i.e., either u1i x u2i or v1i x v2i, but not
both of them di�er. So

min
d1Bd�u1,u2�Bd2 d��u1,u1 � v1�,�u2,u2 � v2�� C d2

3
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4 introduction

as d�u1 � v1,u2 � v2� C d2 � d1. Hence, d � min�2d1,d2�. ¥ � ��
Solution 1.5 (Proper Codes). Fix a position i, 1 B i B n. Since the code is proper
there exists at least one codeword, call it c, in C which has a non-ero component
at position i. ¿e SF S distinct “multiples” of c have each a di�erent element of F at
position i. Let the multiple with α at position i, α > F, be denoted by cα. Let us
de�ne two codewords x and y to be equivalent if x � y� cα for some α > F. Now
note that this equivalence relationship generates equivalence classes of size SF S so
that each codeword is in exactly one equivalence class and that each equivalence
class contains exactly one codeword which has element β at position i for all β > F.

Consider now a set of positions. To keep things simple consider two positions,
call them i and j. It can happen that no codeword takes on the value α at position
i and β at position j, α,β > F. But if there is at least one such codeword then the
number of such codewords is equal to the number of codewords that take on the
value 0 both at i and j. ¿is follows from essentially the same type of argument as
used above. ¿e statement extends to any number of positions. ¥ � ��
Solution 1.6 (One C, manyG). Let us construct a generator matrixG for C. Start
by picking any non-zero codeword of C and declare this codeword to constitute the
�rst rowofG. SinceC has cardinality 2k, there are 2k�1 such choices. For the second
row there are 2k�2 remaining choices since we can pick any codeword which is not
contained in the subspace spanned by the �rst row. For the i-th row there are by the
same reasoning 2k�2i�1 choices. Clearly, all such choices lead to di�erent generator
matrices and any generator matrix can be constructed in this way. It follows that the
total number of distinct generator matrices for a code of length n and dimension k
isLk

i�1�2k � 2i�1� �Lk
i�1 2i�1�2k�i�1 � 1� � 2�k2�Lk

i�1 �2i � 1�. ¥ � ��
Solution 1.7 (Conversion of G into Systematic Form). By assumption G has
rank k and this implies that such a submatrixAmust exist. First re-order the columns
ofG so that the columns whichmake up A form the �rst k columns ofG. Nowmul-
tiply from the le by A�1. ¿is gives the desired systematic generator matrix. ¥ � ��
Solution 1.8 (Conversion G� H). A direct multiplication shows that

�IkP� ��PTIn�k�T � �IkP � PIn�k � �P � P � 0.

For the �7,4,3�Hamming code we can derive from the parity-checkmatrix in (1.25)
the generator matrix

G �

�����
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

����� .
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¥ � ��
Solution 1.9 (Reed-Solomon Codes). To see this claim, �rst note that the code
is linear since the evaluation map is a linear map. In more detail, if A�x� and B�x�
are two elements of F�x� of degree at most k � 1 and if α,β > F, then C�x� �

αA�x� � βA�x� is also an element of F�x� of degree at most k � 1. Further, for
any xi > F, αA�xi� � βB�xi� � C�xi�. ¿is shows that any linear combination of
codewords is again a codeword.

To see that the code has dimension k �rst note that there are exactly SF Sk distinct
elementsA�x� ofF�x� of degree atmost k�1. It remains to verify that the evaluation
of two distinct polynomials results in distinct codewords. Let A�x� and B�x� be
two distinct polynomials of degree at most k � 1 and let C�x� � A�x� � B�x�. By
construction C�x� is a non-zero polynomial in F�x� of degree at most k � 1. If we
had �A�x0�, . . . ,A�xn�1�� � �B�x0�, . . . ,B�xn�1��,
then �C�x0�, . . . ,C�xn�1�� � 0. But this cannot be: by the fundamental theorem of
algebra the polynomial C�x� can have at most k � 1 @ n zeros since it has degree
at most k � 1. It follows that any non-zero codeword has weight at least n � k � 1.
¿erefore, d�C� C n�k�1. But as discussed in Problem 1.10, theminimumdistance
of any code of length n and dimension k is upper bounded by n� k�1. ¿is bound
is called the Singleton bound. We therefore conclude that d�C� � n � k � 1. ¥ � ��
Solution 1.10 (SingletonBound). Asmentioned in the hint, arrange theM code-
words of length n in form of aM � nmatrix and delete all but the �rst 
logSF S�M��
columns. Assume �rst that k � logSF S�M� is an integer, so thatM � SF Sk. Now note
that a matrix of width k over F can contain at most SF Sk distinct rows. ¿erefore,
at best the rows of the remaining columns are distinct and have therefore distance
one. Take a pair of rows at distance one. At best, these rows can di�er also in each
of the chopped of n � k columns, so that their total di�erence is upper bounded
by n � logSF S�M� � 1. If logSF S�M� is not an integer, then two rows in the remain-
ing 
logSF S�M�� columns must be the same and the minimum distance is therefore
upper bounded by n � 
logSF S�M�� B n � logSF S�M� � 1 as well. ¥ � ��
Solution 1.11 (Maximum Distance Separable Codes). ¿e �rst assertion is a
simply corollary of the case of equality in the proof of the Singleton bound discussed
in Problem 1.10. Arrange theM � SF Sk codewords in anM � n array. Take a subset
I ` �n� of cardinality k and delete all the columns which are not indexed by I .
Since we know that the code is MDS, it follows that all codewords are distinct on
this subset. ¿e claim follows since there are SF Sk codewords and an equal number
to �ll the k spots with elements from F.
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6 introduction

¿e dual code CÙ has by assumption parameters �n,n � k,dÙ � k � 1�. ¿is
means that any dÙ � 1 � k columns in the parity-check matrix of the dual code
(which is a generatormatrix of the codeC) are linearly independent. In other words,
they can be chosen arbitrarily and the remaining n � k positions can then be �lled
in (in a unique way) to form a codeword of C. ¿is means that any k positions of
the code C form an information set. ¥ � ��
Solution 1.12 (Hamming Bound). Center spheres of radius 
d�12 � around the M
codewords. Each sphere containsP
 d�12 �

i�0 �ni��SF S � 1�i points. ¿e bound now fol-
lows by noting that by de�nition of the minimum distance d, these spheres are dis-
joint and that in the total space there are SF Sn points. ¥ � ��
Solution 1.13 (Gilbert-VarshamovBound). Consider the following greedy code
construction. Start with an arbitrary point ofF. Since wewant to construct a code of
minimumdistance at least d, delete from the space the sphere of radius d�1 centered
on this chosen codeword. If there is a point remaining in the space, pick any such
element. Again remove all points at distance d � 1 or less from this chosen point.
Continue in this fashion until no point is le . ¿e bound now follows by noting that
at any step (any time we add a codeword) the number of points removed is at most
Pd�1
i�0 �ni��SF S � 1�i. ¥ � ��

Solution 1.14 (Greedy Code Search Algorithm). By construction, the mini-
mum distance is at least d. ¿e lower bound on the cardinality follows from the
observation that M will be minimum when all the spheres of radius d � 1 around
each codeword are disjoint. ¥ � ��
Solution 1.15 (Asymptotic Gilbert-Varshamov Bound). If we start with the
Gilbert-Varshamov bound discussed in Problem 1.13 and setM � e
nr� we get

e
nr� � 2n

Pd�1
i�0 �ni� Problem 1.25

C
2n

2nh2��d�1�~n� � 2
n�1�h2��d�1�~n��.

From this we conclude that

d~n C h�12 �1 � 
nr�n � � 1
n
,

which implies the claim δ��r� C h�12 �1 � r�. ¥ � ��
Solution 1.16 (Pairwise Independence for Generator Ensemble). We have

P�X�j�
� v SX�i�

� x� � P�X�j�
� v SX�i�

� x � c � u�i�G�
� P��u�i� � u�j��G � x � v SX�i�

� x�
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� P��u�i� � u�j��G � x � v� � 1~2n.
Consider the one before last step. By assumption we pick a generator matrix G
uniformly at random and (then) a shi c independently and uniformly at random
from all shi s. From these two parameters we compute x. ¿is de�nes the joint
distribution of �G, c,x�.

Note that x has a uniform distribution as well. We get an equivalent model if
we �rst pick x uniformly at random and (then) independent pick G uniformly at
random. From these two parameters we then compute c.

If we consider this latter model, then it is clear that given x, G has a uniform
distribution. ¥ � ��
Solution 1.17 (MeanandSecondMoment forG�n, k�).
We start by considering EC�A�C,w � 0��. Since the encoding operation is linear
it follows that we always get the zero codeword if we encode the zero information
word. On the other hand, if the information word is non-zero then with probability
2�n the encoded word is zero. ¿is is true since each position of the resulting code-
word is a Bernoulli random variable with uniform probability. ¿e stated formula
now follows since we encode 2nr � 1 non-zero information words.

¿e general caseEC�A�C,w�� follows in a similar manner. Any time we encode
one of the 2nr�1non-zero informationwordswe have a chance of �nw�2�n of creating
a word with Hamming weight w.

As a sanity check: if we computePn
w�0 EC�A�C,w�� we get 2nr, as required.

Consider now the second moment. For 1 B w B n, write

EC�A2�C,w�� � EC� Q
u,v>�0,1�k

1�w�uG��w�1�w�vG��w��
� Ā�w� �EC� Q

uxv>�0,1�k
1�w�uG��w�1�w�vG��w��

� Ā�w� �EC� Q
0xuxv>�0,1�k

1�w�uG��w�1�w�vG��w��.
¿e claim follows by noting that there are �2nr � 1��2nr � 2� distinct pairs of non-
zero information vectors �u,v�, and that the probability that both u and v give rise
to codewords of weight w is just the product of the probability that u gives rise to
codewords of weight w and that v gives rise to codewords of weight w.

¿e �nal line (variance) follows in a straightforward manner from the previous
two. ¥ � ��
Solution 1.18 (Mean and Second Moment for H�n, k�). It is shown in Prob-
lem 1.21 how to compute EC�A�C,w�� for w � 0 as well as w C 1.

Preliminary version – October 28, 2008



8 introduction

Consider now the second moment. For 1 B w B n, write

EC�A2�C,w�� � EC� Q
u,v>�0,1�n�w�u��w�v��w

1�u>C�1�v>C��
� Ā�w� �EC� Q

uxv>�0,1�n�w�u��w�v��w
1�u>C�1�v>C��.

¿e claim follows by noting that there are �nw���nw� � 1� pairs �u,v�, u x v, where
u and v are each of weight w and that for each such pair �u,v� the probability that
bothu and v are codewords is just the product of the probability thatu is a codeword
times the probability that v is a codeword. To see the last claim consider two words
u and v, u x v, and both non-zero. In general these two words will share some
positions in which both are 1 and each of the two will have some positions in which
it takes on the value 1 but the other takes on the value 0. Finally, there are some
positions in which both of them are 0. If we multiply the words with one row of
H this partition shows that the two inner products have the form α � µ and α � ν,
respectively, where α corresponds to the partial sum of all positions where both
take on the value 1 (this sum might be the empty sum) and µ and ν correspond to
the “private” non-zero positions of each of the two words. Since the two words are
distinct, and neither is the all-zero word, at least one of µ and ν is not the empty sum
and either α is not the empty sum or both µ and ν correspond to non-empty sums.
Since α, µ, and ν are by construction independent random variables, it follows that
the event that α � µ � 0 is independent of the event that α � ν. Since the same
argument applies for each row of H, the claim follows.

¿e expression for the variance follows in a straightforward manner from the
mean and the second moment.

It remains to determine the expected number of codewords. We evaluate Ā�D�
as given in Problem 1.21 for D � 1. We get

Ā�D� S D�1 � 2��n�k��1 � D�n � �1 � 2��n�k�� S D�1 � 2k � �1 � 2��n�k��.
¿is is slightly larger than the 2k words that correspond to the design rate. ¥ � ��
Solution 1.19 (Wolf Trellis). We start with the parity-check matrix

H �

���
1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

��� .
¿e codewords are
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  000 000 000 000 000 000 000 000

001 001 001 001 001 001 001 001

010 010 010 010 010 010 010 010

011 011 011 011 011 011 011 011

100 100 100 100 100 100 100 100

101 101 101 101 101 101 101 101

110 110 110 110 110110 110 110

111 111 111 111 111 111 111 111

0 0 0 0 0 0 0

1

1

1

1

1

0 0 0

0 0

0 0 0

0

0 0

1

1

1

1

1

1

11

1

1

1

1

1

Figure 1.1: Wolf-trellis for the �7,4� Hamming code. Le to right reading of code-
words from the trellis gives the bits in the sequence c1, c2, . . . .

c1 c2 c3 c4 c5 c6 c7

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 0 1 0 0 1 1
0 0 1 1 1 0 0
0 1 0 0 1 0 1
0 1 0 1 0 1 0
0 1 1 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 1 1 0
1 0 0 1 0 0 1
1 0 1 0 1 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 0 1 1 1 0
1 1 1 0 0 0 0
1 1 1 1 1 1 1

¿e associated Wolf trellis is shown in Figure 1.1. ¥ � ��
Solution 1.20 (MacWilliams Identities). For a codeC, let us denote k � dim�C�
and k�E� � dim�C�E��.

1. Fix i > �0,1, . . . ,n�. ¿e number of codewords inC of weight i isAi. A code-
word of weight i, call it u, has n� i zeros. Fixw > �i, . . . ,n�. ¿e codeword u
is counted � n�in�w� times in the sum PSES�w SC�E�S. ¿erefore Pn

i�0 Ai� n�in�w� �
PSES�w SC�E�S.
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10 introduction

2. Consider a subset E such that SES � w. ¿e all-zero codeword belongs to
C�E�. Choose u,v > C�E�, then u � v has zeros outside E, i.e., u � v > C�E�.
In other words, C�E� is a subspace of the vector space C.
Let H�E� be a parity-check matrix of C�E� obtained by completing a ma-
trix H of C with n � w independent vectors (having only one non-zero co-
ordinate). We have H�E�T � �HT , BT� where BE is the all-zero matrix and
B�n��E � In�w is the n � w identity matrix. ¿e matrix H�E� is block-wise
triangular. ¿erefore row additions will transform the submatrix H without
changing the rank of the set of its columns indexed by E. By performing so
we can transform the matrix H�E� into a block-wise diagonal matrix with-
out changing its rank and keeping Bunchanged. We �nally get rank�H�E�� �
rank�HE� � rank�In�w�, i.e., k�E� � w � rank�HE�.

3. Consider a generator matrix of C built in the following special way. We start
with a generator matrix for C�E� and then append rows to complete it to a
generator matrix of C. In a similar (dual) manner as in the previous ques-
tion, we get k � rank(G) � k�E� � rank�GĒ�. ¿is result combined with the
previous result shows that w � rank�HE� � k � rank�HĒ�.

4. ¿e change of variable v � n � u proves (i) because

n�u
Q
i�0

AÙi �n � iu � � v
Q
i�0
AÙi �n � in � v

� � n
Q
i�0
AÙi �n � in � v

� � Q
SES�v�n�u

SCÙ�E�S.
Next, (ii) is obtained from 2 which states that SCÙS � 2SES�rank�GE�. Finally, 3
shows (iii), and 1 proves (iv).

5. Using the result from the previous question, we have

Q
i
AÙi �n � iu �´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�SÙu

� 2n�k�uQ
i
Ai�n � in � u

�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�Su

.

Using the le -hand side of this equality, we have

Q
u
��1�u� u

n � j
�SÙu �Q

i
AÙi ��1�i �Q

u
��1�u�i�n � i

u
�� u
n � j

��
�Q

i
AÙi ��1�i��1�nQ

l
���1�l�i�n � i

n � l
��n � l
n � j

��´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
δi,j
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� AÙj��1�n�j.(1.2)

Using the right-hand side of this equality, we have

Q
u
��1�u� u

n � j
�Su � 2�kQ

u
2n�u��1�uQ

i
Ai�n � in � u

�� u
n � j

�
�
��1�n�jSCS Q

i
AiQ

u
2n�u��1�n�j�u�n � i

n � u
�� u
n � j

�´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�Qj�i�

.(1.3)

We claim that Qj�i� is in fact a Krawtchouk polynomial, i.e., we claim that
Qj�i� � Pj�i� � Pn

l�0��1�l�il��n�ij�l�. If we assume this for a moment, then we
see from (1.2) and (1.3) that

AÙj �
1SCS n
Q
i�0
AiPj�i�, 0 B jB n.

It remains to prove our claim. To see it, observe �rst that

�1 � x�n�i�1 � x�i � n�i
Q
j�0

i
Q
l�0
��1�l�n � i

j
��i
l
�x j�l

j�� j�l
� Q

l
Q
j�
��1�l�n � i

j� � l
��i
l
�x j� �Q

j
Pj�i�x j,

and second that

�1 � x�n �1 � 2x
1 � x

�n�i � n�i
Q
m�0

�n � i
m

�2mxm�1 � x�n�m
�Q

m
Q
k
�n � i
m

��n �m
k

�2m��1�kxm�k
j�k�m
� Q

m
Q
j
�n � i
m

��n �m
j�m

�2m��1�j�mx j
u�n�m
� Q

u
Q
j
�n � i
n � u

�� u
j� n � u

�2n�u��1�n�u�jx j
�Q

j
Qj�i�x j.

Finally, we use the identity �1 � x�n�i�1 � x�i � �1 � x�n�1 � 2x
1�x�n�i to get

Qj�i� � Pj�i�.
Preliminary version – October 28, 2008



12 introduction

6. ¿e �7,4,3� Hamming code has 1 all-zero codeword, 7 codewords of weight
3, 7 codewords of weight 4, and 1 all-one codeword, i.e., A0 � A7 � 1,A3 �
A4 � 7, and A1 � A2 � A5 � A6 � 0. We can use the previous result to obtain
that its dual, the �7,3,4� Simplex code, has AÙ0 � 1, AÙ4 � 7, and AÙj � 0 for
jx 0,4.

¥

Solution 1.21 (Upper Bound On Error Probability via Weight Distribu-
tion). By de�nition of the ensembleH�n, k�, every code in the ensemble consists
of the solution space of the set of equations HxT � 0T for some random parity-
check matrixH. Hence, every code C inH�n, k� contains the all-zero word exactly
once. It follows that E�A0�H�� � 1.

¿e chance that a �xed non-zero word ful�lls a random parity-check constraint
is equal to one-half. Since the rows of the parity-checkmatrixH are chosen indepen-
dently and there are by de�nition exactly n � k rows, it follows that the probability
that a �xed non-zero word ful�lls all parity-check equations equals 2��n�k�. Since
there are �nw� words of weight w we conclude that E�Aw�H�� � �nw�2��n�k�.

We get

Ā�D� � 1 � 2��n�k� n
Q
w�1

�n
w
�Dn

� 1 � 2��n�k���1 � D�n � 1� � 2��n�k��1 � D�n � �1 � 2��n�k��.
Now consider the sequence of inequalities. Because of symmetry, the condi-

tional error probability does not depend on the transmitted codeword. We are there-
fore free to assume that X � 0, i.e., that the transmitted codeword is the all-zero one.
¿e �rst inequality is the union bound in which we upper bound the probability of
a union of events by the sum of the individual probabilities. Since we are deal-
ing with the Gaussian case for which the likelihoods are monotonically decreasing
functions of the distance, instead of looking at p�Y S x� C p�Y S 0� we can compareSx � YS2 B SYS2. From the problem description we know that the all-zero word gets
mapped to the vector of length n containing one in each component. If we con-
sider any other codeword x of Hamming weightw�x� then the indicated mapping,
maps x into a vector that has Euclidean distance dE � 2

»
w�x� from the all-one

vector. In Gaussian noise of variance σ2, the probability that we confuse two points
that have Euclidean distance dE is equal to Q�dE~�2σ��. ¿is explains the term
Q�»w�x�~σ�. Now we use the standard upper bound Q�x� B

1
2e

�x2~2, x C 0.
¥ � ��
Solution 1.22 (Sufficient Statistic). Observe that equivalently we can show that
pX,Y�x, y� can be brought into the form a�x, z�b�y�.
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First we show that if Z � f�Y� and if Z constitutes a su�cient statistic for X
givenY then pX,Y�x, y� can be brought into the form a�x, z�b�y�. Write pX,Y�x, y� �
Pz pX,Y,Z�x, y, z� � Pz pX,Z�x, z�pY S Z�y S z�, where in the second step we have
used the fact that X � Z � Y. Since Z is a function of Y we can write this
further as pX,Y�x, y� � pX,Z�x, f�y��pY S Z�y S f�y��, which has the desired form
a�x, z�b�y�.

On the other hand, assume that pX,Y�x, y� can be brought into the form a�x, z�b�y�
where z � f�y�. Write

pX,Y,Z�x, y, z� � pX,Y�x, y�δ�z � f�y�� � a�x, z�b�y�δ�z � f�y��.
If we marginalize out Y we get

pX,Z�x, z� � a�x, z�Q
y
b�y�δ�z � f�y��,

and if we marginalize out X we get

pY,Z�y, z� � b�y�δ�z � f�y��Q
x
a�x, z�.

If we marginalize out X and Y we get

pZ�z� � �Q
x
a�x, z���Q

y
b�y�δ�z � f�y���.

¿erefore,

pX,Y,Z�x, y, z� � a�x, z�b�y�δ�z � f�y��
�

pX,Z�x, z�
Pyb�y�δ�z � f�y�� pY,Z�y, z�Px a�x, z�

� pX,Z�x, z�pY S Z�y S z�. ¥ � ��
Solution 1.23 (More on Sufficient Statistic). We know that (i) X � Y � Z,
and that (ii) H�X SY� � H�X SZ�. We have

H�Y SX,Z� � H�X,Y,Z� �H�X,Z�
(i)
� H�X,Y� �H�Z SX,Y� �H�X,Z�
� H�X,Y� �H�Z SY� �H�X,Z�
� H�X,Y� �H�Z,Y� �H�Y� �H�X,Z�
� H�Y� �H�X SY� �H�Z,Y� �H�Y� �H�Z� �H�X SZ�
(ii)
� H�Y SZ�.

¿erefore, I�X;Y SZ� � H�Y SZ��H�Y SX,Z� � 0, which implies thatX� Z � Y.
¥
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Solution 1.24 (Bound on Binomials). ¿e �rst step is just the de�nition of �mk�.
Now we write

k!
m�m � 1� . . .�m � k � 1� � k!

mkLk�1
i�1

m�i
m

�
k!
mke

�Pk�1
i�1 ln�1�i~m� B k!

mke
k2~m.

¿e last step needs some justi�cation. We need to show that �Pk�1
i�1 ln�1 � i~m� B

k2~m. Let z � k~m, z > �0,1�. Note that � log�1 � x� is an increasing function in x
for x > �0,1�. We can therefore bound the sum by an integral:

�

k�1
Q
i�1

ln�1 � i~m� B �mS z

0
log�1 � x�dx

� m�z � �1 � z� ln�1 � z�� B mz2 � k2~m.
In the one before the last step we have used the fact that �1�z� ln�1�z� B �z�1�z�.
¿is is true since � ln�1 � z� � PiC1

zi
i , which implies ln�1 � z� B �z. ¥ � ��

Solution 1.25 (Bound on Sum of Binomials). De�ne the polynomial p�x� �

Pn
k�0 �nk�xk � �1 � x�n. For any 0 @ x B 1

m
Q
k�0

�n
k
� B � n

Q
k�0

�n
k
�xk�~xm � p�x�~xm.

We are free to choose x in the range �0,1� to get a tight bound. We choose x �

m~�n �m�. Since by assumptionm B n~2 we have indeed x > �0,1�. We get

m
Q
k�0

�n
k
� B �n~�n �m��n��n �m�~m�m � �n �m

n
���n�m��m~n��m � 2nh2�m~n�.

¥ � ��
Solution 1.26 (Chain Rule).

H�X,Y� � �Q
x,y
pX,Y�x, y� log�pX�x�pY SX�y S x��

� �Q
x,y
pX,Y�x, y� log pX�x� �Q

x,y
pX,Y�x, y� log pY SX�y S x�

� �Q
x
pX�x� log pX�x� �Q

x
pX�x�Q

y
pY SX�y S x� log pY SX�y S x�

� H�X� �Q
x
pX�x�H�Y SX � x� � H�X� �H�Y SX�. ¥ � ��
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Solution 1.27 (Non-Negativity of Mutual Information).

�I�X;Y� �Q
x,y
pX,Y�x, y� log pX�x�pY�y�pX,Y�x, y�

(1.61)
B log�Q

x,y
pX,Y�x, y�pX�x�pY�y�pX,Y�x, y� �

� 0. ¥ � ��
Solution 1.28 (Fano’s Inequality). As indicated in the hint,

H�E,X SY� � H�X SY� �H�E SX,Y� � H�E SY� �H�X SE,Y�.
Note that E is a function of X and Y so thatH�E SX,Y� � 0. Further,H�X SE,Y� B
P log�SX S � 1� since H�X SE � 0,Y� � 0, i.e., if there is no error then there is no
uncertainty about X, but if E � 1, then X can take on at most SX S � 1 values and
the conditional probability distribution on these values is at worst the uniform one.
Finally, H�E SY� B H�E� � H�P�, where the �rst step is due to the fact that condi-
tioning can only decrease entropy and the last step follows since E is binary. ¥ � ��
Solution 1.29 (The Capacity of the BSC Rederived). We have

I�X;Y� � H�Y� �H�Y SX� � H�Y� �Q
x
pX�x�H�Y SX � x�

� H�Y� �Q
x
pX�x�h2�є� � H�Y� � h�p� B 1 � h2�є�.

We get equality if we choose pX�x� to be uniform. ¥ � ��
Solution 1.30 (Descarte’s Rules of Signs). Consider the case r � 0. By the
fundamental theorem of algebra we can represent p�x� in the factorized form

p�x� � αxβ d
Q
i�β
�x � ξi�,

where the ξi are the non-zero (complex-valued) roots. Note that the �rst and last
non-zero coe�cient of p�x� are pβ and pd, respectively, and they have representa-
tion equal to

pβ � α��1�d�β�1 d
M
i�β

ξi, pd � α.

Now recall that because of our assumption, the non-zero roots of p�x� are either
negative or they appear as complex-conjugate pairs. From this and the above rep-
resentation if follows that pβ and pd have the same sign. A moments thought then
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shows that the number of sign changes must be even. ¿is proves the claim for the
case r � 0, and this case will serve as our anchor.

Assume now that the claim is true for some r C 0 and consider a polynomial
p�x�with r�1 positive roots. Write p�x� as p�x� � �x�ξ�p̃�x�, where ξ is positive.
By assumption p̃�x� has r positive roots and r � 2k sign changes for some k C 0.
Explicitly, we have

pi � p̃i�1 � ξp̃i, i � 0, . . . ,d � 1,

if we de�ne p�1 � pd�1 � 0. Consider now the polynomial p�x�. If we multiply the
i-th coe�cient of p�x�with the positive factor ξi�1, then clearly the number of sign
changes remains unaltered. ¿erefore, p�x� has the same number of sign changes
asPi �ξi�1 p̃i�1 � ξi p̃i�� xi, which in turn has the same number of sign changes as

Q
i
�ξi p̃i � ξi�1 p̃i�1�� xi � p̃�ξx��1 � x�.

Weclaim that for a general polynomial p�x� the number of sign changes of p�x��1�
x� always di�ers by an odd number from the number of sign changes of p�x�. ¿is
will settle the claim. We use again induction, this time on the degree of p�x�. ¿e
claim is trivially ful�lled for any non-zero degree-zero polynomial. Let us also check
the case d � 1. Without loss of generality we can eliminate multiples of x. Assume
therefore �rst that p�x� � p0 � p1x with p0 x 0, so that p�x��1 � x� � p0 � �p1 �
p0�x�p1x2. Since we are only interested in sign changeswe can assumewithout loss
of generality that p0 A 0. An explicit check then shows that the claim is true for both
p1 A 1 as well as p1 @ 0. Assume therefore that the claim is true for any polynomial
of degree up to d, where d is some natural number. Consider a polynomial of degree
d � 1. It has the formPd�1

i�0 pix
i, where pd�1 x 0.

Assume �rst that pdpd�1 A 0, i.e., they have the same sign. Without loss of
generality assume that they are both positive. In this case, if we eliminate the highest
term of p�x� and call it p̃�x�, then p�x� and p̃�x� have the same number of sign
changes. If we compare p̃�x��1� x� with p�x��1� x� then the second has the �nal
two terms pd�1�pd and�pd�1, whereas, p̃�x��1�x� has the �nal term�pd. In both
cases the �nal term is negative. If pd�1 � pd @ 0 then the number of sign changes is
the same in both cases, if pd�1�pd A 0 then it di�ers by two. In either case the claim
is ful�lled since by induction on the degree the statement is ful�lled for p̃�x��1�x�.
¿e case pdpd�1 A 0 can be treated in a similar way. ¥ � ��
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