
1

A FIRST COURSE IN DIFFERENTIAL GEOMETRY

Woodward and Bolton

Solutions to exercises

Chapter 1

1.1. A sketch of the astroid is given in Figure 1(a). It is clear that all
points in the image of α satisfy the equation of the astroid. Conversely, if
x2/3 + y2/3 = 1, then there exists u ∈ R such that (x1/3, y1/3) = (cosu, sinu).
Thus every point of the astroid is in the image of α.

Trigonometric identities may be used to show thatα′ = (3/2) sin 2u(− cosu, sinu),
which is zero only when u is an integer multiple of π/2. The corresponding points
of the astroid are the cusps in Figure 1(a).

The required length is

3

2

∫ π/2

0

sin 2u du =
3

2
.

(a) Astroid (b) An epicycloid

Figure 1

1.2. A sketch of the trace of an epicycloid is given in Figure 1(b). Trigono-
metric identities may be used to show that

α′ = 4r sin(u/2)
(

sin(3u/2), cos(3u/2)
)
.

So, for 0 ≤ u ≤ 2π, |α′| = 4r sin(u/2), and required length is 4r
∫ 2π

0
sin(u/2)du =

16r.

1.3. When r = 1, a calculation shows that α′ = tanhu sechu(sinhu,−1),
so that, for u ≥ 0, t = sechu(sinhu,−1). It follows that α + t = (u, 0). A
sketch of the trace of a tractrix is given in Figure 2(a).

1.4. Here, |α′| = (1 + g′
2
)1/2 and t = (1 + g′

2
)−1/2(1, g′). Hence n =

(1 + g′
2
)−1/2(−g′, 1). A calculation shows that t′ = g′′(1 + g′

2
)−3/2(−g′, 1), so

that
dt

ds
=

1

|α′|
t′ =

g′′

(1 + g′2)3/2
n .
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Figure 2: (a) shows a tractrix and (b) shows three catenaries

Hence κ = g′′(1 + g′
2
)−3/2.

Taking x(u) = u, y(u) = g(u) in the formula given in Exercise 1.8 gives the
same formula for κ.

1.5. Use the method of Example 2 of §1.3. For u ≥ 0, |α′| = tanhu and
t = (tanhu,−sechu). It follows that dt/ds = (|α′|)−1t′ = n/ sinhu. Hence
κ = cosechu.

1.6. EITHER: use Exercise 1.4 to show that the curvature of the catenary
α(u) = (u, coshu) is given by κ = sech2u,
OR: use the method of Example 2 of §1.3, and proceed as follows:-
α′ = (1, sinhu), so that |α′| = coshu and t = (sech u, tanh u). Hence n =
(−tanh u, sech u), and

dt

ds
=

1

|α′|
t′ =

1

cosh2 u
(−tanh u, sech u) =

1

cosh2 u
n .

Hence κ = sech2u. A sketch of the traces of three catenaries is given in Figure
2(b).

1.7. Differentiating with respect to u, we see that, using Serret-Frenet,

α`
′ = α′ + `n′ = |α′|(t− κ`t) = |α′|(1− κ`)t .

It follows that |α`′| = |α′| |1 − κ`| and t` = εt, where ε = (1 − κ`)/|1 − κ`|.
Hence n` = εn, so, if s` denotes arc length along α`, we have

dt`
ds`

=
1

|α′| |1− κ`|
t′` =

ε

|α′| |1− κ`|
t′ .

Using Serret-Frenet, t′ = |α′|κn = |α′|κεn`, from which the result follows.

1.8. Since α′ = (x′, y′), we have that |α′| = (x′
2

+ y′
2
)1/2. Hence t =

(x′, y′)/(x′
2

+ y′
2
)1/2 and n = (−y′, x′)/(x′2 + y′

2
)1/2. Hence

t′ =
α′′

(x′2 + y′2)1/2
− α

′(x′x′′ + y′y′′)

(x′2 + y′2)3/2
,
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and a short calculation shows that

dt

ds
=

1

(x′2 + y′2)2

(
y′(x′′y′ − x′y′′), x′(x′y′′ − x′′y′)

)
=

x′y′′ − x′′y′

(x′2 + y′2)3/2
n ,

and the result follows.

1.9. (i) Let sα be arc length along α measured from u = 0. Since α′ =
(1, sinhu) we see that dsα/du = |α′| = coshu. Hence sα(u) = sinhu and
tα = (sech u, tanh u). The result follows from formula (1.9) for the involute.
(ii) The evolute of α is given by

β = α+
1

κα
nα .

Here, we have (from Exercise 1.6) that κα = sech2u and nα = (−tanh u, sech u).
A direct substitution gives the result.

A short calculation shows that β′ = 0 if and only if u = 0, so this gives the
only singular point of β (where the curve β has a cusp). A sketch of the traces
of α and β is given in Figure 3.

Figure 3: A catenary and its evolute

1.10. Let sα denote arc length along α starting at u = u0. Then, using
(1.9) and the notation used there, we see that

β′ = α′ − sα′tα − sαtα′ = −sαtα′ .

It follows that β′ = −sα|α′|καnα, so the only singular point of β is when
sα = 0, that is at u = u0.

1.11. For ease, assume that κα > 0, and restrict attention to u0 < u1 < u.
Then, from (1.12), we have that κ0 = 1/s0 and κ1 = 1/s1.

Let ` be the length of αmeasured from α(u0) to α(u1). Then ` = s0−s1 > 0,
so the definition of involute gives that β1 = β0 +(s0−s1)tα = β0 + `n0. Hence
β1 is a parallel curve to β0, and

κ0
|1− κ0`|

=
1/s0

|1− `/s0|
=

1

|s0 − `|
=

1

s1
= κ1 .

1.12. A sketch of the trace of α is given in Figure 4.
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Figure 4: The curve in Exercise 1.12

A short calculation shows that |α′| =
√

3eu and

t =
1√
3

(cosu− sinu, sinu+ cosu, 1) .

When z = λ0 we have that u = log λ0, and when z = λ1 we have that
u = log λ1. So, required length is

√
3

∫ log λ1

log λ0

eudu =
√

3(λ1 − λ0) .

Also, using the method of Example 2 of §1.5, we find that

dt

ds
=

1

3eu
(− sinu− cosu, cosu− sinu, 0) ,

so that κ =
√

2/(3eu) and

n =
1√
2

(− sinu− cosu, cosu− sinu, 0) .

It then follows that

b = t× n =
1√
6

(sinu− cosu,− cosu− sinu, 2) ,

so that
db

ds
=

1

3
√

2eu
(sinu+ cosu,− cosu+ sinu, 0) .

Hence τ = −1/(3eu).

1.13. Calculations similar to those of Example 2 of §1.5 show that |α′| =√
2 coshu, t = (tanhu, 1, sechu)/

√
2, κ = (1/2)sech2u, n = (sechu, 0,−tanhu),

and b = (−tanhu, 1,−sechu)/
√

2. Differentiating one more time, we find that
db/ds = (1/2)sech2u(−sechu, 0, tanhu), so that τ = −(1/2)sech2u.

1.14. Assume that α(s) is a smooth curve in R3 parametrised by arc length.
If α has zero curvature then dt/ds = 0, so that t is a constant unit vector t0,
say. Since dα/ds = t0, it follows that α(s) = st0 +v0, for some constant vector
v0. Hence α is a line. Conversely, if α is the line through v0 in direction of unit
vector t0, say, then α may be parametrised as α(s) = st0 + v0, and it quickly
follows that κ = 0.
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1.15. Using Serret-Frenet, we have

α′ = |α′|t , α′′ = κ|α′|2n+ |α′|′t ,

so that α′ × α′′ = κ|α′|3b. Equating the lengths of both sides, we obtain the
required formula for κ. Differentiating one more time, we find that

α′′′ = −κτ |α′|3b+ terms involving t and n ,

so that (α′×α′′).α′′′ = −κ2τ |α′|6. Using the expression we have just found for
κ now gives the required expression for τ .

1.16. (i) Assume first that α(u) = (a cosu, a sinu, bu). The tangent vector
to α(u) makes angle φ with the generating lines where cosφ = b/

√
a2 + b2.

Hence φ is a constant different from 0 and π/2. We saw in Example 2 of §1.5
that α(u) has non-zero torsion, so it follows that α(u) is a helix with value
(a, 0, 0) when u = 0.

Conversely, assume that α(v) = (a cos θ(v), a sin θ(v), v+c) describes a helix
with value (a, 0, 0) when v = 0. Then c = 0 and, denoting differentiation with
respect to v by ′, we have

α′ = (−aθ′ sin θ, aθ′ cos θ, 1) ,

so the angle φ of the tangent vector to the z-axis is given by cosφ = (1 +

a2θ′
2
)−1/2.

Hence, our assumption that α(v) is a helix implies that θ′ is a non-zero
constant, so that θ = c1v + c2, where c1 6= 0 and c2 are constants. The initial
condition α(0) = (a, 0, 0) shows that c2 is an integer multiple of 2π, so if we let
u = c1v then α(u) = (a cosu, a sinu, u/c1), which is of the required form.
(ii) Assume that α(s) has constant κ and τ . It follows immediately from Serret-
Frenet that the derivative of τt − κb is zero, so that τt − κb is constant, X0,
say.

Let a = κ/(κ2 + τ2). Then, using Serret-Frenet,

d

ds
(α+ an) = t+

κ

κ2 + τ2
(−κt− τb)

=
τ

κ2 + τ2
(τt− κb) .

Hence α+ an has constant rate of change τX0/(κ
2 + τ2), so that

α+ an = Y 0 + s
τ

κ2 + τ2
X0 ,

for some constant vector Y 0. Since n is perpendicular to t and to X0, it follows
that α lies on the cylinder S of radius a whose axis of rotation is the line through
Y 0 in direction X0. Finally, we note that t.X0 = τ , which is constant, so that
α is a helix on S.



6 SOLUTIONS TO EXERCISES

1.17. Assume there is a unit vector X0 such that t.X0 = c, a constant.
Then n.X0 = 0, so that X0 = ct+ c1b for some constant c1. Then 0 = X0

′ =
|α′|(cκ+ c1τ)n, so that κ/τ = −c1/c which is constant.

Conversely, if κ/τ = k, a constant, the Serret-Frenet formulae show that

(t− kb)′ = |α′|
(
κn− (κ/τ)τn

)
= 0 ,

so that t− kb is constant. The result follows since t.(t− kb) = 1.

1.18. The assumption on α implies the existence of a smooth function r(u)
such that α+ rn = p. If we differentiate this expression, use Serret-Frenet, and
then equate the coefficients of t, n and b to zero, we find that r′ = 0 (so that
r is a non-zero constant), κ = 1/r, and τ = 0. The result now follows from
Lemma 1 of §1.5 and Example 8 of §1.3.

1.19. The given information implies that nα = ±nβ.
(i) Differentiating tα.tβ (with respect to u), and using Serret-Frenet, we find
that

(tα.tβ)′ = |α′|καnα.tβ + |β′|κβtα.nβ = 0 ,

so that tα.tβ is constant.
(ii) The given information implies the existence of a smooth function r(u) such
that β = α + rnα. Differentiating this, using Serret-Frenet, and taking inner
product with nα gives that r′ = 0. Hence result.

1.20. Here, |α′| =
√
a2 + b2 and tα = (−a sinu, a cosu, b)/

√
a2 + b2. Hence

sα(u) = u
√
a2 + b2, from which it follows that

β(u) = (a cosu+ au sinu, a sinu− au cosu, 0) ,

so, in particular, the third component of β is zero. The circle of intersection
of the plane z = 0 with the cylinder x2 + y2 = a2 may be parametrised as
γ(u) = (a cosu, a sinu, 0), and the exercise may now be completed using the
formula for the involute by noting that γ′ = (−a sinu, a cosu, 0), so that tγ =
(− sinu, cosu, 0) and sγ(u) = au.

1.21. First assume that α(s) lies on a sphere with centre p and radius r,
or, equivalently, that (α− p).(α− p) = r2. We shall differentiate repeatedly to
find an expression for α− p in terms of t, n and b.

So, differentiate once to find that (α − p).t = 0. Differentiating again and
using Serret-Frenet, we obtain (α−p).n = −1/κ. Differentiating this and using
Serret-Frenet gives (α− p).b = −κ′/(τκ2). It now follows that

α− p = − 1

κ
n− κ′

τκ2
b .

The derivative of the left hand side, and hence of the right hand side, of the
above equation is t. In particular, the coefficient of b of the derivative of the
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right hand side is zero, which gives the desired relation between κ and τ .
Conversely, assume that κ and τ for a regular curve α(s) are related as in

the given formula, and let

p(s) = α+
1

κ
n+

κ′

τκ2
b .

The given relation between κ and τ may be used to show that p′ = 0 so that p
is constant. It now follows (again by differentiating) that (α−p).(α−p) is also
constant. Since α is not constant we have that |α − p| = r for some positive
constant r, so that α lies on the sphere with centre p and radius r.

Chapter 2

2.1. The line through (u, v, 0) and (0, 0, 1) may be parametrised by α(t) =

t(u, v, 0)+(1− t)(0, 0, 1). This line intersects S2(1) when
∣∣(tu, tv, (1− t))∣∣2 = 1,

and a short calculation gives that t = 0 or t = 2/(u2 + v2 + 1). Since t = 0
corresponds to (0, 0, 1), we quickly see that x(u, v) is as claimed.

The formula for F follows from consideration of similar triangles, OR we
may use the following method which is similar to the one used in the earlier
part of the solution to this exercise. The line through (x, y, z) and (0, 0, 1) may
be parametrised by β(t) = t(x, y, z) + (1 − t)(0, 0, 1). For z 6= 1, this line cuts
the xy-plane when t = (1− z)−1, which gives the point (1− z)−1(x, y, 0) on the
line β. The formula for F now follows.

That Fx(u, v) = (u, v) is a routine calculation (and also follows from the
geometrical construction). That x is a local parametrisation as claimed is now
immediate from conditions (S1) and (S2), taking U = R2 and W = R3 \ P .

2.2. Let V be an open subset of Rn such that X = V ∩ S is non-empty. If
p ∈ X, let x : U → Rn be a local parametrisation of S whose image contains
p. Then x−1(V ) = {(u, v) ∈ U : x(u, v) ∈ V } is an open subset of R2 and the
restriction of x to x−1(V ) is a local parametrisation of X whose image contains
p. To see this, if F : W → R2 is a map satisfying condition (S2) for x then
consider the restriction of F to V ∩W .

2.3(a). (i) There are many ways. The one which perhaps is closest to that
given in Example 4 of §2.1 is to cover the cylinder by four local parametrisations.
Firstly, let U = {(u, v) ∈ R2 : −1 < u < 1, v ∈ R} and let x+ : U → R3 be
given by x+(u, v) = (

√
1− u2, u, v). If we let W = {(x, y, z) ∈ R3 : x > 0} and

let F : W → R2 be given by F (x, y, z) = (y, z), then conditions (S1) and (S2)
are satisfied. Hence x+ is a local parametrisation of the given cylinder S, and
the corresponding coordinate neighbourhood is shown in the left hand picture
of Figure 5. The whole of S may be covered by x+ and an additional three
local parametrisations with domain U given by

x−(u, v) = (−
√

1− u2, u, v) ,


