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Figure 2.1  Illustration of pressure fluctuations relative to atmospheric pressure.
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Figure 2.2 � Squared acoustic pressure from Figure 2.1 and corresponding mean-square value.
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Figure 2.3 � (a) Harmonic motion at circular frequency ω; (b) harmonic motion seen as a projec-
tion of circular motion.

002x003.eps



Courtesy of CRC Press/Taylor & Francis Group

Piston

Piston moves with velocity u

Fluid

Fluid compressed locally
and moves with velocity u

Front edge of disturbance moves
with velocity c0 – the speed of sound

Disturbance continues to move at c0
Piston stops

Local fluid velocity becomes u as the
disturbance passes

Figure 2.4 � Illustration of the propagation of a sound pulse in a semi-infinite tube. The shaded 
area denotes a region of increased pressure in the tube. (Reprinted from Nelson, 
P.A. and Elliott, S.J., Active Control of Sound, chapter 1, Academic Press, London, 
1992. With permission.)
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Figure 2.5 � Tube of cross-sectional area S with a control volume of length δx. The acoustic vari-
ables are given by p, ρ, u at the position x.
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Figure 2.6 � General form of the relationship between total instantaneous pressure and density.
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Figure 2.7  Propagation of a harmonic disturbance as a one-dimensional wave.
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Figure 2.8  Excitation of plane waves in a semi-infinite tube by a vibrating piston.
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Figure 2.9 � Small control volume used to derive the three-dimensional linearised continuity equation.
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Figure 2.10  Pulsating sphere of radius a.
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Figure 2.11 � Geometrical arrangement of two sources of equal and opposite strength separated 
by a distance d = 2ɛ1, centred at (y1, y2, y3). The x3 axis is suppressed for clarity.
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Figure 2.12 � Directivity of a dipole showing the angular variation of the far-field pressure ampli-
tude. The x3 axis is suppressed for clarity. The directivity is axisymmetric about 
the x1–y1 axis.
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Figure 2.13 � Coordinate systems used for the analysis of (a) a longitudinal quadrupole and 
(b) a lateral quadrupole, centred at (y1, y2, y3). The x3 axis is suppressed for clarity.
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Figure 2.14 � Directivity of a longitudinal quadrupole showing the angular variation of the far-
field pressure amplitude. The x3 axis is suppressed for clarity. The directivity is axi-
symmetric about the x1 – y1 axis.
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Figure 2.15 � Directivity of a lateral quadrupole showing the angular variation of the far-field 
pressure amplitude. The x3 axis is suppressed for clarity. The directivity is axisym-
metric about the x1 – y1 axis.
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Figure 2.16  Source and its image source in a rigid reflecting plane.
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Figure 2.17 � Relative sound pressure level due to a source located above a rigid reflecting plane, 
calculated at narrow frequency spacing (− − −); averaged into one-third octave bands 
(—).
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Figure 2.18  Circular piston set in a rigid coplanar baffle.

002x018.eps



Courtesy of CRC Press/Taylor & Francis Group

0°

90°

–90°

dB

–40

–30

–20

–10

0
–90°

–40

–30

–20

–10

0
–90°

–40

–30

–20

–10

0

ka = 2

0°

90°

dB

ka = 5

0°

90°

dB

ka = 12

Figure 2.19 � Sound pressure level distribution obtained from a circular piston set in a rigid baffle 
for different values of ka, shown relative to the value on the axis.
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Figure 2.20 � Pressure (—) and axial particle velocity (······) mode shapes of a pipe closed at both 
ends.
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Figure 2.21 � Pressure (—) and axial particle velocity (······) mode shapes of an open-closed pipe.
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Figure 2.22  Rigid-walled rectangular enclosure.
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Figure 2.23 � Number of natural frequencies in each 5 Hz bandwidth up to 500 Hz for a rectan-
gular enclosure of dimensions 10 m × 5 m × 3 m. (Reprinted from Nelson, P.A. and 
Elliott, S.J., Active Control of Sound, chapter 1, Academic Press, London, 1992. With 
permission.)
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Figure 2.24 � Plane-wave construction of a diffuse-sound field model. The surface of the sphere of 
radius r surrounding a point is divided into N tiny segments of equal area. Each area 
element has an associated plane wave propagating in a direction defined by the nor-
mal to the surface area element. Thus the segment of area ΔS contains (ΔSN/4πr2) tiny 
elements.
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Figure 2.25 � Visualisation of the sound intensity at a point in a diffuse field: (a) intensity vectors of 
plane waves arriving at a point from different directions; (b) the one-sided intensity is 
that which passes through a surface from one side; (c) components of the intensity vec-
tors of plane waves that contribute to the one-sided intensity.

002x025.eps


