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A.2 Solutions for Chapter 2

Exercise 2.1: a) Find the Erlang density fs, (t) by convolving fx (z) = Aexp(—Az), z > 0 with itself n

times.

Solution: For n = 2, we convolve fx(x) with itself.

t ¢
fs,(t) = /Dfxl(a:)fXQ(t—x)dx = /OAe)‘I)\e)‘(tx) dr = Nte M.

For larger n, convolving fx(z) with itself n times is found by taking the convolution n—1
times, i.e., fg, ,(t), and convolving this with fx(x). Starting with n = 3,

! LU TS VR v N
fo,(t) = fo,(z)fx,(t —2)dzx = Axe " he dr = —5 ¢

0 0

t)\3 2 )\4t3
fs,(t) = /0 —; e M AN g = ar e M.

We now see the pattern; each additional integration increases the power of A and ¢ by 1
and multiplies the denominator by n — 1. Thus we hypothesize that fg (t) = M;—Tle*M.
If one merely wants to verify the well-known Erlang density, one can simply use induction
from the beginning, but it is more satisfying, and not that much more difficult, to actually

derive the Erlang density, as done above.

b) Find the moment generating function of X (or find the Laplace transform of fx(x)), and use this to find
the moment generating function (or Laplace transform) of S,, = X1 + Xo + - + X,

Solution: The formula for the MGF is almost trivial here,

for r < .

— Y —A\x rmd —
gx(r) /0 e e dx P

Since S, is the sum of n IID rv’s,

w0 = ex())” = (52) -

c) Find the Erlang density by starting with (2.15) and then calculating the marginal density for S,.

Solution: To find the marginal density, fs, (s,), we start with the joint density in (2.15)
and integrate over the region of space where 51 < s9 < --- < s,,. It is a peculiar integral,
since the integrand is constant and we are just finding the volume of the n — 1 dimensional
space in $1, ... ,Sp—1 with the inequality constraints above. For n = 2 and n = 3, we have

fo,(s2) = A2e 22 /S2 ds; = ()\26_/\82>8
212 1 2

S3 S2 s3 82
fsy(s3) = A38&/0 [/0 dsl} doa = N /0 s2dsy = <)‘367A53> e
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The critical part of these calculations is the calculation of the volume, and we can do this
inductively by guessing from the previous equation that the volume, given s,, of the n — 1
dimensional space where 0 < s1 < -+ < 8,1 < 85, is 8771 /(n—1)!. We can check that by

Sn Spn—1 So Sn, Sn_% Sn—l
e dsy... dSn_2:| dsyp—1 = / e _ds,] = ——.
/0 Uo /0 o (n—2)! (n—1)!

This volume integral, multiplied by \"e~*%7_ is then the desired marginal density.

A more elegant and instructive way to calculate this volume is by first observing that the
volume of the n — 1 dimensional cube, s, on a side, is s”~!. Each point in this cube can
be visualized as a vector (si,S2,...,S,—1). Each component lies in (0, s,), but the cube
doesn’t have the ordering constraint s; < sg < -+ < sp,—1. By symmetry, the volume of
points in the cube satisfying this ordering constraint is the same as the volume in which
the components si,...s,—1 are ordered in any other particular way. There are (n — 1)!
different ways to order these n — 1 components (i.e., there are (n — 1)! permutations of the
components), and thus the volume with the orderlng constraints, is 771 /(n — 1)!.

Exercise 2.2: a) Find the mean, variance, and moment generating function of N(t), as given by (2.17).
Solution:
(o] oo oo
n(t nef)\t by nflef)\t by mef)\t
E[N(t)]:zi( ) :/\tE:i( ) :At§:7< ) = X,

(n—1)! m!

n=0 ) n=1 m=0

where in the last step, we recognized the terms in the sum as the Poisson PMF of parameter
At; since the PMF must sum to 1 the mean is At as shown. Using the same approach, the
second moment is (At)2 + ¢, so the variance is At. For the MGF,

E [erN(t):| _ i ()\te?je_M _ )\tz [ (Ater)me M ]emr.

n=0

Recognizing the term in brackets as the PMF of a Poisson rv of parameter Ae” in this
expression, we get

E [erN(t)} = e MM = explAt(e” —1)].

b) Show by discrete convolution that the sum of two independent Poisson rv’s is again Poisson.

Solution: Let X and Y be independent Poisson with parameters A and p respectively.
Then

m nmn

pxiv(m) = > px(n)py(m—n) = e~ “E nl(m
n=0

2 & _A_“()\ +u)"
€ m n m-n _ € %
om! Z <n)>\ . B m! ’

n=0

where we recognized the final sum as a binomial sum.
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c) Show by using the properties of the Poisson process that the sum of two independent Poisson rv’s must

be Poisson.

Solution: For any ¢,7 > 0 in a Poisson process we know that N(t+7) = N(t) + N(t,t+7)
is Poisson and N(t¢,t + 7) is Poisson in 7. Since N(¢) and N(¢,7) are independent and ¢
and 7 are arbitrary positive numbers, the sum of 2 independent Poisson rv’s is Poisson.

Exercise 2.3: The purpose of this exercise is to give an alternate derivation of the Poisson distribution
for N(t), the number of arrivals in a Poisson process up to time t. Let A be the rate of the process.

a) Find the conditional probability Pr{N(t) =n | S, = 7} for all 7 <¢.

Solution: The condition S,, = 7 means that the epoch of the nth arrival is 7. Conditional
on this, the event {N(t) = n} for some t > 7 means there have been no subsequent arrivals
from 7 to t. In other words, it means that the (n + 1)th interarrival time, X, exceeds
t — 7. This interarrival time is independent of S,, and thus

Pr{N({#)=n|S, =7} =Pr{X,41 >t—7} =7 fort > . (A.24)

b) Using the Erlang density for Sy, use (a) to find Pr{N(¢) = n}.

Solution: We find Pr{N(¢) = n} simply by averaging (A.24) over S,,.
Pr{N(t)=n} — / Pr{N(t)=n | Sp=r} fs, (7) dr
0

t n_n—1_—At
_ / e AT Ty
_ )\nef)\t /t Tn—l g - ()\t)nef)\t
 (n=1) B nl

Exercise 2.4: Assume that a counting process { N(t); >0} has the independent and stationary increment
properties and satisfies (2.17) (for all ¢ > 0). Let X be the epoch of the first arrival and X, be the interarrival
time between the (n—1)st and the nth arrival. Use only these assumptions in doing the following parts of
this exercise.

a) Show that Pr{X; >z} = e™*7.

Solution: The event {X; > z} is the same as the event {N(z) = 0}. Thus, from (2.17),
Pr{X; > 2} = Pr{N(z) = 0} = e=*2.

b) Let Sn—1 be the epoch of the (n—1)st arrival. Show that Pr{X, > x| Sp—1 =7} = e~ .

Solution: The conditioning event {S,—1 = 7} is somewhat messy to deal with in terms
of the parameters of the counting process, so we start by solving an approximation of the
desired result and then go to a limit as the approximation becomes increasingly close. Let
6 > 0 be a small positive number which we later allow to approach 0. We replace the event
{Sp—1 = 7} with {7—J < S,—1 < 7}. Since the occurrence of two arrivals in a small interval
of size 0 is very unlikely (of order o(¢)), we also include the condition that S,,_o < 7—J and
Sy > 7. With this, the approximate conditioning event becomes

{8y 0 <T7-0< 81 <7<8,} = {N(7=68) =n—2, N(r—6,7) = 1}.
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Since we are irretrievably deep in approximations, we also replace the event {X, > x}
(conditional on this approximating condition) with {N(7,7+z) = 0}. Note that this ap-
proximation is exact for 6 = 0, since in that case S,_1 = 7, so X,, > x means that no
arrivals occur in (7, 7+).

We can now solve this approximate problem precisely,

Pr{N(T,T—i—x) =0|N(r—6) =n—2,N(r—0,7) = 1} = Pr{ﬁ(7,7‘+x) = 0}

= e

In the first step, we used the independent increment property and in the second, the sta-
tionary increment property along with (a).

In the limit 6 — 0, the conditioning event becomes S,,_1 = 7 and the conditioned event
becomes X,, > z. The argument is very convincing, and becomes more convincing the
more one thinks about it. At the same time, it is somewhat unsatisfactory since both the
conditioned and conditioning event are being approximated. One can easily upper and
lower bound the probability that X,, > x for each § but the ‘proof’ then requires many
uninsightful and tedious details.

c) For each n > 1, show that Pr{X, >z} = ¢™*® and that X,, is independent of S, _1.

Solution: We have seen that Pr{X, >z | S,_1=7} = e~**. Since the value of this prob-
ability conditioned on {S,-1 = 7} does not depend on 7, X, must be independent of
Sn—1.

d) Argue that X, is independent of X1, Xo,... Xp_1.

Solution: Equivalently, we show that X, is independent of {S1=s1, Sa=s92, ... , Sp—1=Sn—1}
for all choices of 0 < s1 < $9 < --+ < s,—1. Using the same artifice as in (b), this latter
event is the same as the limit as 6 — 0 of the event

{N(s1—8)=0, N(s1—0,51)=1, N(s1,52—0)=0, N(s9—0,52)=1, ..., N(sp_1—0,5n_1)=1}.

From the independent increment property, the above event is then independent of the
v N(sp—1, Sp—1+x) for each z > 0. As in (b), this shows that X, is independent of
S1,...,8,-1 and thus of Xq,...,X,_1.

The most interesting part of this entire exercise is that the Poisson CDF was used only to
derive the fact that X; has an exponential CDF. In other words, we have shown quite a bit
more than Definition 2 of a Poisson process. We have shown that if X; is exponential and
the stationary and independent increment properties hold, then the process is Poisson. On
the other hand, we have shown that a careful derivation of the properties of the Poisson
process from this definition requires a great deal of intricate, uninsightful, and tedious
analysis.

Exercise 2.5: The point of this exercise is to show that the sequence of PMF’s for the counting process
of a Bernoulli process does not specify the process. In other words, knowing that N (t) satisfies the binomial
distribution for all ¢ does not mean that the process is Bernoulli. This helps us understand why the
second definition of a Poisson process requires stationary and independent increments along with the Poisson
distribution for N(t).
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a) For a sequence of binary rv’s Y1,Y2,Y3,..., in which each rv is 0 or 1 with equal probability, find a
joint distribution for Y1, Y3, Y35 that satisfies the binomial distribution, px ) (k) = (;)27 for t = 1,2,3 and
0 < k <t, but for which Y1, Ys, Y3 are not independent.

Your solution should contain four 3-tuples with probability 1/8 each, two 3-tuples with probability 1/4 each,
and two 3-tuples with probability 0. Note that by making the subsequent arrivals IID and equiprobable, you
have an example where N(t) is binomial for all ¢ but the process is not Bernoulli. Hint: Use the binomial
for t = 3 to find two 3-tuples that must have probability 1/8. Combine this with the binomial for ¢ = 2
to find two other 3-tuples with probability 1/8. Finally look at the constraints imposed by the binomial
distribution on the remaining four 3-tuples.

Solution: The 3-tuples 000 and 111 each have probability 1/8, and are the unique tuples
for which N(3) = 0 and N(3) = 3 respectively. In the same way, N(2) = 0 only for
(Y1,Y3) = (0,0), so (0,0) has probability 1/4. Since (0,0,0) has probability 1/8, it follows
that (0,0, 1) has probability 1/8. In the same way, looking at N(2) = 2, we see that (1,1,0)
has probability 1/8.

The four remaining 3-tuples are illustrated below, with the constraints imposed by N (1)
and N(2) on the left and those imposed by N(3) on the right.

1/4 0 1 0
{0 1 1 1/4
1/4 10 00— 1/4

—|, 5 ;| /

It can be seen by inspection from the figure that if (0, 1,0) and (1,0, 1) each have probability
1/4, then the constraints are satisfied. There is one other solution satisfying the constraints:
choose (0,1,1) and (1,0,0) to each have probability 1/4.

b) Generalize (a) to the case where Y1,Y5,Ys satisfy Pr{Y; =1} = ¢ and Pr{Y; =0} = 1 — ¢q. Assume
g < 1/2 and find a joint distribution on Y1, Y2, Y3 that satisfies the binomial distribution, but for which the
3-tuple (0,1, 1) has zero probability.

Solution: Arguing as in (a), we see that Pr{(0,0,0)} = (1 —¢)3, Pr{(0,0,1)} = (1 — q)?p,
Pr{(1,1,1)} = ¢*, and Pr{(1,1,0)} = ¢*(1—q). The remaining four 3-tuples are constrained
as shown below.

-
-0 .

0
1 2q(1 — q)?

2 2¢*(1— q)

S O = o=

If we set Pr{(0,1,1)} = 0, then Pr{0,1,0)} = q(1 — ¢q), Pr{(1,0,1)} = 2¢*(1 — q), and
Pr{(1,0,0)} = q(1 —q) — 2¢*(1 — q) = q(1 — ¢)(1 — 2q). This satisfies all the binomial
constraints.

c) More generally yet, view a joint PMF on binary ¢-tuples as a nonnegative vector in a 2¢ dimensional vector

space. Each binomial probability py(-) (k) = (;)qk(l — q)"F constitutes a linear constraint on this vector.
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For each 7, show that one of these constraints may be replaced by the constraint that the components of

the vector sum to 1.

Solution: There are 2! binary n-tuples and each has a probability, so the joint PMF can
be viewed as a vector of 2 numbers. The binomial probability py( (k) = (}) (1 —q)*
specifies the sum of the probabilities of the n-tuples in the event {N(7) = k}, and thus is a
linear constraint on the joint PMF. Note: Mathematically, a linear constraint specifies that
a given weighted sum of components is 0. The type of constraint here, where the weighted
sum is a nonzero constant, is more properly called a first-order constraint. Engineers often
refer to first order constraints as linear, and we follow that practice here.

Since Y10 (3) pFq"~% =1, one of these 7+ 1 constraints can be replaced by the constraint
that the sum of all 2! components of the PMF is 1.

d) Using (c), show that at most (¢ + 1)¢/2 4+ 1 of the binomial constraints are linearly independent. Note
that this means that the linear space of vectors satisfying these binomial constraints has dimension at least
2" — (t + 1)t/2 — 1. This linear space has dimension 1 for ¢+ = 3, explaining the results in parts a) and
b). It has a rapidly increasing dimension for ¢ > 3, suggesting that the binomial constraints are relatively
ineffectual for constraining the joint PMF of a joint distribution. More work is required for the case of ¢ > 3

because of all the inequality constraints, but it turns out that this large dimensionality remains.

Solution: We know that the sum of all the 2! components of the PMF is 1, and we saw in
(c) that for each integer 7, 1 < 7 < t, there are 7 additional linear constraints on the PMF
established by the binomial terms N (1 = k) for 0 < k < 7. Since S0_, 7 = (t + 1)t/2,
we see that there are ¢(¢ + 1)/2 independent linear constraints on the joint PMF imposed
by the binomial terms, in addition to the overall constraint that the components sum to
1. Thus the dimensionality of the 2! vectors satisfying these linear constraints is at least
2 —1— (t41)t/2.

Exercise 2.6: Let h(x) be a positive function of a real variable that satisfies h(x +t) = h(z) + h(t) and
let h(1) =c.
a) Show that for integer k > 0, h(k) = kc.

Solution: We use induction. We know (1) = c and the inductive hypothesis is that h(n) =
nc, which is satisfied for n = 1. We then have h(n + 1) = h(n) + h(1) = nc+c= (n+ 1)c.
Thus if the hypothesis is satisfied for n it is also satisfied for n + 1, which verifies that it is
satisfied for all positive integer n.

b) Show that for integer j > 0, h(1/j) = ¢/j.

Solution: Repeatedly adding h(1/7) to itself, we get h(2/5) = h(1/5) + h(1/7) = 2h(1/7),
h(3/j) = h(2/3) + h(1/5) = 3h(1/j) and so forth to h(1l) = h(j/j) = jh(1/j). Thus
h(1/j) = ¢/j.

¢) Show that for all positive integers k, j, h(k/j) = ck/j.

Solution: Since h(1/j) = ¢/j, for each positive integer j, we can use induction on positive
integers k for any given j > 0 to get h(k/j) = ck/j

d) The above parts show that h(x) is linear in positive rational numbers. For very picky mathematicians,

this does not guarantee that h(z) is linear in positive real numbers. Show that if h(x) is also monotonic in
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x, then h(z) is linear in « > 0.

Solution: Let x > 0 be a real number and let x1, zo, ... be a sequence of increasing rational
numbers approaching x. Then lim; .o h(x;) = clim; oo x; = cx. Thus h(z) > cx. If we
look at a similarly decreasing sequence, we see that h(x) < cx, so h(x) = cx.

Exercise 2.7: Assume that a counting process { N(t); t>0} has the independent and stationary increment
properties and, for all ¢ > 0, satisfies

Pr{ﬁ(t,t+5):o} = 1-\5+o0(5)
Pr{ﬁ(t,t+5)=1} — A5+ 0(d) (A.25)
Pr{ﬁ(t,t+5)>1} — o(d).

a) Let F{(7) = Pr{N(7) = 0} and show that dF{(7)/dr = —AF{(7).

Solution: Note that F{ is the complementary CDF of X;. Using the fundamental definition
of a derivitive,

dF§(T) ~ lim F$(7+0) — F§(7) — lim Pr{N(r+0) =0} — Pr{N(r) = 0}
dr 6—0 ) 6—0 1)
Pr{N(r) =0} (Pr{N(r, 746) =0} — 1
- ({00} ) -
_ %lﬂ% Pr{N(r) =0} (15— A6 +0(8) — 1) (A.27)
= Pr{N(r) =0} (-A) = —AF{(7),

where (A.26) resulted from the independent increment property and (A.27) resulted from
(A.25).

b) Show that X, the time of the first arrival, is exponential with parameter A.

Solution: The complementary CDF of X is F{(7), which satisfies the first order linear
differential equation in (a). The solution to that equation, with the boundary point F§(0) =
1is e for 7 > 0, showing that X; is exponential.

¢) Let FS () = Pr{ﬁ(t,t+ 7)=0|Sn_1 = t} and show that dFS (7)/dr = —AFS, (7).

Solution: By the independent increment property, {N(t, t+7) = 0} is independent of
{Sn—1 = t}, and by the stationary increment property, it has the same probability as
N(1) = 0. Thus dF§(1)/dr = —AFS(7) follows by the argument in (a).

d) Argue that X, is exponential with parameter A and independent of earlier arrival times.

Solution: Note that FS(7) is the complementary CDF of X,, conditional on {S,—; = t},
and as shown in (c), it’s distribution does not depend on S,,—1. In other words, FS(7) as
found in (c) is the complementary CDF of X,,. It is exponential by the argument given in
(b) for X1, and it is independent of earlier arrivals since {N(t, t+7) = 0} is independent of
arrivals before t.

This was also shown in the solution to Exercise 2.4 (¢) and (d). In other words, definitions
2 and 3 of a Poisson process both follow from the assumptions that X is exponential and
that the stationary and independent increment properties hold.
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Exercise 2.8: For a Poisson process, let ¢t > 0 be arbitrary and let Z; be the duration of the interval
from ¢ until the next arrival after t. Let Z,,, for each m > 1, be the interarrival time from the epoch of the
(m—1)st arrival after ¢ until the mth arrival after ¢.

a) Given that N(t) = n, explain why Z1 = X,,41 — t + S, and, for each m > 1, Z, = Xpmin.

Solution: Given N(t) = n, the mth arrival after ¢ for m > 1 must be the (n+m)th arrival
overall. Its arrival epoch is then

Snim = Snim-1 + Xnim. (A.28)

By definition for m > 1, Z,, is the interval from Sy, 1,,—1 (the time of the (m — 1)st arrival
after t) to Sp4m. Thus, from (A.28), Z,, = X,,4m for m > 1. For m = 1, Z; is the interval
from ¢ until the next arrival, i.e., Z; = Sy, 11 —t. Usingm = 1in (A.28), Z; = Sp,+ Xp41—t.

b) Conditional on N(t) =n and S, = 7, show that Zi, Zs,... are IID.

Solution: The condition N(t) = n and S, = 7 implies that X, y; > ¢t — 7. Given this
condition, X, 1 — (t—7) is exponential, so Z3 = X,,11 — (t—7) is exponential. For m > 1,
and for the given condition, Z,, = Xj,4+y,. Since X, 1., is exponential and independent of
X1,..., Xntm—1, we see that Z,, is also exponential and independent of Zi,...,Z,_1.
Since these exponential distributions are the same, Z1,Zs,..., are IID conditional on
N(t)=nand S, =T.

c) Show that Z1, Za,... are IID.

Solution: We have shown that{Z,,; m > 1} are IID and exponential conditional on N (t) =
n and S, = 7. The joint distribution of Z1, . .. , Z,, is thus specified as a function of N(t) = n
and S, = 7. Since this function is constant in n and 7, the joint conditional distribution
must be the same as the joint unconditional distribution, and therefore 71, ... , Z,, are IID
for all m > 0.

Exercise 2.9: Consider a “shrinking Bernoulli” approximation Ns(md) = Y1 + --- + Y to a Poisson
process as described in Subsection 2.2.5.

a) Show that
Pr{Ns(mé) = n} = (7:) (A8)™(1 — )™

Solution: This is just the binomial PMF in (1.23)

b) Let t = md, and let t be fixed for the remainder of the exercise. Explain why

lim Pr{N;(t) =n} = lim <m> (ﬁ) (1—ﬁ)
§—0 m—oo \ N m m

where the limit on the left is taken over values of ¢ that divide t¢.

Solution: This is the binomial PMF in (a) with § = t/m.

c) Derive the following two equalities:

lim (m) 1 = 1 ; and  lim (1 - ﬁ) =e M,
m—oo \ N | mn" n! m—oo m
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Solution: Note that

(TD N n'(len)' = %H(m—i).

When this is divided by m”, each term in the product above is divided by m, so

n—1 . n—1 :
e (SR

Taking the limit as m — oo, each of the n terms in the product approaches 1, so the limit
is 1/n!, verifying the first equality in (c). For the second,

<1—&>m_n — exp [(m—n)ln(l—&ﬂ — exp [(m—n)(%—i—o(l/m)]

m m

= exp [At + %t + (m — n)o(1/m)] .

In the second equality, we expanded In(1 — z) = —2 + 22/2---. In the limit m — oo, the
final expression is exp(—At), as was to be shown.

If one wishes to see how the limit in (A.29) is approached, we have

n—1 , n—1 _
%g(l_%) = %GXP <;1H<1—£>> = %exp(%—i—o(l/m)).

d) Conclude from this that for every t and every n, lims_o Pr{Ns(t)=n} = Pr{N(¢)=n} where {N(¢); t > 0}

is a Poisson process of rate .

Solution: We simply substitute the results of (c¢) into the expression in (b), getting

()\t)"ef)‘t

lim Pr{Ns(t) = =
lim Pr{Ny(t) = n} = =

This shows that the Poisson PMF is the limit of shrinking Bernoulli PMF’s, but recall
from Exercise 2.5 that this is not quite enough to show that a Poisson process is the
limit of shrinking Bernoulli processes. It is also necessary to show that the stationary
and independent increment properties hold in the limit § — 0. It can be seen that the
Bernoulli process has these properties at each increment 8, and it is intuitively clear that
these properties should hold in the limit, but it seems that carrying out all the analytical
details to show this precisely is neither warranted or interesting.

Exercise 2.10: Let {N(t); t > 0} be a Poisson process of rate .
a) Find the joint probability mass function (PMF) of N(t), N(t+ s) for s > 0.

Solution: Note that N(¢+s) is the number of arrivals in (0,¢] plus the number in (¢, t+s).
In order to find the joint distribution of N(¢) and N (t+s), it makes sense to express N (t+s)
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as N(t) + N(t, t+s) and to use the independent increment property to see that N (t,t+s))
is independent of N(t¢). Thus for m > n,

PN m) = Pr{N(H)=n}Pr{N(t t-+s)=m-n) |

(At)re=H y (As)" e
n! (m —mn)!

where we have used the stationary increment property to see that N (t,t+s) has the same
distribution as N(s). This solution can be rearranged in various ways, of which the most
interesting is

S ()\(t+s))":e—>\(s+t) . <TZ> (L)n(i)m_n7

m! t+s t+s

where the first term is py ;45 (m) (the probability of m arrivals in (0, ¢+s]) and the second,
conditional on the first, is the binomial probability that n of those m arrivals occur in (0, t).

b) Find E[N(t) - N(t + s)] for s > 0.

Solution: Again expressing N (t+s) = N(t) + N(t, t+s),
E[N(t)- N(t+s)] = [ (ON(t, t+s)

= E[N2( )]+E[ (O] EIN(s)]

= A+ X4 Mds.
In the final step, we have used the fact (from Table 1.2 or a simple calculation) that the
mean of a Poisson rv with PMF (At)" exp(—At)/n! is At and the variance is also At (thus

the second moment is A\t + (At)?). This mean and variance was also derived in Exercise 2.2
and can also be calculated by looking at the limit of shrinking Bernoulli processes.

c) Find E [ (t1,t3) - N(tQ,t4)] where N (t,7) is the number of arrivals in (¢,7] and t; <ty < t3 < t4.

Solution: This is a straightforward generalization of what was done in (b). We break up
N(ty,t3) as N(t1,t2)+ N(ta,t3) and break up N (to,t4) as N(to,t3)+ N(t3,t4). The interval
(t2,ts] is shared. Thus

E [ﬁ(h,t?))ﬁ(tz,u)} = E [N(tlatQ)ﬁ(tQ,M)} +E [NQ(tz,ts)] +E [ﬁ(tz,t:a)ﬁ(t:s,tzx)
= )\Q(tg—tl)(t4—t2) + /\2(t3—t2)2 + )\(tg—tg) + )\2(t3_t2)(t4_t3>
= )\2(t3—t1)(t4—t2) + /\(tg—tg).

Exercise 2.11: An elementary experiment is independently performed N times where N is a Poisson
rv of mean A. Let {ai,as,...,ax} be the set of sample points of the elementary experiment and let pg,
1 <k < K, denote the probability of ay.

a) Let Nj denote the number of elementary experiments performed for which the output is ax. Find the
PMF for Ni (1 <k < K). (Hint: no calculation is necessary.)

Solution: View the experiment as a combination of K Poisson processes where the kth has
rate pgA and the combined process has rate A\. At t = 1, the total number of experiments is



54 APPENDIX A. SOLUTIONS TO EXERCISES

then Poisson with mean A and the kth process is Poisson with mean pyA. Thus py, (n) =
(Apg)™e =P /nl.

b) Find the PMF for N; + Na.

Solution: By the same argument,

[)\(Pl 4 p2)]ne—)\(P1+P2)
n! '

P4y (n) =

¢) Find the conditional PMF for N; given that N = n.
Solution: Each of the n combined arrivals over (0, 1] is then a; with probability p;. Thus
N is binomial given that N = n,

P (21]n) = <:1>(p1)"1(1 —p1)" "

d) Find the conditional PMF for N1 4+ N given that N = n.

Solution: Let the sample value of N7 + N2 be nj2. By the same argument in (c),
— n ni2 n—mi2
PN, +No N (12]n) = <n12) (p1+p2)™2(1 — p1 — p2) :

e) Find the conditional PMF for N given that N1 = n;.

Solution: Since N is then nq plus the number of arrivals from the other processes, and
those additional arrivals are Poisson with mean A\(1 — py),

(1 — pl)]n—me—)\(l—m)
(n—mny)!

PN, (n]n1) =

Exercise 2.12: Starting from time 0, northbound buses arrive at 77 Mass. Avenue according to a Poisson
process of rate A\. Customers arrive according to an independent Poisson process of rate u. When a bus
arrives, all waiting customers instantly enter the bus and subsequent customers wait for the next bus.

a) Find the PMF for the number of customers entering a bus (more specifically, for any given m, find the

PMF for the number of customers entering the mth bus).

Solution: Since the customer arrival process and the bus arrival process are independent
Poisson processes, the sum of the two counting processes is a Poisson counting process of
rate A + p. Each arrival for the combined process is a bus with probability A/(A + u) and
a customer with probability u/(\ + ). The sequence of choices between bus or customer
arrivals is an IID sequence. Thus, starting immediately after bus m — 1 (or at time 0 for
m = 1), the probability of n customers in a row followed by a bus, for any n > 0, is
[11/(X+ )] A/(A+ p). This is the probability that n customers enter the mth bus, i.e.,
defining V,, as the number of customers entering the mth bus, the PMF of N,, is

PN, (1) = <ﬁ>n ﬁ (A.30)
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b) Find the PMF for the number of customers entering the mth bus given that the interarrival interval

between bus m — 1 and bus m is x.

Solution: For any given interval of size x (i.e., for the interval (s, s+z] for any given s),
the number of customer arrivals in that interval has a Poisson distribution of rate . Since
the customer arrival process is independent of the bus arrivals, this is also the distribution
of customer arrivals between the arrival of bus m — 1 and that of bus m given that the
interval X,,, between these bus arrivals is . Thus letting X,, be the interval between the
arrivals of bus m — 1 and m,

PN X (R]2) = (px)"e™" /nl.

c) Given that a bus arrives at time 10:30 PM, find the PMF for the number of customers entering the next

bus.

Solution: First assume that for some given m, bus m — 1 arrives at 10:30. The number
of customers entering bus m is still determined by the argument in (a) and has the PMF
in (A.30). In other words, N, is independent of the arrival time of bus m — 1. From the
formula in (A.30), the PMF of the number entering a bus is also independent of m. Thus
the desired PMF is that on the right side of (A.30).

d) Given that a bus arrives at 10:30 PM and no bus arrives between 10:30 and 11, find the PMF for the

number of customers on the next bus.

Solution: Using the same reasoning as in (b), the number of customer arrivals from 10:30
to 11 is a Poisson rv, say N’ with PMF pxv(n) = (1/2)"e /2 /n! (we are measuring time in
hours so that p is the customer arrival rate in arrivals per hour.) Since this is independent
of bus arrivals, it is also the PMF of customer arrivals in (10:30 to 11] given no bus arrival
in that interval.

The number of customers to enter the next bus is N’ plus the number of customers N”
arriving between 11 and the next bus arrival. By the argument in (a), N” has the PMF in
(A.30). Since N’ and N are independent, the PMF of N’ + N” (the number entering the
next bus given this conditioning) is the convolution of the PMF’s of N’ and N”| i.e.,

n k n—k,—u/2
B w\E A (/e

This does not simplify in any nice way.

e) Find the PMF for the number of customers waiting at some given time, say 2:30 PM (assume that the
processes started infinitely far in the past). Hint: think of what happens moving backward in time from
2:30 PM.

Solution: Let {Z;; —0o < i < oo} be the (doubly infinite) IID sequence of bus/customer
choices where Z; = 0 if the ith combined arrival is a bus and Z; = 1 if it is a customer.
Indexing this sequence so that —1 is the index of the most recent combined arrival before
2:30, we see that if Z_; = 0, then no customers are waiting at 2:30. If Z_1 =1 and Z_o =0,
then one customer is waiting. In general, if Z_,, =0 and Z_,,, =1 for 1 < m < n, then n
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customers are waiting. Since the Z; are IID, the PMF of the number N, waiting at 2:30

is
(e N A
praSt(”)_()\—l-,u) A

This is intuitive in one way, i.e., the number of customers looking back toward the previous
bus should be the same as the number of customers looking forward to the next bus since
the bus/customer choices are IID. It is paradoxical in another way since if we visualize a
sample path of the process, we see waiting customers gradually increasing until a bus arrival,
then going to 0 and gradually increasing again, etc. It is then surprising that the number of
customers at an arbitrary time is statistically the same as the number immediately before
a bus arrival. This paradox is partly explained at the end of (f) and fully explained in
Chapter 5.

Mathematically inclined readers may also be concerned about the notion of ‘starting in-
finitely far in the past.” A more precise way of looking at this is to start the Poisson process
at time 0 (in accordance with the definition of a Poisson process). We can then find the
PMF of the number waiting at time t and take the limit of this PMF as ¢t — co. For very
large t, the number M of combined arrivals before ¢ is large with high probability. Given
M = m, the geometric distribution above is truncated at m, which is a neglibible correction
for ¢ large. This type of issue is handled more cleanly in Chapter 5.

f) Find the PMF for the number of customers getting on the next bus to arrive after 2:30. Hint: this is
different from (a); look carefully at (e).

Solution: The number getting on the next bus after 2:30 is the sum of the number N,
waiting at 2:30 and the number of future customer arrivals N¢ (found in (c¢)) until the next
bus after 2:30. Note that N, and N¢ are IID. Convolving these PMF’s, we get

PN+ (1) = Z<A+u> i <>\+M> Atp

m=0

sty ()"

This is very surprising. It says that the number of people getting on the first bus after 2:30
is the sum of two IID rv’s, each with the same distribution as the number to get on the mth
bus. This is an example of the ‘paradox of residual life,” which we discuss very informally
here and then discuss carefully in Chapter 5.

Consider a very large interval of time (0, t,] over which a large number of bus arrivals occur.
Then choose a random time instant 7", uniformly distributed in (0, ¢,]. Note that T is more
likely to occur within one of the larger bus interarrival intervals than within one of the
smaller intervals, and thus, given the randomly chosen time instant 7', the bus interarrival
interval around that instant will tend to be larger than that from a given bus arrival, m—1
say, to the next bus arrival m. Since 2:30 is arbitrary, it is plausible that the interval around
2:30 behaves like that around 7', making the result here also plausible.

g) Given that I arrive to wait for a bus at 2:30 PM, find the PMF for the number of customers getting on

the next bus.
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Solution: My arrival at 2:30 is in addition to the Poisson process of customers, and thus
the number entering the next bus is 1 + Ny, + N¢. This has the sample value n if N, + N¢
has the sample value n — 1, so from (f),

n—1 2
(n)=n (L A
P1+Np+Ng A Mp)

Do not be discouraged if you made a number of errors in this exercise and if it still looks
very strange. This is a first exposure to a difficult set of issues which will become clear in
Chapter 5.
Exercise 2.13: a) Show that the arrival epochs of a Poisson process satisfy
fS(")|Sn+1 (S(n)|8n+1) = TL!/SZ+1.
Hint: This is easy if you use only the results of Section 2.2.2.
Solution: Note that S is shorthand for Si,...,S,. Using Bayes’ law,
fon (s™)fg, s (snr1ls™)

fSn+1 (8n+1)

fsm |Snt1 (S(H) |$n+1)

From (2.15), fgm (s() = Ame=*n. Also, f5n+1‘5(n)(sn+1|s(”)) = e ABni1=sn) - Finally
f5,41(8n41) is Erlang. Combining these terms,

fs(n)|sn+1(3(n)|3n+1) = nl/sp.

b) Contrast this with the result of Theorem 2.5.1

Solution: (a) says that Sy,..., S, are uniformly distributed (subject to the ordering con-
straint) between 0 and ¢ for any sample value t for S, ;. Theorem 2.5.1 says that they are
uniformly distributed between 0 and t given that N(t) = n. The conditions {S,+1 = t}
and {N(t) = n} each imply that there are n arrivals in (0,t). The condition {S,4+; =t} in
addition specifies that arrival n + 1 is at epoch ¢, whereas { N (¢) = n} specifies that arrival
n+1 is in (¢,00). From the independent increment property, the arrival epochs in (0,t) are
independent of those in [t, 00) and thus the conditional joint distribution of 8§ is the same
for each conditioning event.

One might ask whether this equivalence of conditional distributions provides a rigorous way
of answering (a). The answer is yes if the above argument is spelled out in more detail. It is
simpler, however, to use the approach in (a). The equivalence approach is more insightful,
on the other hand, so it is worthwhile to understand both approaches.

Exercise 2.14: Equation (2.42) gives fs, n(:)(s: | n), which is the density of random variable S; con-
ditional on N(t) = n for n > 4. Multiply this expression by Pr{N(¢) = n} and sum over n to find fs, (s;);

verify that your answer is indeed the Erlang density.

Solution: It is almost magical, but of course it has to work out.

(s:)7t (t—s)" "l

(At)"e
fs, v (siln) = =Dl o PN (n) = ——F.

n!
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108
=
«
=

|

(t—s;
’L )\n —At
(z—w' Z <n—z’> ‘
)\28; 16_)\$i )\nfz(t _ si)nfief/\(tfsi)

(i) 2= (n—9)!

n=1

)\Z‘Si_le_)\si
-t -
(i—i)

This is the Erlang distribution, and it follows because the preceding sum is the sum of terms
in the PMF for the Poisson rv of rate A(t — s;)

Exercise 2.15: Consider generalizing the bulk arrival process in Figure 2.5. Assume that the epochs at
which arrivals occur form a Poisson process {N(¢); t > 0} of rate A\. At each arrival epoch Sy, the number
of arrivals Z,, satisfies Pr{Z,=1} = p, Pr{Z,=2} = 1 — p. The variables Z, are IID.

a) Let {N1(¢);t > 0} be the counting process of the epochs at which single arrivals occur. Find the PMF of
Ni(t) as a function of ¢. Similarly, let {N2(¢);¢ > 0} be the counting process of the epochs at which double
arrivals occur. Find the PMF of N(t) as a function of t.

Solution: Since the process of arrival epochs is Poisson, and these epochs are split into
single and double-arrival epochs by an IID splitting, the process of single-arrival epochs is
Poisson with rate Ap and the process of double-arrival epochs is Poisson with rate A(1 — p).
Thus, letting ¢ =1 — p,

(Ap)re P

(Ag)me™
n! ’

; PNy (t) (M) = —

pN1 (t) (n) =
b) Let {Ng(t);t > 0} be the counting process of the total number of arrivals. Give an expression for the
PMF of Ng(t) as a function of ¢.

Solution: Since there are two arrivals at each double-arrival epoch, we have Np(t) =
Ni(t) + 2Na(t), and as seen above Ni(t) and Na(t) are independent. This can be done as
a digital convolution of the PMF’s for Ny (¢) and 2N,(¢), but this can be slightly confusing
since 2Ny (t) is nonzero only for even integers. Thus we revert to the general approach,
which also reminds you where convolution comes from and thus how it can be done in
general (PDF’s, PMF’s, etc.)

Pr{Ng(t) = n, Na(t) = m} = py, (1) (n—2m)pn, ) (m).

The marginal PMF for Np(t) is then given by

[n/2]
Prs (M) = D Py (n—2m)pi,( (m)
m=0
B an/? ()\pt)n—Zme—)\pt ()\qt)me—kqt
N — (n —2m)! m!
[n/2]

_ o u Z (Apt)"=2m(\gt)™

(n —2m)!m!
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Exercise 2.16: a) For a Poisson counting process of rate ), find the joint probability density of
S1,5%,...,5,-1 conditional on S,, = t.

Solution: The joint density of Si,...,S, is given in (2.15) as fg, . g.(s1,...,8,) =
A" exp(—Asy). The marginal density of S, is the Erlang density. The conditional den-
sity is the ratio of these, i.e.,

A" exp(—Asy,) (n—1)!

1 Snoalsa (81 s Snafsn) - = Msple s [(n— 1)1 sp)

b) Find Pr{X; > 7 | S,=t}.

Solution: We first use Bayes’ law to find the density, fx,|g, (7[t).

fxo, (Mg, x () Ae™7 X1t — 1) 2e7 A=) /(n — 2))
fxy s, (7]t) = fs (1) = Angn—le=At /(p — 1)
(t— T)”_Q(n—l)

= form <t
7fn—l

Integrating this with respect to 7, we get

n—1
Pr{X; > 7| S,=t} = [t T] .

t
c) Find Pr{X; > 7| Sp=t} for 1 <i < mn.

Solution: The condition here is X7 + --- + X,, = ¢. Since Xq,...,X,, are IID without
the condition, and the condition is symmetric in X1,...,X,, we see that Xi,..., X, are
identically distributed conditional on S,, = ¢. Thus, from (b),

t—T1

n—1
Pr{Xi>T|Sn:t}:[ ] : for 1 <i<n.

d) Find the density fg, s, (s:|t) for 1 <i <n —1.
Solution: We can use Bayes’ law in the same way as (b), getting

st — )" Y (n —1)!

fs;15, (silt) = ;n—l(i_l)!(n—i—l)! '

e) Give an explanation for the striking similarity between the condition N(t) = n — 1 and the condition
Sn =t.

Solution: The solutions to (c¢) and (d) are the same as (2.45) and (2.46) respectively for
N(t) = n— 1. The condition N(t) = n — 1 and the condition S,, = ¢ both imply that
the number of arrivals in (0,¢) is n — 1. In addition, N(t) = n — 1 implies that the first
arrival after (0,t) is strictly after ¢, whereas S,, =t implies that the first arrival after (0,t)
is at t. Because of the independent increment property, this additional implication does not
affect the distribution of Si,...,S,_1. See the solution to Exercise 2.13(b) for a further
discussion of this point.
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The important fact here is that the equivalence of the arrival distributions in (0,t), given
these slightly different conditions, is a valuable aid in problem solving, since either approach
can be used.

Exercise 2.17: a) For a Poisson process of rate A, find Pr{N(t)=n | Si=7} for t > 7 and n > 1.

Solution: Given that S; = 7, the number, N(t), of arrivals in (0,¢] is 1 plus the number
in (7,¢]. This latter number, N(7,t) is Poisson with mean \(¢ — 7). Thus,

[)\(t _ T)]n—le—k(t—r)
(n—1)!

Pr{N(t)=n| S1=7} = Pr{N(T,t) = n—l} =

b) Using this, find fs, (7) | N(t)=n).
Solution: Using Bayes’ law,

n(t — 7)1

fo N (TIn) = m

c) Check your answer against (2.41).

Solution: Eq. (2.41) is Pr{S1 > 7| N(t) = n} = [(t — 7)/t]". The derivative of this with
respect to 7 is —fg, |y (7|t), which clearly checks with (b).

Exercise 2.18: Consider a counting process in which the rate is a rv A with probability density fa(\) =
ae”®* for A > 0. Conditional on a given sample value X for the rate, the counting process is a Poisson
process of rate A (i.e., nature first chooses a sample value A and then generates a sample path of a Poisson
process of that rate A).

a) What is Pr{N(t)=n | A=A}, where N(t) is the number of arrivals in the interval (0,t] for some given
t> 07

Solution: Conditional on A = A\, {N(¢); t > 0 is a Poisson process, so
Pr{N(t)=n | A=)} = (\t)"e " /nl.

b) Show that Pr{N(t)=n}, the unconditional PMF for N(¢), is given by

at™

Solution: The straightforward approach is to average the conditional distribution over A,

Pr{N(t) =n} = /000 M e d\

n!

B at™ /oo [)\(t+a)]n6_>\(t+a) D
(t+a)™ Jo n!

B at™ ® gle™* de — at™

= (t+a)n+1/0 ol = (t+ )+’

where we changed the variable of integration from A to x = A(¢+«) and then recognized
the integral as the integral of an Erlang density of order n+1 with unit rate.
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The solution can also be written as pg"” where p = a/(t+a) and ¢ = t/(t+«). This suggests
a different interpretation for this result. Pr{N(¢) =n} for a Poisson process (PP) of rate
A is a function only of At and n. The rv N(t) for a PP of rate A thus has the same
distribution as N(At) for a PP of unit rate and thus N(¢) for a PP of variable rate A has
the same distribution as N(At) for a PP of rate 1.

Since At is an exponential rv of parameter «/t, we see that N(At) is the number of arrivals
of a PP of unit rate before the first arrival from an independent PP of rate a/t. This unit
rate PP and rate a;/t PP are independent and the combined process has rate 1 4+ «/t. The
event {N(At) = n} then has the probability of n arrivals from the unit rate PP followed by
one arrival from the «/t rate process, thus yielding the probability ¢"p.

c) Find fo(A | N(¢t)=n), the density of A conditional on N (t)=n.
Solution: Using Bayes’ law with the answers in (a) and (b), we get

Ae—Matt) (a + t)nJrl
n! '

fAve (A [ n) =
This is an Erlang PDF of order n+1 and can be interpreted (after a little work) in the same
way as (b).

d) Find E[A | N(t)=n] and interpret your result for very small ¢ with n = 0 and for very large ¢ with n

large.

Solution: Since A conditional on N(t) = n is Erlang, it is the sum of n + 1 IID rv’s, each
of mean 1/(t + «). Thus

n+1
a+t

E[A| N(t)=n] =

For N(t) = 0 and t << «, this is close to 1/«, which is E[A]. This is not surprising since
it has little effect on the distribution of A. For n large and ¢t >> «, E[A | N(t)=n| =~ n/t.

e) Find E[A | N(t)=n, S1,S2,...,S,]. (Hint: consider the distribution of Si,...,S, conditional on N(t)
and A). Find E[A | N(t)=n, N(7)=m] for some 7 < t.

Solution: From Theorem 2.5.1, S1,... ,S, are uniformly distributed, subject to 0 < 51 <
<o < Sy < t, given N(t) =n and A = A. Thus, conditional on N(t) = n, A is statistically
independent of 51,...,.5,.

n+1

E[A | N(t)=n, 51,5, .Su] = E[A|N(t)=n] = 2.

Conditional on N(t) = n, N(7) is determined by Si,...,S, for 7 < ¢, and thus

n—+1
a+t

E[A| N(t)=n,N(r) =m] = E[A| N(t)=n] =

This corresponds to one’s intuition; given the number of arrivals in (0,¢], it makes no
difference where the individual arrivals occur.



62 APPENDIX A. SOLUTIONS TO EXERCISES

Exercise 2.19: a) Use Equation (2.42) to find E[S; | N(t)=n]. Hint: When you integrate s;fs, (s; |
N(t)=n), compare this integral with fs,, (s: | N(t)=n 4 1) and use the fact that the latter expression is a
probability density.

Solution: We can find E [S; | N (t)=n] from fg, n(;)(si|n) (as given in (2.42)) by integration,

E[Si | N(t)=n] = /OOO ofg Ny (zIn) de = /OOO tﬁét—_@'i)(:_—lﬁ!)! dr. (A.31)

Using the hint,

2t — )" (n + 1)!

The factors involving = are the same as in (A.31), and substituting (A.32) into (A.31)

E[S; | N(t)=n] = /OO ity (@ln + 1) do = 2
' Ty ng1SmINO n+1

As a check, we see that this agrees with the more elegant derivation in (2.43). The derivation
n (2.43), however, does not generalize as easily to the second moment.

b) Find the second moment and the variance of S; conditional on N (¢)=n. Hint: Extend the previous hint.

Solution: Using the same approach as in (AP19)

e’} 0 z+1 T
E[S? | N(t)=n] = /o xzfsi‘N(t)(m\n)d:c = /0 t”(n(—z)'(z ol —d. (A.33)

This suggests comparing with the density of S;;2 conditional on N(t) = n + 2,

gt —z)" " (n+ 2)!
tnt2(n — )i + 1)!

fsiain (@n +2) = (A.34)

i it?
E[S2| N(t)=n] = %

Finally, calculating the variance as the second moment minus the mean squared,

VAR[Si|N(t) = n] =

(i + 1)it? it 17 it?(n+1—14)
(n+2)(n+1)_{n+1} T (n+1)2(n+2)

c) Assume that n is odd, and consider ¢ = (n 4 1)/2. What is the relationship between S;, conditional on

N(t)=n, and the sample median of n IID uniform random variables.

Solution: We have seen that the first n arrival epochs of a Poisson process, conditional on
N (t) = n have the same joint probability distribution as the order statistics of n IID rv’s
that are uniform over (0,]. Thus the sample value of the rv S(,11)/2 is the sample median
of those rv’s . From (a) and (b),

t2

E[Serne] =t/2 VAR [Swene] = o=



A.2. SOLUTIONS FOR CHAPTER 2 63

d) Give a weak law of large numbers for the above median.

Solution: The median S(;,,41)/2 is a rv, just like the sample average of n rv’sisarv. By a
WWLN for the median, we mean a result that says that S, 1)/, converges in probability
to a limit, in this case the mean of S(;,41)/2 as n — oo. Using the Chebyshev inequality,

; VAR5, £2
Pr{(s(n+1)/2— 5‘ > e} < [Stmine]

€2 4(n+2)e?

Thus, for any fixed ¢, t,

. t
nlLrgoPr{‘S(n+1)/2 — 5’ > 6} =0.
The limit here does not correspond to any limit in a given Poisson process, but it does
correspond to a limit of the median of n uniformly distributed IID rv’s. By combining this
result with Exercise (1.28), it is possible to extend this result to the median of IID rv’s with
an arbitrary probability density.

Exercise 2.20: Suppose cars enter a one-way infinite length, infinite lane highway at a Poisson rate .
The ith car to enter chooses a velocity V; and travels at this velocity. Assume that the V;’s are independent
positive rv’s having a common CDF F. Derive the distribution of the number of cars that are located in an

interval (0,a) at time ¢.

Solution: This is a thinly disguised variation of an M/G /oo queue. The arrival process is
the Poisson process of cars entering the highway. We then view the service time of a car
as the time interval until the car reaches or passes point a. All cars then have IID service
times, and service always starts at the time of arrival (i.e., this can be viewed as infinitely
many independent and identical servers). To avoid distractions, assume initially that V is
a continuous rv. The CDF G(7) of the service time X is then given by the equation

G(r) =Pr{X <7} =Pr{a/V <7} =Pr{V > a/7} =F} (a/7).

The PMF of the number N;(t) of cars in service at time ¢ is then given by (2.36) and (2.37)
as

m"(t) exp[-m(t)]
n!

PN, (2) (n) =

9

where

m(t) = )\/O [1—G(r)]dr = )\/0 Fv(a/T)dr.

Since this depends only on the CDF, it can be seen that the answer is the same if V is
discrete or mixed.

Exercise 2.21: Consider an M/G/co queue, i.e., a queue with Poisson arrivals of rate A in which each
arrival 7, independent of other arrivals, remains in the system for a time X;, where {X;; ¢ > 1} is a set of
IID rv’s with some given CDF F(z).
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You may assume that the number of arrivals in any interval (¢,t + €) that are still in the system at some
later time 7 > ¢ + € is statistically independent of the number of arrivals in that same interval (¢,¢ + €) that
have departed from the system by time 7.

a) Let N(7) be the number of customers in the system at time 7. Find the mean, m(7), of N(7) and find
Pr{N(7) = n}.

Solution: The answer is worked out and explained in (2.36) and (2.37). We have

m(7)" exp(—m(7))

n!

m(r) = A /0 "M F@M]dt: Pr{N(r) =n} =

Note that m(7) is non-decreasing in 7 and has the limit lim, ., m(7) = AX.

b) Let D(7) be the number of customers that have departed from the system by time 7. Find the mean,
E [D(7)], and find Pr{D(7) = d}.

Solution: As illustrated in Figure 2.8, The number of arrivals that have departed and
those that remain can be treated as a non-homogeneous splitting of the Poisson arrival
process. Thus the departures can be handled in the same way as those still in the system.
Let u(7) = E[D(7)] be the mean of the number of arrivals that have departed by time ¢.
Then pu(7) and Pr{D(7) = d} are given by

T doxp(—u(T
M(T):A/O F(¢) dt; Pr{D(T):d}:“(T) 5!( Hr).

Note that m(7) 4+ pu(7) = A [; dt = A7 so that p(7) tends to A7 — AX as 7 increases.
c) Find Pr{N(7) =n, D(7) = d}.

Solution: By the same argument as used in Section 2.3 on the splitting of homogeneous
Poisson processes, the processes {N(7);7 > 0} and the process {D(7);7 > 0} are statisti-
cally independent. The assumption in the exercise is one step in that argument. Combining
(a) and (b), we then have

m(T)*u(r)exp (= m(7) — pu(r
Pr{N(r) = n, D(r) = dy = "D I;!(d! (r) = #(r), (A.35)

d) Let A(7) be the total number of arrivals up to time 7. Find Pr{N(7) =n | A(7) = a}.

Solution: Since A(7) = N(7)+ D(7), we can let a = n+d for a > n and rewrite (A.35) as

Pr{N(7) =n, A(T) = a} = m(T)nM(T)a_;e(};p_( ;)!m(T) — 'LL(T)). (A.36)

Since A(7) is Poisson with rate A = [m(7) 4+ u(7)]/7, the conditional PMF is

m(7)"u(T)* " exp (— A7) " al
n!(a —n)! (At)® exp(—At)

- (e

Pr{N(r)=n|A(r) =a} =
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e) Find Pr{D(7 +¢) — D(r) = d}.

Solution: Since {D(7); T > 0} is a non-homogeneous Poisson process, Y = D(7+¢€) — D(7)

is a Poisson random variable of mean Y = \ f:+e F(t) dt. Thus

Y exp(—?).

Pr{Y =d} = i

Note that Y is the number of departures in (7, 7 + €]. This is a Poisson rv which has a
mean approaching Ae for 7 — oo, The output process is a non-homogeneous Poisson process
which becomes stationary (homogeneous) as 7 — oo.

Exercise 2.22: The voters in a given town arrive at the place of voting according to a Poisson process
of rate A = 100 voters per hour. The voters independently vote for candidate A and candidate B each with
probability 1/2. Assume that the voting starts at time 0 and continues indefinitely.

a) Conditional on 1000 voters arriving during the first 10 hours of voting, find the probability that candidate

A receives n of those votes.

Solution: Intuitively, each of the 1000 voters votes independently for A with probability
1/2. Thus, from the binomial formula,

1
Pr{n of 1000 votes for A} = ( 000) (1/2)1000,
n

Being more careful, the number of votes for A in 10 hours is Poisson with mean 500 and
the number for B is independent and Poisson with mean 500. The total number of votes
in 10 hours is the sum of these and also Poisson. Using Bayes’ law to find the votes for A
conditional on the overall number, we get the same answer.

b) Again conditional on 1000 voters during the first 10 hours, find the probability that candidate A receives

n votes in the first 4 hours of voting.

Solution: Intuitively, each of the 1000 voters comes in the first 4 hours independently with
probability .4, and out of those, each independently votes for A with probability 1/2. Thus
each voter independently both comes in the first 4 hours and votes for A with probability
0.2. Thus

1000
Pr{n votes for A in first 4 hours | 1000 in 10 hours} = ( >(0.2)"(0.8)1000_".
n

Being more careful (or first stating a general theorem about these conditional Poisson
probabilities), the number in the first 4 hours is Poisson, the number of those who vote for
A is Poisson and the overall number to vote in 10 hours is Poisson and the sum of those in
the first 4 hours and those in the last 6 hours, further broken into A and B are independent
Poisson. We can then find the conditional probability as in (a).

c) Let T be the epoch of the arrival of the first voter voting for candidate A. Find the density of T.

Solution: View the voters for A as a splitting of the overall arrival process. Thus the
voters for A form a Poisson process of rate 50 and fr(t) = 50 exp(—50t).
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d) Find the PMF of the number of voters for candidate B who arrive before the first voter for A.

Solution: n B voters arrive before the first A if the first n voters are B and the (n + 1)st
is A; this is an event of probability (1/2)"*! for n > 0. Thus this number is a geometric rv.

e) Define the nth voter as a reversal if the nth voter votes for a different candidate than the (n — 1)*‘. For
example, in the sequence of votes AABAABB, the third, fourth, and sixth voters are reversals; the third
and sixth are A to B reversals and the fourth is a B to A reversal. Let N(t) be the number of reversals up
to time ¢ (¢ in hours). Is {N(¢); t > 0} a Poisson process? Explain.

Solution: The first voter can not be a reversal. Every subsequent voter is a reversal with
probability 1/2. Thus, after the first arrival, each inter-reversal interval is exponential with
mean 1/50 hours. The process is not Poisson, however, because the interval until the first
reversal is not exponential with mean 1/50 hours.

When we study renewal processes, we denote renewal processes with a non-standard first
renewal interval as ‘delayed renewal processes’ and find that most of the renewal results
also apply to delayed renewal processes. Thus we might call this a delayed Poisson process.

f) Find the expected time (in hours) between reversals.

Solution: Starting from one reversal we can view subsequent reversals as an equi-probable
splitting of the arrivals. Thus the expected time between reversals is 1/50.

g) Find the probability density of the time between reversals.

Solution: As explained in (f), the time X between reversals is exponential with mean 1/50,
so fx(x) = 50 exp(—50¢).

h) Find the density of the time from one A to B reversal to the next A to B reversal.

Solution: Since A to B reversals alternate with B to A reversals, the time Y from one
A to B reversal to the next is the sum of 2 independent exponential rv’s. One can either
calculate this density by convolution or recognize it as an Erlang rv of order 2.

fy (y) = N2y exp(—\y) where A =50 and y > 0.

An alternate approach here is to see that after an A to B reversal, the time to the next A
to B reversal is the sum of the time to the next A followed by the time to the next B.

Exercise 2.23: Let {N1(t); t > 0} be a Poisson counting process of rate A\. Assume that the arrivals from
this process are switched on and off by arrivals from a second independent Poisson process { N2 (t);¢ > 0} of
rate 7.

rate \ Ny (t)
rate v No(t
Ny(t)

Let {Na(t); t>0} be the switched process; that is Na(t) includes the arrivals from {Ni(t); ¢ > 0} during
periods when Na(t) is even and excludes the arrivals from {N1(t); t > 0} while N2(%) is odd.
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a) Find the PMF for the number of arrivals of the first process, {N1(t); ¢ > 0}, during the nth period when
the switch is on.

Solution: We have seen that the combined process {N1(t) + Na(t)} is a Poisson process of
rate A+. For any even numbered arrival to process 2, subsequent arrivals to the combined
process independently come from process 1 or 2, and come from process 1 with probability
A/(A+7). The number N, of such arrivals before the next arrival to process 2 is geometric
with PMF py, (n) = [A/(A+7)]"[v/(A+7)] for integer n > 0.

b) Given that the first arrival for the second process occurs at epoch 7, find the conditional PMF for the

number of arrivals N, of the first process up to 7.

Solution: Since processes 1 and 2 are independent, this is equal to the PMF for the number
of arrivals of the first process up to 7. This number has a Poisson PMF, (A1)%e=" /n!.

¢) Given that the number of arrivals of the first process, up to the first arrival for the second process, is n,

find the density for the epoch of the first arrival from the second process.

Solution: Let N, be the number of process 1 arrivals before the first process 2 arrival
and let X9 be the time of the first process 2 arrival. In (a), we showed that py,(n) =
(N O+7)]"[v/(A+7)] and in (b) we showed that PN, X, (n|T) = (AT)"e™?7/nl. We can
then use Bayes’ law to find fx, |, (7 [ n), which is the desired solution. We have

pNa|X2 (n|7-) (/\+’Y)n+17'n€_()‘+'7)7
f = f
pARACHED X, (T) PN, (1) n! ;

where we have used the fact that Xy is exponential with PDF ~ exp(—~7) for 7 > 0. It can
be seen that the solution is an Erlang rv of order n + 1. To interpret this (and to solve the
exercise in a perhaps more elegant way), note that this is the same as the Erlang density for
the epoch of the (n+1)th arrival in the combined process. This arrival epoch is independent
of the process 1/process 2 choices for these n+1 arrivals, and thus is the arrival epoch for
the particular choice of n successive arrivals to process 1 followed by 1 arrival to process 2.

d) Find the density of the interarrival time for {Na(t);¢ > 0}. Note: This part is quite messy and is done
most easily via Laplace transforms.

Solution: The process { N4 (t); t > 0 is not a Poisson process, but, perhaps surprisingly, it is
a renewal process; that is, the interarrival times are independent and identically distributed.
One might prefer to postpone trying to understand this until starting to study renewal
processes, but we have the necessary machinery already.

Starting at a given arrival to {N4(t); t > 0}, let X4 be the interval until the next arrival
to {Na(t); t > 0} and let X be the interval until the next arrival to the combined process.
Given that the next arrival in the combined process is from process 1, it will be an arrival
to {Na(t); t > 0}, so that under this condition, X4 = X. Alternatively, given that this
next arrival is from process 2, X 4 will be the sum of three independent rv’s, first X, next,
the interval X5 to the following arrival for process 2, and next the interval from that point
to the following arrival to {N(t); ¢ > 0}. This final interarrival time will have the same
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distribution as X 4. Thus the unconditional PDF for X 4 is given by

frale) = o felo) + s fele) @ i (0) @ ey ()

= Aexp(—(AM7y)z) + vexp(—(A+7)x) ® yexp(—yz) @ fx, ().
where ® is the convolution operator and all functions are 0 for = < 0.

Solving this by Laplace transforms is a mechanical operation of no real interest here. The
solution is

fx,(z) = B exp [—g <2'y+)\+ Va2 + )\QH + C exp [—% (27—1—)\ — V472 + )\2)} ,

where
A A A A
B=—-|14+4 —/——|; C=-1-——=|.
2( \/472—1—)\2) 2( \/472—1-)\2)

Exercise 2.24 : Let us model the chess tournament between Fisher and Spassky as a stochastic process.
Let X, for ¢ > 1, be the duration of the ith game and assume that {X;; i>1} is a set of IID exponentially
distributed rv’s each with density fx(z) = Ae™*®. Suppose that each game (independently of all other
games, and independently of the length of the games) is won by Fisher with probability p, by Spassky with
probability ¢, and is a draw with probability 1 — p — gq. The first player to win n games is defined to be the
winner, but we consider the match up to the point of winning as being embedded in an unending sequence
of games.

a) Find the distribution of time, from the beginning of the match, until the completion of the first game
that is won (i.e., that is not a draw). Characterize the process of the number {N(¢); ¢ > 0} of games won
up to and including time ¢. Characterize the process of the number {Np(t);t > 0} of games won by Fisher
and the number {Ng(t);¢ > 0} won by Spassky.

Solution: The Poisson game process is split into 3 independent Poisson processes, namely
the draw process of rate (1 —p — ¢)\, the Fisher win process of rate p\ and the Spassky win
process of rate gA. The process of wins is the sum of the Fisher and Spassky win processes,
and is independent of the draw process. Thus the time to the first win is an exponential rv
X of rate (p 4+ ¢)A. Thus the density and CDF are

fxy (2) = (p + @) exp(—(p + ¢)Ax), Fxy (z) =1 —exp(—(p + q)Az).

b) For the remainder of the problem, assume that the probability of a draw is zero; i.e., that p+¢g = 1. How

many of the first 2n — 1 games must be won by Fisher in order to win the match?

Solution: Note that (a) shows that the process of wins is Poisson within the process of
games including draws, and thus the assumption that there are no draws (i.e., p+¢q = 1)
only simplifies the notation slightly. Note also that it makes no difference to the probability
of winning the match whether they continue playing beyond the game in which one of them
first wins n games.

If Fisher wins n or more of the first 2n—1 games, then Spassky wins at most n—1, so Fisher
wins the match. Conversely if Fisher wins the match, he must win n or more of the first
2n—1 games. Thus Fisher wins if and only if he wins n or more of the first 2n—1 games.
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c) What is the probability that Fisher wins the match? Your answer should not involve any integrals. Hint:
consider the unending sequence of games and use (b).

Solution: The sequence of games is Bernoulli with probabiity p of a Fisher game win.
Thus, using the binomial PMF for 2n—1 plays, the probability that Fisher wins the match
is

! 2n —1
Pr{Fisher wins match} = Z ( L >pkq2n—1—k'
k=n

Without the hint, the problem is more tricky, but no harder computationally. The proba-
bility that Fisher wins the match at the end of game k, for n < k < 2n—1, is the probabiity
that he wins n — 1 games out the first Kk — 1 and then wins the kth. This is p times
(k_l)p” 1¢¥=1. Thus

n—1

2n—1 E_1
Pr{Fisher wins match} = Z < 1>p”qk”_”.
n J—
k=n

It is surprising that these very different appearing expressions are the same.

d) Let T be the epoch at which the match is completed (i.e., either Fisher or Spassky wins). Find the CDF
of T.

Solution: Let Tt be the time at which Fisher wins his nth game and 7T be the time
at which Spassky wins his nth game (again assuming that playing continues beyond the
winning of the match). The Poisson process of Fisher wins is independent of that of Spassky
wins. Also, the time 7" at which the match ends is the minimum of Ty and T, so, for any
t >0, Pr{T >t} = Pr{Ty > t,Ts > t}. Thus

Pr{T >t} = Pr{Ty >t} Pr{T, > t}. (A.37)

Now T has an Erlang distribution so its complementry CDF is equal to the probability
that fewer than n Fisher wins have occured by time ¢. The number of Fisher wins is a
Poisson rv, and Spassky wins are handled the same way. Thus,

Pr{T >t} = Z (Ap tk *’\ptnz_: )\qtje*q _ /\tz )\ptknz_:l )\qt
7=0 = 7=0

Finally Fr(t) =1 —Pr{T > t}.
e) Find the probability that Fisher wins and that T lies in the interval (¢,t + §) for arbitrarily small 4.
Solution: From (A.37), the PDF fr(t) is given by

fr(t) = fr, (1)Pr{Ts > t} + fr, () Pr{T; > t}.

The first term on the right is associated with a Fisher win, and the second with a Spassky
win. Thus

lim Pr{Fisher wins, T" € [t,t+0)} ()\p)”t” Le=Ant S (Mgt Je_’\qt. (A.38)

6—0 5 o n — ].
Jj=0
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The main reason for calculating this is to point out that 7" and the event that Fisher wins
the match are not independent events. The number of games that Fisher wins up to time
t is independent of the number that Spassky wins up to ¢t. Also, given that & games have
been played by time ¢, the distribution of the number of those games won by Fisher does
not vary with ¢t. The problem here, given a Fisher win with T" = ¢, the most likely number
of Spassky wins is 0 when ¢ is very small and n — 1 when ¢ is very large. This can be seen
by comparing the terms in the sum of (A.38). This is not something you could reasonably
be expected to hypothesize intuitively; it is simply something that indicates that one must
sometimes be very careful.

Exercise 2.25: a) For 1 < i < n, find the conditional density of S;+1, conditional on N(t) = n and
Si = Si.

Solution: Recall from (2,41) that

Pr{Si > 7| N(t)=n} = Pr{X1>7|N({t) =n} — <t_tT>n.

Given that S; = s;, we can apply this same formula to N(s;,t) for the first arrival after s;.

N b n—i
Pr{Xi+1>7' | N(t):n” 52:51‘} = PF{X@'+1>T ’ N(si,t):n—i, S@':Si} = ( tSzS T) .
— 55

Since S;+1 = 5; + Xi+1, we get

t—s; e
Pr{Siy1>si41 | N(t)=n, Si=s;} = (ﬁ)
99
(n — Z)(t — 8i+1)n7i71

fs, NS (Siv1 | n,s) = e . (A.39)
1

b) Use (a) to find the joint density of Si,..., S, conditional on N(t) = n. Verify that your answer agrees
with (2.38).

Solution: For each i, the conditional probability in (a) is clearly independent of S;_», ... ,S;.
Thus we can use the chain rule to multiply (A35) by itself for each value of i. We must also
include fg, | (s1 | n) = n(t —s1)" ! /t". Thus

n(t—s1)" 1 (n=1)(t—s2)"2 (n—2)(t—s3)" 3  (t—s,)°

fon (n) — . :
SN (D) (s™In) tn (t —sp)n1 (t — s9)72 t—Sn—1

n!

t_n.

Note: There is no great insight to be claimed from this exercise. it is useful, however, in
providing some additional techniques for working with such problems.

Exercise 2.26: A two-dimensional Poisson process is a process of randomly occurring special points in
the plane such that (i) for any region of area A the number of special points in that region has a Poisson
distribution with mean AA, and (ii) the number of special points in nonoverlapping regions is independent.
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For such a process consider an arbitrary location in the plane and let X denote its distance from its nearest
special point (where distance is measured in the usual Euclidean manner). Show that

a) Pr{X >t} = exp(—\nt?).

Solution: Given an arbitrary location, X > t if and only if there are no special points in
the circle of radius ¢ around the given point. The expected number in that circle is Art?,
and since the number in that circle is Poisson with expected value Awt?, the probability
that number is 0 is e ™. Thus Pr{X > t} = ¢ "

b) E[X] = 1/(2V).

Solution: Since X > 0, we have

E[X] = /Ooo Pr{X >t} dt = /000 exp(—Art?) dt.

We can look this up in a table of integrals, or recognize its resemblance to the Gaussian
PDF. If we define 02 = 1/(27)), the above integral is

2 2N

—tT _oV2r 1

E[X] = a\/ﬂ/oooﬁexp [F

Exercise 2.27: This problem is intended to show that one can analyze the long term behavior of
queueing problems by using just notions of means and variances, but that such analysis is awkward, justifying
understanding the strong law of large numbers. Consider an M/G/1 queue. The arrival process is Poisson
with A = 1. The expected service time, E[Y], is 1/2 and the variance of the service time is given to be 1.

a) Consider Sy, the time of the nth arrival, for n = 10'2. With high probability, S,, will lie within 3 standard

derivations of its mean. Find and compare this mean and the 3o range.

Solution: Let X; be the ith interarrival time. Then S, = > ;| X;, so E[S,] = n and
VAR [S,] = n. Thus E [S;g12] = 10'? with 3 x 10° as the 3 sigma point.

b) Let V,, be the total amount of time during which the server is busy with these n arrivals (i.e., the sum

of 102 service times). Find the mean and 30 range of V,,.
Solution: In the same way, E [Vjg12] = 5 x 10! with 3 x 10 as the 3 sigma point.

¢) Find the mean and 30 range of I,,, the total amount of time the server is idle up until S,, (take I,, as

Sn — Vp, thus ignoring any service time after Sy).

Solution: As before E[[;qi2] = 5 x 10, Since interarrival times and service times are
independent and —V and V have the same variance, the 3 sigma point of I,, is 6 x 10°.

d) An idle period starts when the server completes a service and there are no waiting arrivals; it ends on

the next arrival. Find the mean and variance of an idle period. Are successive idle periods IID?

Solution: The time from the beginning of an idle period to the next arrival is exponential
with mean 1 and variance 1. Since the time at which the nth idle period starts is a function
only of the first n interarrival times and service times, and since for each sample value of the
beginning of the nth idle period, the interval until the next arrival is independent of those
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arrivals (by the independent increment property) and independent of those service times,
it follows that the interval until the next arrival is independent of those earlier interarrival
intervals and service times. This interval (i.e., this idle period) is thus independent of all
earlier idle periods.

This is one of those peculiar situations where the independence of idle durations is virtually
obvious but a careful demonstration is quite tricky. This type of argument will become
clearer when we study renewal processes.

e) Combine (c) and (d) to estimate the total number of idle periods up to time S,. Use this to estimate the

total number of busy periods.

Solution: The aggregate idle time up to S, can be expressed as n/2 £+ 6y/n and the
aggregate duration of m idle periods can be expressed as m + 3 /m. Letting m(n) be
the number of idle periods up to S,, we then have n/2 £+ 6y/n ~ m + 3y/m. For n very
large (10'2), the square roots are small relative to the linear terms, so we can argue that
m(n) = n/2=+[6y/n+31/n/2]. One can do this more carefully by looking at the maximum
with 3 sigma limits of one expression and the minimum of the other, but however this
is expressed, the number or idle periods per arrival is increasingly close to 1/2 with high
probability as the number of arrivals is increased.

The period from 0 to S, starts with an idle period and ends with a busy period, so that
m(n) is also the number of busy periods.

f) Combine (e) and (b) to estimate the expected length of a busy period.

Solution: Let B be the expected duration of a busy period. Then the expected aggregate
duration of m busy periods is mB. Since the expected aggregate busy time for large m is
equal to the expected aggregate idle time, we have E [B] ~ 1.

It is curious to note that this does not depend on the variance of the service time (beyond
ensuring that the standard deviation of 10'? service times is small compared to the mean).

Exercise 2.28: The purpose of this problem is to illustrate that for an arrival process with independent
but not identically distributed interarrival intervals, X1, Xo, ..., the number of arrivals N(t) in the interval
(0,] can be a defective rv. In other words, the ‘counting process’ is not a stochastic process according to
our definitions. This illustrates that it is necessary to prove that the counting rv’s for a renewal process are
actually rv’s .

a) Let the CDF of the ith interarrival interval for an arrival process be Fx, (x;) = 1 —exp(—a~‘z;) for some
fixed @ € (0,1). Let S, = X1 + -+ X,, and show that
a(l—a™)
E[Sh] = ——
[S] T a

Solution: Each X; is an exponential rv, but the rate, a*, is rapidly increasing with 4

and the expected interarrival time, E [X;] = o, is rapidly decreasing with i. Thus
E[Sy))=a+a?+---a™
Recalling that 1+ a+a? +---+a" ! = (1 -a™)/(1 - a),
E[S)] = a(l+a+---a™)
a(l —a™) o

1—a 1—a’
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In other words, not only is E [X;] decaying to 0 geometrically with increasing i, but E[S,,]
is upper bounded, for all n, by /(1 — «).

b) Sketch a ‘reasonable’ sample function for N(t).

Solution: Since the expected interarrival times are decaying geometrically and the expected
arrival epochs are bounded for all n, it is reasonable for a sample path to have the following
shape:

0 S1 52853
Note that the question here is not precise (there are obviously many sample paths, and
which are ‘reasonable’ is a matter of interpretation). The reason for drawing such sketches
is to acquire understanding to guide the solution to the following parts of the problem.

c) Find 0% .

Solution: Since X; is exponential, ag(i = a?". Since the X; are independent,

ofén = 03(1—%0%(2---4-0%(”
= a?+at+- 4o

= (1 +a%+.--a2n7h)
a?(1 — o) o?

1—a? 1—a?

d) Use the Markov inequality on Pr{S, >t} to find an upper bound on Pr{N(¢) < n} that is smaller than
1 for all n and for large enough ¢. Use this to show that N(t) is defective for large enough ¢.

Solution: The figure suggests (but does not prove) that for typical sample functions (and
in particular for a set of sample functions of non-zero probability), N(¢) goes to infinity for
finite values of ¢. If the probability that N(¢) < n (for a given t) is bounded, independent
of n, by a number strictly less than 1, then that N(t) is a defective rv rather than a true
rv.

By the Markov inequality,

Pr{S, >t} < % < ¢

~ (1l —a)
Pr{N(t) <n} = Pr{S, >t} < Pr{S, >t} <

t(l—a)

where we have used (2.3). Since this bound is independent of n, it also applies in the limit,
i.€.,

lim Pr{N(t) <n} < ﬁ
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For any t > a/(1 — «), we see that ﬁ < 1. Thus N(t) is defective for any such ¢, i.e.,

for any t greater than lim, .. E [Sy].

Actually, by working harder, it can be shown that N(¢) is defective for all ¢ > 0. The outline
of the argument is as follows: for any given ¢, we choose an m such that Pr{S,, <t/2} >
0 and such that Pr{Sec — Sy, <t/2} > 0 where Soo — S = Z;’imﬂ X;. The second
inequality can be satisfied for m large enough by the Markov inequality. The first inequality
is then satisfied since .S, has a density that is positive for ¢ > 0.



