CHAPTER 2
ONE DIMENSIONAL UNCONSTRAINED MINIMIZATION

P2.1

(i) From Definition in Eq. (2.7), we need to show that forany x,yand0 <o <1,
(ax+(1-a)y ) <ax?+(1-o) Y.
From the triangular inequality,
o x + (1~o) y[ < o X + (1~at) ly|
Squaring,
(ax + (1-0) y)? < o X2 + (1-o)? y? + 2a(1—a) X y
—ax’ —axt+o’x
+(1-a) y* = (1-a) y* + (1~0)*y?
+2a(l—a) Xy
= ax? + (1—a) y?
—a (-a) (x-y)?
<o X+ (1—a) y?
as was required to be shown.

(ii) Using the C* test for convexity, we need to show that for any x, y,
fo) + £(x) (y—x) <f(y)
or to show that
X%+ 2 X (y—x) < y?
or
—(x—y)’<0
which is evident.
(iii) Using the C? test for convexity, we need to show that f”(x)> 0 for all x. This

follows since f”(x) =2 > 0. In fact, this shows that f = x? is a strictly convex function.
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P2.2  Necessary condition (for X" to be a strict local maximum): f'(x") =0

Sufficiency condition: f"(x") <0.

P2.3

Figure P2.3

f is not convex — for the pair of points x* and x as shown, the chord does not lie
entirely above the function (which violates Eq. (2.7)).
f is unimodal since there exists a unique point, x*, where the function

monotonically increases on either side of it.

P2.4

c'= iﬁo +107* (LE)V®® =0
Vv
(1.5) (10™*)V ** = 240
Taking logs,V =303.14
, 240 0.75e-4

c' = V3 + VO.5
Thus V = 303.14 is a strict local minimum and the corresponding cost is
Cmin = 1.7685

>0
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P2.5
144 9 . 59%-6

r2 rlO
r® =3.7438e -5
solving, r =0.2797
_—2.88 N (9)(5.99)(10)e -6

r3 r.11

E’ 0

E" -131.6 +657.7>0

Thus r = 0.2797 nm is a strict local minimum and the corresponding energy is

P2.6

Although discontinuous, the function is unimodal. So, yes, Fibonacci and Golden Section

methods will work given any interval of uncertainty containing x = 1.

o 12x> 0
P2.7 Forf=x"+ %", the Hessianis H = |~ * , |-
0 12x
Now, y" Hy = 12(xs% y12 + x22 y»?) > 0 for all x, hence H is positive semi-definite, and
hence f is convex. Thus, any point satisfying the 1% order necessary condition is a global

minimum.
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P2.8
(i) *** Correction: n was not specified. Say, n = 10.

Then, the first two points as per Fibonacci are
55 55
2—-—(2-0),—(2-0)+0|=[0.764,1.236
{ 89( ) 89( ) } [ 1

(ii) As per Golden Section Search: [2 — 7 (2-0), 7 (2—0) + 0]=[0.7639, 1.2361]

We see that since n is large, the two methods start out nearly the same.

(iii)

Fibonacci Golden Section
lio/ 11 1/F, = 1/89 = 0.011236 1=0.013156

As per theory, Fibonacci gives smallest interval for fixed n.

P29 A) Consider the function f =-V, where V = x (210 — 2x) (297 — 2x) =
volume of open box (Example 2.4). Beyond x = 105, the box is not defined as a
dimension becomes negative. Function f is twice—differentiable (i.e. in C?), and so it is
convex provided f">0.We have f"= 2028 — 24 x which is non—negative for x < 84.5.
Thus, f is only convex on [0, 84.5]. It is not convex on R* nor on [0, 105]. However, the
global minimum of f on [0, 105] is well defined. See plot below.
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B)  With 4 function evaluations, min f = e + 5¢ | on the initial interval [0, 1] as

per: (i) Fibonacci search, (ii) Golden Section search

Fibonacci

n=4 gives Fn1/ F,=F3/F4=23/5=0.6. Thus the first two points are atx = 0.4
and x = 0.6, respectively. Evaluating f at these points gives f(0.4) = 5.5668 and f(0.6) =
7.5556. Comparing these two, the new interval is thus [0, 0.6]. Fn2 / Fn1 = F2 / F3 = 2/3.
Thus the new point is at x = 0.2 with x = 0.4 already in the right location. f(0.2) = 5.1737
< f(0.4). Thus the new interval is [0, 0.4]. We finish by choosing 6 = 0.01, which gives
the two inside points as 0.2 and 0.21. f (0.21) = 5.1628 < f(0.2) = 5.1737.The final
interval is thus [0.2, 0.4]. The length of this is 0.2, and its ratio to the original length =
0.2/1 = 1/F, = 1/F4 = 1/5, as per theory.

Golden Section

The first two points are at x = 0.618 = rand x = 0.382 = 1- , respectively.
Evaluating f at these points gives f(0.618) = 7.8386 and f(0.382) = 5.4744. Comparing
these two, the new interval is thus [0, 0.618]. The new point is at x = 0.2361 with x =
0.382 already in the right location. f(0.2361) = 5.1487 < (0.382). Thus the new interval is
[0, 0.382]. The new point is at x = 0.1459 with x = 0.2361 already in the right location.
f(0.1459) = 5.2837 > f(0.2361). Thus the new interval is [0.1459, 0.382]. The length of
this is 0.2361 = 7" = 73 as per theory.

Further, the final interval length in Fibonacci is smaller than in Golden Section as
per theory.

P2.10 The code used is

function [] = testl()
clear all; close all;
[xopt, fopt, ifl, out] = fminbnd(@(x) getfun(x),0,10)

function [f]= getfun(x)
T = exp(3*x) + 5*exp(-2*x);

The flag ifl = 1 means:
“FMINBND converged with a solution X based on OPTIONS.TolX.”

Solution is xopt = 0.2408, fopt = 5.1483.

f'(0.2408) = 3 e%0%%) _10e20%%) — 0 000168 ~ 0
f"(x) =9e* +20e* >0

So, fis (strictly) convex and the solution is a (strict) global minimum.
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P2.11 Using in-house code:

FIBONACCI
Getfun subroutine: £ = 240/x + 1le-4*x~1.5 + 0.45;
Initial Interval Final Interval X-Value within | Function Value | No. of
interval within interval Function
Calls
[0, 1000] [292.1, 303.4] 303.26 1.7695 10
[0, 500] [297.8, 303.4] 303.37 1.7695 10
P2.12 Results from in-house codes:
GOLDINTV:
Getfun subroutine: F = -1.44/X + 5.9e-6/X"9;
Initial No. of Final Interval | X-Value Function
Interval Function within Value within
Calls interval interval
[0, 100] 13 [0.1919, 0.31056 —A4.4172
0.5025]
[0, 10] 13 [0.2942, 0.2823 —4.5828
0.2631]
GOLDLINE:
Getfun subroutine: F = -1.44/X + 5.9e-6/X"9;
Initial Point No. of X-Value Function
Function within Value within
Calls interval interval
0.1 15 0.2793 —4.5853
1 17 0.2790 —4.5853
10 28 0.2790 —4.5853
ADB & TRC
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P2.13 Using MATLAB optimization toolbox ‘“fminbnd’ code:

function [] = testl()
clear all; close all;
[xopt, fopt,

function [f]= getfun(x)
T = 240/x + le-4*x~1.5 + 0.45;

Matlab fminbnd
Getfun subroutine: £ = 240/x + le-4*x~1.5 + 0.45;

Initial Interval Xopt Fopt No. of
Function
Calls
[0, 1000] 303.14 1.7695 12

ifl, out] = fminbnd(@(x) getfun(x),0,1000)

P2.14 For each configuration of the disks, we need to evaluate the function value which
is the length of the boundary of the circumscribing rectangle for case (a) and the area
enclosed by the rectangle for case (b). We proceed as follows.

With the origin set at (0,0) let the center of disk 1 of radius 5¢cm be set at the origin. Let
disk 2 of radius 10 cm be placed so that it is in contact with disk 1 and the line joining the
centers is at an angle &as shown.

[ —— _____________.______.<

Denoting (a, b) as the location of the center of the second circle of radius 10cm, we have
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(a, b) = (15c0s4, 15sind)

Angle @ has the limits
0< 0 < 45°  (n/4 radians)

The next step is to find Xmin, Ymin, Xmax, Ymax for the configuration. We set their values
using the first circle as the base.

Xmin = =9, Ymin= —9, Xmax =9, Ymax =5

Then it is easy to see from the figure that the minimum and maximum values for the
configurations can be obtained using the following ‘if’ statements.

If Xmin > a —10 then Xmin =a —-10
If Ymin> b —10 then ymin=b -10

If Xmax < a +10 then Xmax = a +10
If Ymax < b +10 then ymax = b +10

Once the these four values are evaluated, the sides of the enclosing rectangle A and B are
given by
A = Xmax — Xmin B = Ymax — Ymin

The function values for the two cases are given by
(@ f = 2*(A+B)
(b) f = A*B)

We now find the minima of f using the program GOLDINTYV. We provide here the
modifications for the GOLDINTV.BAS program.

In the main program, following two lines are added.

Pl = 3.14159
A =0: B=45*PI / 180

The first line defines r used in the degree-radian conversion and the second line replaces
the current interval. Also the following print statement is modified to print degrees
converted from radians.

PRINT ""Coordinate of Point X2 = "; X * 180 / PI

In the subroutine SUB GETFUN (X, F, NF) following lines are added to define the
function
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SUB GETFUN (X, F, NF)
"PROBLEM 1 CHAPTER 2
A = 15 * COS(X)
B = 15 * SIN(X)
XMIN = -5: YMIN = -5
XMAX = 5: YMAX = 5

IF XMIN > A - 10 THEN XMIN = A - 10
IF XMAX < A + 10 THEN XMAX = A + 10
IF YMIN > B - 10 THEN YMIN = B - 10
IF YMAX < B + 10 THEN YMAX = B + 10
AA = XMAX - XMIN

BB = YMAX - YMIN
F=2=* (A + BB)
"F = AA * BB

The second function above is a comment statement.
On running the program, following results are obtained

(@) minimumat @ = 19.4712° fmin = 98.284cm 31 function evaluations
(b) minimumat @ = 19.4712° fin = 582.84cm* 31 function evaluations

In both cases, the configuration for the minima corresponds to the one where the bottom

tangent line to the two circles is parallel to the x-axis.

2.15 This is a two variable problem. We choose the two variables as « and @as shown
in the figure.

A

Because of the symmetry, the limits on these angles may be set as
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< 30°  (n/4 radians)
<

0
0 120°  (2n/3 radians)

IA N

(04
0
We will attempt to solve this problem as a single variable problem by working in 5° steps

for « and finding an optimum & for each «. The centers of the three circles are denoted
(ai, bi), 1=1,2,3. We place the center of the first disk at (5,5), so that

(allbl) = (5!5)
(az,b2) = (a; + 10cose, by + 10sine)
(as,b3) = (a2 + 10cos(a + 6), b, + 10sin(«a + 6))
We initialize Xmin, Ymin, Xmax, Ymax using the first circle as the base.
Xmin = 0, Ymin= 0, Xmax = 10, Ymax =10

Then following ‘if” statements will result in the final values of Xmin, Ymin» Xmax, Ymax-

i=23
If Xmin > ai =5 then Xmin = @j =5
If Yimin> b =5 then ypin=b; -5
If Xmax < @j +5 then Xmax = aj +5
If Ymax < bi +5 then ymax = bj +5

Now following the steps of problem 2.1,
A = Xmax — Xmin B = Ymax — Ymin

The function values for the two cases are given by
@ f = 2*(A+B)
(b) f = A*B)

Solution for case (a)

Above relations are then implemented in the program GOLDINT as in Problem 2.1. The
results are given below.

OLO 90 fmin cm

0 120 77.3205
5 120 78.0501
10 120 78.4900
20 120 78.6371
25 120 78.4900
30 120 77.3205

We note here that the minimum is at = 0° and #=120°. Also note the symmetry
about oz = 15°,
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Solution for case (b)
The results for minimum area are given below.

o 0° fmin CM?
0 120 373.2053
5 120 380.5364
10 120 384.9920
20 120 386.4868
25 120 384.9921
30 120 373.2055

We note here that the minimum is at = 0° and &= 120°

2.16 We denote @ as the variable shown in the figure.

rcosé j | \—

r(1—cosé)

The height of the trapezoidal region can be written as
h=rsing
The area of the trapezoidal region f can now be written as
f=(2rcos@)h + hr (1-cos@)

Above relationships can be introduced into the program GOLDINTV with & ranging 0 to
0.5m and find the optimum solution. In this problem, we can obtain the solution directly
by setting df/d@=0. This will lead to 2cos@=1. Thus

0=60°

maximum of f=129.9.
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The second derivative of f is negative at 6= 60°.

2.17 The geometry of the problem is shown in the figure.

a = 2rcos45°

b = 2rcos&cos45°

r=10

h=rsing

/7 2rcosé
\ 0

We note that the height is h given by
h=rsing
The volume is divided into three distinct parts.

(1) Volume of the central square of side b
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Vi = b*h

(2) Volume of four prismatic parts of length b, height h, and width 0.5(a—b)
V, = bh(a-b)

(3) Volume of four corner pieces which forms a pyramid of height h and base (a—b)
Vs = (U3)(a-b)’h

The objective is to maximize f =V +V,+V;

Above function has been introduced into the function part of the program GOLDINTV
and the limits on @have been set as 0° to 90°. The results are as follows:

Maximum value of f = 1050.005 at O= 49.723°.

2.18 This is a one variable problem, and we define d as the variable as shown in the
figure.

3

— 2
A=50m° d

X

Since the dirt dug from the ground is spread on the banks, we have

(x + dtane)d =50
and 2 (3 +htana)h =50

The second equation is a quadratic equation in h. Solving the equation and choosing the
meaningful solution, we get

/9+100tano — 3

2tan o

From the first equation, we have

x=@—dtanoc
d

The objective function f to be minimized is the wetted perimeter given by
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f :X+M
tana

On substituting for h and x from above, and differentiating with respect to d and setting it
equal to zero (optimality condition), we get

cosa
1-sina

d=,/50

Setting o= 25°, d = 8.8591, and the corresponding function value is f = 16.563.

P2.19 Maximizing f= (17-2*x)*(22-2*Xx)*x*0.1 - 4*x*x*.04 - 4*x*.02 within the
interval [0,8.5] gives an optimum height of the box as
X =3.0415, and profit f =$0.51, per box manufactured.

P2.20. A Matlab code for this problem is given below, which also generates the plots
below.

function [] = FIBONACCI()
clear all; close all;
global PHA L k
%
H=50; L=300; k=100;
A=sqrt(H"2 + (L/12)72);
xU = 2*A-L;
PP = 100*[1:5];
for i=1:length(PP)
P =PP(i);
[xopt, fopt, ifl, out] = fminbnd(@(x) getfun(x),0,xV)
deltax(i) = xopt;
deltay(i) = H - sqrt(A”2 - ((L+xopt)/2)"2);
end
plot(deltax,PP)
figure(2)
plot(deltay,PP)

function [f]= getfun(x)

global PHA L k

y = H - sqrt(A"2 - ((L+x)/2)"2);
f = .5*k*x"2 - P*y;
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P2.21 2.10 The objective function is given. We need to be careful with the units. Note
that 1um = 10~ mm (107° m). Using these units, the objective function can be defined
as follows:

s; = 1000000 N/mm

S; = 600000 N/mm

E = 210000 N/mm®  (Note that E for steel is 210 GPa = 210 N/m?)

d=75mm

a= 100 mm
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and | = 7d*/64

3 2 2
minimize f = & (142 |4 (L+a) L

3El o S, S,
The first term is large for small values of o and the second and third terms are large for

large values of a.. Choosing an interval of 0.001 to 10, we get
fmin= 5.725x107° at o = 0.4748
Note that b/a = 1/a = 2.11. The spacing between bearings is larger than the overhang.

Machine tool spindles are made hollow. In this case, the moment of inertia is given by
| = 2(do" — d*)/64.

P2.22 The deflection relationships for the left half of the beam configuration are given.
4

y—X—+c X+cC for x<1-a
24 VT -

4 3
:X__M+Clx+c2 for x>1-a
24 6

First the constants ¢, and c; are to be determined using the boundary conditions. The
deflection is zero at x = 1— a and the slope y’ is zero at x = 1.

Using the slope condition, we get
a® 1

1
2 6
and using the deflection condition we get

__(-3a)f
C, __T_Cl(l_a)

The deflection is largest either at x =0 or x = 1. Thus the objective is to
Minimize f = max (abs(yx=0), abs(yx=1))

Which can be put in the form
Minimize f = max (abs(cy), abs(1/24 —a’/6 + ¢; + ¢y))

Introducing these into a one dimensional minimization program and setting the interval
forxas 0 to 1, we get

fmin= 0.004316 at a = 0.553702
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Exact solution can be obtained by setting the deflectionsat x =0 and x = 1 to be equal.
This leads to the solution of the cubic equation 4a>— 12 a> + 3 = 0.

P2.23 Using the getfun subroutine below:
function [f]= getfun(x)
Msupport = -.5*(1-x)"2;
Mcentre = -0.5 + Xx;
T = max(abs(Msupport), abs(Mcentre));

we obtain the optimum half-spacing as x = 0.5858 that minimizes the maximum bending
stress in the beam.

P2.24 Results from in-house code SHUBERT.m with Lipshitz constant estimated = 45
are:

Tolerance on objective function = 1.0000E-002

Number of Function Evaluations = 93

xopt, yopt = 0.96613 1.4891

best upper bound = 1.4973E+000

tolerance on x for merging int. of uncertainty =  5.0000E-002
Uncertainty Intervals =

A2 =[0.9126 0.9739]

This agrees with the plot of the function below.

15

0 0.2 0.4 0.6 0.8 1 1.2 14
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P2.25 The study should pay attention to starting values, initial intervals etc. Number of
function calls and robustness may be used as measures of performance.

P2.26 We define the objective function as follows:
d=16
a=38
b=12
c=12
R; = d/a
R, =d/b
Rs = (d® + a% + b? — c?)/(2ab)

Minimize f = (Ricosp — R,cos0 + Rs — cos(¢p—0))>
0 is taken in steps of 10° from 10° to 90° and ¢ corresponding to the minimum of f is

obtained for each of these values. The limits for ¢ are set as 0° to 150°. The minimum
value of fis zero. The results are tabulated below:

0° ¢°

10 100.372
20 93.922
30 90.606
40 90.116
50 91.857
60 95.264
70 99.895
80 105.426
90 111.625

Alternatively, the Matlab “‘fzero’ function may be used instead if a minimization routine.
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