
CHAPTER  2 

ONE  DIMENSIONAL  UNCONSTRAINED  MINIMIZATION 

 

P2.1  

(i) From Definition in Eq. (2.7), we need to show that for any x, y and 0 < α < 1,  

(α x + (1−α) y )2 ≤ α x2 + (1−α) y2. 

From the triangular inequality, 

  |α x + (1−α) y| ≤ α |x| + (1−α) |y| 

Squaring, 

 (α x + (1−α) y)2 ≤ α2 x2 + (1−α)2 y2 + 2α(1−α) x y 

      = α x2 − α x2 + α2 x2 

         + (1−α) y2 − (1−α) y2 + (1−α)2 y2 

         + 2α(1−α) x y 

      = α x2 + (1−α) y2  

         − α (1−α) (x−y)2  

      ≤ α x2 + (1−α) y2  

as was required to be shown. 

(ii) Using the C1 test for convexity, we need to show that for any x, y, 

 f(x) +  (y−x) ≤ f(y) )(xf ′

or to show that 

 x2 + 2 x (y−x) ≤ y2 

or  

− (x − y)2 ≤ 0 

which is evident. 

(iii) Using the C2 test for convexity, we need to show that )(xf ′′ ≥ 0 for all x. This 

follows since  = 2 > 0. In fact, this shows that f = x2 is a )(xf ′′ strictly convex function. 
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P2.2 Necessary condition (for x* to be a strict local maximum):  0)( * =′ xf

 Sufficiency condition: . 0)( * <′′ xf

 

P2.3  

 

 

 

 

 

 

 

 

     

Figure P2.3 

 

f  is not convex − for the pair of points x1 and x2 as shown, the chord does not lie  

entirely above the function (which violates Eq. (2.7)). 

f  is unimodal  since there exists a unique point, x*, where the function 

monotonically increases on either side of it. 

 

P2.4   
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Thus V = 303.14 is a strict local minimum and the corresponding cost is  

cmin = 1.7685 
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P2.5   
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Thus r = 0.2797 nm is a strict local minimum and the corresponding energy is  

Emin = −4.5852. 

 

P2.6   

 

 

 

 

 

 

 

 

 

Although discontinuous, the function is unimodal. So, yes, Fibonacci and Golden Section 

methods will work given any interval of uncertainty containing x = 1. 

 

P2.7  For f = x1
4 + x2

4, the Hessian is .  ⎥
⎦

⎤
⎢
⎣

⎡
= 2

2

2
1

120
012
x

x
H

Now, yT H y = 12(x1
2 y1

2 + x2
2 y2

2) ≥ 0 for all x, hence H is positive semi-definite, and 

hence f is convex. Thus, any point satisfying the 1st order necessary condition is a global 

minimum. 

 

ADB & TRC Chp 2−3/18

x 

f 

1 

14



 

 

P2.8  

(i) *** Correction:  n was not specified. Say, n = 10.  

Then, the first two points as per Fibonacci are 

 ]236.1,764.0[0)02(
89
55),02(

89
552 =⎥⎦

⎤
⎢⎣
⎡ +−−−   

(ii) As per Golden Section Search: [ ] ]2361.1,7639.0[0)02(),02(2 =+−−− ττ  

We see that since n is large, the two methods start out nearly the same. 

(iii)  

 Fibonacci Golden Section 

I10 / I1 1/Fn = 1/89 = 0.011236 τn−1 = 0.013156 

As per theory, Fibonacci gives smallest interval for fixed n. 

 

P2.9 A)  Consider the function  f  = - V, where V = x (210 – 2x) (297 – 2x) =  

volume of open box (Example 2.4). Beyond x = 105, the box is not defined as a 

dimension becomes negative. Function  f  is twice−differentiable (i.e. in C2), and so it is 

convex provided . We have 0≥′′f f ′′ = 2028 − 24 x which is non−negative for x ≤ 84.5. 

Thus, f is only convex on [0, 84.5].  It is not convex on R1 nor on [0, 105]. However, the 

global minimum of f on [0, 105] is well defined. See plot below. 
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B) With 4 function evaluations, min  f = e3x + 5e-2x , on the initial interval [0, 1] as 

per: (i) Fibonacci search, (ii) Golden Section search 

 
Fibonacci 
 n = 4  gives Fn−1 / Fn = F3 / F4 = 3/5 = 0.6. Thus the first two points are at x = 0.4 
and x = 0.6, respectively. Evaluating  f at these points gives f(0.4) = 5.5668 and f(0.6) = 
7.5556. Comparing these two, the new interval is thus [0, 0.6]. Fn−2 / Fn−1 = F2 / F3 = 2/3. 
Thus the new point is at x = 0.2 with x = 0.4 already in the right location. f(0.2) = 5.1737 
< f(0.4). Thus the new interval is [0, 0.4]. We finish by choosing δ = 0.01, which gives 
the two inside points as 0.2 and 0.21. f (0.21) = 5.1628 < f(0.2) = 5.1737.The final 
interval is thus [0.2, 0.4]. The length of this is 0.2, and its ratio to the original length = 
0.2/1 = 1/Fn = 1/F4 = 1/5, as per theory. 
 
Golden Section 
 The first two points are at x = 0.618 = τ and x = 0.382 = 1− τ, respectively. 
Evaluating  f at these points gives f(0.618) = 7.8386 and f(0.382) = 5.4744. Comparing 
these two, the new interval is thus [0, 0.618]. The new point is at x = 0.2361 with x = 
0.382 already in the right location. f(0.2361) = 5.1487 < f(0.382). Thus the new interval is 
[0, 0.382]. The new point is at x = 0.1459 with x = 0.2361 already in the right location. 
f(0.1459) = 5.2837 > f(0.2361). Thus the new interval is [0.1459, 0.382]. The length of 
this is 0.2361 = τ n−1 = τ 3 as per theory.  
 Further, the final interval length in Fibonacci is smaller than in Golden Section as 
per theory. 
 
P2.10  The code used is 
 
function [] = test1() 
clear all; close all;  
[xopt, fopt, ifl, out] = fminbnd(@(x) getfun(x),0,10) 
  
function [f]= getfun(x) 
f = exp(3*x) + 5*exp(-2*x); 
 
The flag ifl = 1 means: 
“FMINBND converged with a solution X based on OPTIONS.TolX.” 
 
Solution is xopt =  0.2408, fopt = 5.1483. 
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So, f is (strictly) convex and the solution is a (strict) global minimum. 
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P2.11  Using in-house code: 
 

FIBONACCI 
Getfun subroutine:  f = 240/x + 1e-4*x^1.5 + 0.45; 

 
Initial Interval Final Interval X-Value within 

interval 
Function Value 
within interval 

No. of 
Function 
Calls 

[0, 1000] [292.1, 303.4] 303.26 1.7695 10 
[0, 500] [297.8, 303.4] 303.37 1.7695 10 
 
 
P2.12  Results from in-house codes: 
   

GOLDINTV: 
Getfun subroutine:  F = -1.44/X + 5.9e-6/X^9; 

  
Initial 
Interval 

No. of 
Function 
Calls 

Final Interval X-Value 
within 
interval 

Function 
Value within 
interval 

[0, 100] 13 [0.1919, 
0.5025] 

0.31056 −4.4172 

[0, 10] 13 [0.2942,  
0.2631] 

0.2823 −4.5828 

 
 

GOLDLINE:  
Getfun subroutine:  F = -1.44/X + 5.9e-6/X^9; 

  
Initial Point No. of 

Function 
Calls 

X-Value 
within 
interval 

Function 
Value within 
interval 

0.1 15 0.2793 −4.5853 
1 17 0.2790 −4.5853 
10 28 0.2790 −4.5853 
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P2.13  Using MATLAB optimization toolbox ‘fminbnd’ code: 
function [] = test1() 
clear all; close all; 
[xopt, fopt, ifl, out] = fminbnd(@(x) getfun(x),0,1000) 
  
function [f]= getfun(x) 
f = 240/x + 1e-4*x^1.5 + 0.45; 

 
Matlab fminbnd 

Getfun subroutine:  f = 240/x + 1e-4*x^1.5 + 0.45; 
 

Initial Interval Xopt Fopt No. of 
Function 

Calls 
[0, 1000] 303.14 1.7695 12 

 
 
P2.14  For each configuration of the disks, we need to evaluate the function value which 
is the length of the boundary of the circumscribing rectangle for case (a) and the area 
enclosed by the rectangle for case (b).  We proceed as follows. 
 
With the origin set at (0,0) let the center of disk 1 of radius 5cm be set at the origin.  Let 
disk 2 of radius 10 cm be placed so that it is in contact with disk 1 and the line joining the 
centers is at an angle θ as shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Denoting (a, b) as the location of the center of the second circle of radius 10cm, we have 
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                                                    (a, b) = (15cosθ , 15sinθ ) 
 
Angle θ  has the limits 
                                                   0 ≤  θ   ≤  450        (π/4 radians) 
 
The next step is to find xmin, ymin, xmax, ymax  for the configuration.  We set their values 
using the first circle as the base. 
 
                                xmin = −5,  ymin =  −5, xmax = 5,  ymax  = 5 
 
Then it is easy to see from the figure that the minimum and maximum values for the 
configurations can be obtained using the following ‘if’ statements. 
 
  

If  xmin > a −10 then xmin = a −10 
If  ymin > b −10 then ymin = b −10 
If  xmax < a +10 then xmax = a +10 
If  ymax < b +10 then ymax = b +10 

 
Once the these four values are evaluated, the sides of the enclosing rectangle A and B are 
given by  
                                  A = xmax  − xmin         B = ymax  − ymin 
 
The function values for the two cases are given by 
 
   (a)  f  =  2*(A + B) 
 
   (b) f  =  A*B) 
 
We now find the minima of f using the program GOLDINTV.  We provide here the 
modifications for the GOLDINTV.BAS program. 
 
In the main program, following two lines are added. 
 
        PI = 3.14159 
        A = 0: B = 45 * PI / 180 
 

The first line defines π used in the degree-radian conversion and the second line replaces 
the current interval.  Also the following print statement is modified to print degrees 
converted from radians. 
 
                PRINT "Coordinate of Point X2 = "; X * 180 / PI 
 
In the subroutine   SUB GETFUN (X, F, NF) following lines are added to define the 
function 
 

ADB & TRC Chp 2−8/18

 

19



SUB GETFUN (X, F, NF) 
        'PROBLEM 1  CHAPTER 2 
        A = 15 * COS(X) 
        B = 15 * SIN(X) 
        XMIN = -5: YMIN = -5 
        XMAX = 5: YMAX = 5 
        IF XMIN > A - 10 THEN XMIN = A - 10 
        IF XMAX < A + 10 THEN XMAX = A + 10 
        IF YMIN > B - 10 THEN YMIN = B - 10 
        IF YMAX < B + 10 THEN YMAX = B + 10 
        AA = XMAX - XMIN 
        BB = YMAX - YMIN 
        F = 2 * (AA + BB) 
        'F = AA * BB 
 
The second function above is a comment statement. 
 
On running the program, following results are obtained 
 
(a)     minimum at θ  =  19.47120             fmin  =  98.284cm        31 function evaluations 
(b)    minimum at θ  =  19.47120             fmin  =  582.84cm2        31 function evaluations 
 
In both cases, the configuration for the minima corresponds to the one where the bottom 
tangent line to the two circles is parallel to the x-axis. 
 
 
2.15   This is a two variable problem.  We choose the two variables as α and θ as shown 
in the figure.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because of the symmetry, the limits on these angles may be set as 
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                                                    0 ≤  α   ≤  300        (π/4 radians) 
                                                    0 ≤  θ   ≤  1200       (2π/3 radians) 
 
We will attempt to solve this problem as a single variable problem by working in 50 steps 
for α and finding an optimum θ for each α.  The centers of the three circles are denoted  
(ai, bi),  i = 1,2,3.  We place the center of the first disk at (5,5), so that 
 

(a1,b1) =  (5,5) 
(a2,b2) =  (a1 + 10cosα, b1 + 10sinα) 
(a3,b3) =  (a2 + 10cos(α + θ), b2 + 10sin(α + θ)) 

 
We initialize xmin, ymin, xmax, ymax  using the first circle as the base. 
 
                                xmin = 0,  ymin =  0, xmax = 10,  ymax  = 10 
 
Then following ‘if’ statements will result in the final values of xmin, ymin, xmax, ymax. 
 
                                 i = 2,3 

If  xmin > ai −5 then xmin = ai −5 
If  ymin > bi −5 then ymin = bi −5 
If  xmax < ai +5 then xmax = ai +5 
If  ymax < bi +5 then ymax = bi +5 

 
Now following the steps of problem 2.1, 
                             A = xmax  − xmin         B = ymax  − ymin 
 
The function values for the two cases are given by 
 
   (a)  f  =  2*(A + B) 
 
   (b) f  =  A*B) 
 
Solution for case (a) 
Above relations are then implemented in the program GOLDINT as in Problem 2.1.  The 
results are given below. 
 

 α0       θ0         fmin cm 
 0      120     77.3205 
 5      120     78.0501 
10     120     78.4900 
20     120     78.6371 
25     120     78.4900 
30     120     77.3205 
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Solution for case (b) 
The results for minimum area are given below. 
 

 α0       θ0         fmin cm2 

 0      120     373.2053 
 5      120     380.5364 
10     120     384.9920 
20     120     386.4868 
25     120     384.9921 
30     120     373.2055 

 
We note here that the minimum is at α =  00  and  θ = 1200. 
 
  
2.16   We denote θ  as the variable shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The height of the trapezoidal region can be written as 
 
                                               h = r sinθ  
 
The area of the trapezoidal region f can now be written as  
 
                                            f = (2r cosθ )h + h r (1−cosθ ) 
 
Above relationships can be introduced into the program GOLDINTV with θ  ranging 0 to 
0.5π and find the optimum solution.  In this problem, we can obtain the solution directly 
by setting df/dθ =0.  This will lead to  2cosθ = 1.  Thus 
 
                                                            θ = 600 
 
                                                            maximum of  f = 129.9. 
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The second derivative of f is negative at θ = 600.  
 
 
2.17    The geometry of the problem is shown in the figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We note that the height is h given by 
 
h = r sinθ 
 
The volume is divided into three distinct parts. 
 
(1)  Volume of the central square of side  b   
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                                                 V1 =  b2h 
(2)  Volume of four prismatic parts of length b, height h, and width 0.5(a−b)  
                                                 V2 = bh(a−b) 
(3)  Volume of four corner pieces which forms a pyramid of height h and base (a−b) 
                                                 V3 = (1/3)(a−b)2h 
 
The objective is to maximize   f  = V1 + V2 + V3   
 
Above function has been introduced into the function part of the program GOLDINTV 
and the limits on θ have been set as 00 to 900.   The results are as follows: 
 
Maximum value of f = 1050.005      at   θ =  49.7230. 
 
2.18   This is a one variable problem, and we define d as the variable as shown in the 
figure. 
 
 
 
 
 h 
 
 
 
 
 
 
 
 
Since the dirt dug from the ground is spread on the banks, we have 
 
                                                  (x + dtanα)d  = 50 
                                   and       2 (3 + htanα)h = 50 
 
The second equation is a quadratic equation in h.  Solving the equation and choosing the 
meaningful solution, we get 
 

                                             
α

−α+
=

tan2
3tan1009h  

 
From the first equation, we have 

                                                   α−= tan50 d
d

x  

The objective function f to be minimized is the wetted perimeter given by 
 

d A=50m2
α 

x
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α

+
+=

tan
)( dhxf  

 
On substituting for h and x from above, and differentiating with respect to d and setting it 
equal to zero (optimality condition), we get 
 

α−
α

=
sin1

cos50d  

 
Setting  α = 250,  d =  8.8591 ,  and the corresponding function value is  f = 16.563. 
 
 
P2.19  Maximizing   f = (17-2*x)*(22-2*x)*x*0.1 - 4*x*x*.04 - 4*x*.02  within the 
interval [0,8.5] gives an optimum height of the box as 

 x* = 3.0415, and profit  f * = $0.51, per box manufactured. 
 
P2.20. A Matlab code for this  problem is given below, which also generates the plots 

below. 

function [] = FIBONACCI() 
clear all; close all; 
global P H A L k 
%  
H=50; L=300; k=100; 
A=sqrt(H^2 + (L/2)^2); 
xU = 2*A-L; 
PP = 100*[1:5]; 
for i=1:length(PP) 
    P = PP(i);    
    [xopt, fopt, ifl, out] = fminbnd(@(x) getfun(x),0,xU) 
    deltax(i) = xopt; 
    deltay(i) = H - sqrt(A^2 - ((L+xopt)/2)^2); 
end 
plot(deltax,PP) 
figure(2) 
plot(deltay,PP)  
  
function [f]= getfun(x) 
global P H A L k 
y = H - sqrt(A^2 - ((L+x)/2)^2); 
f = .5*k*x^2 - P*y; 
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P2.21  2.10  The objective function is given. We need to be careful with the units.  Note 
that 1μm = 10−3 mm  (10−6 m).  Using these units, the objective function can be defined 
as follows: 
                        s1 = 1000000 N/mm 
                        s2 = 600000 N/mm 
                        E  =  210000 N/mm2      (Note that E for steel is 210 GPa = 210 N/m2) 
                         d = 75 mm 
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               and    I = πd4/64 
 

                     ( )
2

2

1

23 111
3

 minimize
ssEI

af α
+

α+
+⎟

⎠
⎞

⎜
⎝
⎛

α
+=  

The first term is large for small values of α and the second and third terms are large for 
large values of α.   Choosing an interval of 0.001 to 10, we get 
 
                                            fmin= 5.725×10−6  at  α = 0.4748 
 
Note that b/a = 1/α = 2.11.  The spacing between bearings is larger than the overhang. 
 
Machine tool spindles are made hollow.  In this case, the moment of inertia is given by                
I = π(do

4 − di
4)/64. 

 
 
P2.22  The deflection relationships for the left half of the beam configuration are given.   

                                    
( ) axcxcaxxy

axcxcxy

−≥++
+−

−=

−≤++=

1for              
6

1
24

1for              
24

21

34

21

4

 

 
First the constants c1 and  c2 are to be determined using the boundary conditions.  The 
deflection is zero at x = 1− a and the slope y’ is zero at x = 1. 
 
Using the slope condition, we get 

                                             
6
1

2

2

1 −=
ac  

and using the deflection condition we get 

                                             ( ) ( )acac −−
−

−= 1
24

1
1

4

2  

 
The deflection is largest either at x = 0  or  x = 1.  Thus the objective is to 
                                    Minimize  f  =  max (abs(yx = 0),  abs(yx = 1)) 
 
Which can be put in the form 
                                  Minimize f  =  max (abs(c2),  abs(1/24 − a3/6 + c1 + c2)) 
 
Introducing these into a one dimensional minimization program and setting the interval 
for x as 0 to 1, we get 
 
                                            fmin= 0.004316 at  a = 0.553702 
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Exact solution can be obtained by setting the deflections at x = 0  and  x = 1 to be equal.  
This leads to the solution of the cubic equation 4a3 − 12 a2 + 3 = 0. 
 
P2.23  Using the getfun subroutine below: 

function [f]= getfun(x) 
Msupport = -.5*(1-x)^2; 
Mcentre = -0.5 + x; 
f = max(abs(Msupport), abs(Mcentre)); 

we obtain the optimum half-spacing as x* = 0.5858 that minimizes the maximum bending 
stress in the beam. 
 
P2.24  Results from in-house code SHUBERT.m with Lipshitz constant estimated = 45 
are: 

 
Tolerance on objective function =     1.0000E-002 
Number of Function Evaluations = 93 
xopt, yopt =     0.96613     1.4891 
best upper bound =     1.4973E+000 
tolerance on x for merging int. of uncertainty =     5.0000E-002 
Uncertainty Intervals =  
A2 = [0.9126    0.9739] 

 
This agrees with the plot of the function below. 
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P2.25  The study should pay attention to starting values, initial intervals etc. Number of 
function calls and robustness may be used as measures of performance. 
 
 
P2.26 We define the objective function as follows: 
                       d = 16 
                       a = 8 
                      b = 12 
                      c = 12 
                      R1 = d/a 
                     R2 = d/b 

R3 = (d2 + a2 + b2 − c2)/(2ab) 
 

                 Minimize  f  =  (R1cosφ − R2cosθ + R3 − cos(φ−θ))2 
 
θ is taken in steps of 100 from 100 to 900 and φ corresponding to the minimum of f is 
obtained for each of these values. The limits for φ are set as 00 to 1500. The minimum 
value of f is zero.  The results are tabulated below: 
 

 θ0           φ0 
10 100.372 

   20   93.922 
   30   90.606 
   40   90.116 
   50   91.857 
   60   95.264 
   70   99.895 
   80 105.426 
   90 111.625 
Alternatively, the Matlab ‘fzero’ function may be used instead if a minimization routine. 
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