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Chapter 2

2.1 Take as sample space the set of all ordered pairs (i, j), where the
outcome (i, j) represents the two numbers shown on the dice. Each
of the 36 possible outcomes is equally likely. Let A be the event that
the sum of the two dice is 8 and B be the event that the two numbers
shown on the dice are different. There are 30 outcomes (i, j) with i 6= j.
In four of those outcomes i and j sum to 8. Therefore P (AB) = 4

36

and P (B) = 30
36 . The sought probability P (A | B) is 4/36

30/36 = 2
15 .

2.2 The ordered sample space consists of the eight equally likely ele-
ments (H,H,H), (H,H, T ), (H,T,H), (H,T, T ), (T, T, T ), (T, T,H),
(T,H, T ), and (T,H,H), where the first component refers to the nickel,
the second to the dime and the third to the quarter. Let A the event
that the quarter shows up heads and B be the event that the coins
showing up heads represent an amount of at least 15 cents. To find
P (A | B) = P (AB)/P (B), note that the set AB consists of four el-
ements (H,H,H), ,(H,T,H),(T,T,H) and (T,H,H), while the set B
consists of the 5 elements (H,H,H), (H,H, T ), (H,T,H), (T, T,H),
and (T,H,H). This gives P (AB) = 4

8 and P (B) = 5
8 . Hence the

desired probability P (A | B) is 4
5 .

2.3 Take as sample space the set of the ordered pairs (G,G), (G,F ), (F,G),
and (F, F ), where G stands for a “correct prediction” and F stands
for a “false prediction,” and the first and second components of each
outcome refer to the predictions of weather station 1 and weather
station 2. The probabilities 0.9×0.8 = 0.72, 0.9×0.2 = 0.18, 0.1×0.8 =
0.08, and 0.1 × 0.2 = 0.02 are assigned to these elements. Let the
event A = {(G,F )} and the event B = {(G,F ), (F,G)}. The sought
probability is P (A | B) = 0.18

0.26 = 9
13 .

2.4 Let A be the event that a randomly chosen student passes the first
test and B be the event that this student also passes the second test.
Then P (B | A) = 0.50

0.80 = 0.625. The answer is 62.5%.

2.5 Let A be the event that a randomly chosen household has a cat and
B be the event that the household has a dog. Then, P (A) = 0.3,
P (B) = 0.25, and P (B | A) = 0.2. The sought probability P (A | B)
satisfies

P (A | B) =
P (AB)

P (B)
=

P (A)P (B | A)
P (B)



28

and thus is equal to 0.3× 0.2/0.25 = 0.24.

2.6 The ordered sample space is the set {(H, 1), . . . , (H, 6), (T, 1), . . . , (T, 6)}.
Each outcome is equally likely to occur. Let A be the event that the
coin lands heads and B the event that the die lands six. The set A
consists of six elements, the set AB consists of a single element and the
set A ∪ B consists of seven elements. Hence the desired probabilities
are given by

P (AB | A∪B) =
P (AB)

P (A ∪B)
=

1

7
and P (A | A∪B) =

P (A)

P (A ∪B)
=

6

7
.

2.7 Label the two red balls as R1 and R2, the blue ball as B and the green
ball as G. Take as unordered sample space the set consisting of the
six equally likely combinations {R1, R2}, {R1, B}, {R2, B}, {R1, G},
{R2, G}, and {B,G} of two balls. Let C be the event that two non-red
balls have been grabbed, D be the event that at least one non-red ball
has been grabbed, and E be the event that the green ball has been
grabbed. Then, P (CD) = 1

6 , P (D) = 5
6 , P (CE) = 1

6 and P (E) = 3
6 .

The sought probabilities are P (C | D) = 1
5 and P (C | E) = 1

3 . In the
second situation you have more information.

2.8 The ordered sample space is the set {(i, j) : i, j = 1, 2, . . . , 6}. Each
element is equally likely to occur. Let A be the event that both dice
show up an even number and let B the event that at least one of the
two dice shows up an even number. The set AB is equal to the set A
consisting of 9 elements and the set B consists of 27 elements. The
probability P (A | B) of your winning of the bet is equal to 9/36

27/36 = 1
3 .

The bet is not fair to you.

2.9 Take as unordered sample space the set of all possible combinations of
13 distinct cards. Let A be the event that the hand contains exactly
one ace, B be the event that the hand contains at least one ace, and
C be the event that the hand contains the ace of hearts. Then

P (A | B) =

(

4
1

)(

48
12

)

/
(

52
13

)

1−
(

48
13

)

/
(

52
13

) = 0.6304 and P (A | C) =

(

1
1

)(

48
12

)

(

1
1

)(

51
12

) = 0.4388.

The desired probabilities are 0.3696 and 0.5612. The second case in-
volves more information.
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2.10 The probability that the number of tens in the hand is the same as
the number of aces in the hand is given by

4
∑

k=0

(

4

k

)(

4

k

)(

44

13− 2k

)

/

(

52

13

)

= 0.3162.

Hence, using a symmetry argument, the probability that the hand con-
tains more aces than tens is 1

2(1− 0.3162) = 0.3419. Letting A be the
event that the hand contains more aces than tens and B the event that
the hand contains at least one ace, then P (A | B) = P (AB)/P (B) =
P (A)/P (B). Therefore

P (A | B) =
0.3419

∑4
k=1

(

4
k

)(

48
13−k

)

/
(

52
13

) = 0.4911.

2.11 Let A be the event that each number rolled is higher than all those that
were rolled earlier and B be the event that the three different numbers
are rolled. Then P (A) = P (AB) and so P (A) = P (B)P (A | B). We
have P (B) = 6×5×4

63
= 5

9 and P (A | B) = 1
3! . Thus

P (A) =
20

36
× 1

3!
=

5

54
.

2.12 (a) Since P (A | B) > P (B | A) is the same as P (AB)
P (B) > P (BA)

P (A) , it

follows that P (A) > P (B).
(b) Since P (B | A) = P (AB)/P (A) = P (A | B)P (B)/P (A), we get
P (B | A) > P (B). Also, by P (Bc | A) + P (B | A) = [P (BcA) +
P (BA)]/P (A) = P (A)/P (A) = 1, we get P (Bc | A) = 1−P (B | A) ≤
1− P (B) = P (Bc).
(c) If A and B are disjoint, then P (AB) = 0 and so P (A | B) = 0. If
B is a subset of A, then P (AB) = P (B) and so P (A | B) = 1.

2.13 Let A be the event that a randomly chosen student takes Spanish and
B be the event that the student takes French. Then, P (A) = 0.35,
P (B) = 0.15, and P (A∪B) = 0.40. Thus P (AB) = 0.35+0.15−0.40 =
0.10 and so P (B | A) = 0.10

0.35 = 2
7 .

2.14 Let A be the event that a randomly chosen child is enrolled in swim-
ming and B be the event that the child is enrolled in tennis. The
sought probability P (A | B) follows from P (A | B) = P (AB)/P (B) =
P (A)P (B | A)/P (B) and is equal to (1/3)× 0.48/0.40 = 0.64.
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2.15 Let A be the event that a randomly chosen voter is a Democrat, B be
the event that the voter is a Republican, and C be the event that the
voter is in favor of the election issue.
(a) Since P (A) = 0.45, P (B) = 0.55, P (C | A) = 0.7 and P (C | B) =
0.5, it follows from P (AC) = P (C | A)P (A) and P (BC) = P (C |
B)P (B) that P (AC) = 0.7× 0.45 = 0.315 and P (BC) = 0.5× 0.55 =
0.275.
(b) Since P (C) = P (AC) + P (BC), we get P (C) = 0.59.
(c) P (A | C) = 0.315

0.59 = 0.5339.

2.16 Let A be the event that a randomly selected household subscribes
to the morning newspaper and B be the event that the household
subscribes to the afternoon newspaper. To find the sought probability
P (Ac | B), use the relation P (A) = P (AB) + P (AcB). Thus

P (Ac | B =
P (A)− P (AB)

P (B)
=

0.50− 0.40

0.70
=

1

7
.

2.17 Let A1 (A2) be the event that the first (second) card picked belongs
to one of the three business partners. Then P (A1A2) =

3
5 × 2

4 = 3
10 .

2.18 Let Ai be the event that the ith card you receive is a picture card that
you have not received before. Then, by P (A1A2A3A4) = P (A1)P (A2 |
A1)P (A3 | A1A2)P (A4 | A1A2A3), the sought probability can be com-
puted as

P (A1A2A3A4) =
16

52
× 12

51
× 8

50
× 4

49
= 9.46× 10−4.

2.19 Let A be the event that one or more sixes are rolled and B the event
that no one is rolled. Then, by P (AB) = P (B)P (A | B), we have that
the sought probability is

P (AB) =
(5

6

)6(

1−
(4

5

)6)

= 0.2471.

2.20 It is no restriction to assume that the drawing of lots begins with the
Spanish teams. Let A0 be the event that the two Spanish team are
paired and Ai be the event that the ith Spanish team is not paired
to the other Spanish team or to a German team. The events A0 and
A1A2 are disjoint. The sought probability is

P (A0) + P (A1A2) =
1

7
+ P (A1)P (A2 | A1) =

1

7
+

4

7
× 3

5
=

17

35
.
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2.21 Let Ai be the event that you get a white ball on the ith pick. The
probability that you need three picks is P (A1A2A3) = 3

5 × 2
5 × 1

5 =
6

125 . Five picks require that one black ball is taken in the first three
picks. By the chain rule, the probability that five picks are needed is
2
5 × 4

5 × 3
5 × 2

5 × 1
5 + 3

5 × 3
5 × 3

5 × 2
5 × 1

5 + 3
5 × 2

5 × 4
5 × 2

5 × 1
5 = 6

125 .

2.22 (a) The sought probability is the same as the probability of getting
two red balls when two balls are drawn at random from a bowl with
three red bed balls and three blue balls. Let Ai be the event that
the ith ball drawn is red. The sought probability is P (A1A2). This
probability is evaluated as P (A1)P (A2 | A1) =

3
6 × 2

5 = 1
5 .

(b) Let Ai be the event that the ith number drawn is not 10 and Ei

be the event that the ith number drawn is more than 10. The first
probability is

1− P (A1 · · ·A6) = 1− 41

42
× 40

41
· · · × 36

37
=

6

42
.

The second probability is P (E1 · · ·E6) =
23
42 × 22

41 · · · × 18
37 = 0.0192.

(c) Suppose that first the two cups of coffee are put on the table. Let
Ai be the event that the ith cup of coffee is given to a person who
ordered coffee. The sought probability is

P (A1A2) = P (A1)P (A2 | A1) =
2

5
× 1

4
=

1

10
.

(d) Suppose that the two socks are chosen one by one. Let Ai be
the event that the ith sock chosen is black for i = 1, 2. The sought
probability is 2P (A1A2). We have P (A1A2) = P (A1)P (A2 | A1) =
1
5 × 1

4 = 1
20 . Hence the sought probability is 2× 1

20 = 1
10 .

(e) Imagine that two apartments become vacant one after the other.
Let A1 be the event that the first vacant apartment is not on the top
floor and A2 be the event that the second vacant apartment is not on
the top floor. The sought probability is 1−P (A1A2). The probability
P (A1A2) is evaluated as P (A1)P (A2 | A1) =

48
56 × 47

55 = 0.7325.

2.23 Let Ai be the event that the ith person in line is the first person
matching a birthday with one of the persons in front of him. Then
P (A2) = 1

365 and P (Ai) = 364
365 × · · · × 364−i+3

365 × i−1
365 for i ≥ 3. The

probability P (Ai) is maximal for i = 20 and has then the value 0.0323.

2.24 Let A1 be the event that the luggage is not lost in Amsterdam, A2 the
event that the luggage is not lost in Dubai and A3 the event that the
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luggage is not lost in Singapore. Then,

P (the luggage is lost) = 1− P (A1A2A3)

= 1− P (A1)P (A2 | A1)P (A3 | A1A2)

= 1− 0.95× 0.97× 0.98 = 0.09693.

Letting Ac
i be the complementary event of the event Ai, we have

P (the luggage is lost in Dubai | the luggage is lost)

=
P (A1A

c
2)

P (the luggage is lost)
=

P (A1)P (Ac
2 | A1)

P (the luggage is lost)

=
0.95× 0.03

0.09693
= 0.2940.

2.25 Let Ai be the event that the ith leaving person has not to squeeze
past a still seated person. The sought probability is the same as
P (A1A2A3A4A5) =

2
7 × 2

6 × 2
5 × 2

4 × 2
3 = 0.0127.

2.26 Let Ak be the event that the first ace appears at the kth card, and let
pk = P (Ak). Then, by P (A1A2 · · ·An) = P (A1)P (A2 | A1) · · ·P (An |
A1 . . . An−1), it follows that p1 =

4
52 , p2 =

48
52 × 4

51 , and

pk =
48

52
× 47

51
× · · · × 48− k + 2

52− k + 2
× 4

52− k + 1
, k = 3, . . . , 49.

The three players do not have the same chance to become the dealer.
For P = A, B, and C, let rP be the probability that player P becomes
the dealer. Then rA > rB > rC , because the probability pk is decreas-
ing in k. The probabilities can be calculated as rA =

∑16
n=0 p1+3n =

0.3600, rB =
∑15

n=0 p2+3n = 0.3328, and rC =
∑15

n=0 p3+3n = 0.3072.

2.27 Under the condition that the events A1, . . . , Ai−1 have occurred, the
ith couple can match the birthdays of at most one of the couples 1 to
i − 1. Thus P (Ac

i | A1 · · ·Ai−1) =
i−1
3652

and so P (Ai | A1 · · ·Ai−1) =

1 − i−1
3652

. The sought probability is 1 − P (A2A3 · · ·An) and equals

1−∏n
i=2

(

1− i−1
3652

)

, by the chain rule.

2.28 The desired probability is 1− P (A1A2 · · ·Am−2). We have

P (A1) =

(

39
5

)[(

39
5

)

− 1
][(

39
5

)

− 2
]

(

39
5

)3 , P (Ai | A1 · · ·Ai−1) =

(

39
5

)

− 2
(

39
5

)
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for i ≥ 2. The desired probability now follows by applying the chain
rule P (A1A2 · · ·Am−2) = P (A1)P (A2 | A1) · · ·P (Am−2 | A1 · · ·Am−3)
and is equal to

1−
[(

39
5

)

− 1
] [(

39
5

)

− 2
]m−2

(

39
5

)m−1 .

2.29 Using the chain rule for conditional probabilities, the sought probabil-
ity is r

r+b for k = 1, b
r+b × r

r+b−1 for k = 2 and b
r+b × b−1

r+b−1 × · · · ×
b−(k−2)

r+b−(k−2) ×
r

r+b−(k−1) for 3 ≤ k ≤ b + 1. The sought probability can
be written as

(

b
k−1

)

(

r+b
k−1

) × r

r + b− (k − 1)
=

(

r+b−k
r−1

)

(

r+b
r

) .

This representation can be explained as the probability that the first
k − 1 picks are blue balls multiplied with the conditional probability
that the kth pick is a red ball given that the first k − 1 picks are blue
balls. The answer to the last question is b

r+b , as can be directly seen
by a symmetry argument. The probability that the last ball picked is
blue is the same as the probability that the first ball picked is blue.

2.30 The probability that the rumor will not be repeated to any one per-
son once more is P (A1A2 · · ·A10), where Ai is the event that the
rumor reaches only different persons during the first i times that
the rumor is told. Noting that P (A1) = 1, P (A2 | A1) = 1 and
P (Ai | A1 · · ·Ai−1) = 25−i

23 for i ≥ 3, it follows that the probability
that the rumor will not be repeated to any one person once more is

22

23
× 21

23
× · · · × 15

23
= 0.1646.

The probability that the rumor will not return to the originator is
(2223)

8 = 0.7007.

2.31 Since P (A) = 18
36 , P (B) = 18

36 , and P (AB) = 9
36 , we get P (AB) =

P (A)P (B). This shows that the events A and B are independent.

2.32 The number is randomly chosen from the matrix and so P (A) = 30
50 ,

P (B) = 25
50 and P (AB) = 15

50 . Since P (AB) = P (A)P (B), the events
A and B are independent. This result can also be explained by noting
that you obtain a random number from the matrix by choosing first a
row at random and choosing next a column at random.
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2.33 Since A is the union of the disjoint sets AB and ABc, we have P (A) =
P (AB)+P (ABc). This gives P (ABc) = P (A)−P (A)P (B) = P (A)[1−
P (B)] and so P (ABc) = P (A)P (Bc), showing that A and Bc are in-
dependent events. Applying this result with A replaced by Bc and B
by A, we next get that Bc and Ac are independent events.

2.34 Since A = AB∪ABc and the events AB and ABc are disjoint, it follows
that P (A) = P (AB) + P (ABc) = P (A | B)P (B) + P (A | Bc)P (Bc).
This gives P (A) = P (A | B)P (B)+P (A | B)P (Bc) = P (A | B). Thus

P (A) = P (AB)
P (B) and so P (AB) = P (A)P (B).

2.35 The result follows directly from P (A1 ∪ · · · ∪ An) = 1 − P (Ac
1 · · ·Ac

n)
and the independence of the Ac

i , using P (Ac
1 · · ·Ac

n) = P (Ac
1) · · ·P (Ac

n)
and P (Ac

i ) = 1− P (Ai).

2.36 Using Problem 2.35, the probability is 1− 1
2 × 2

3 × 3
4 = 3

4 .

2.37 The set A can be represented as
⋂∞

n=1

⋃∞
k=nAk. Since the sequence of

sets
⋃∞

k=nAk is nonincreasing, we have P (A) = limn→∞ P
(
⋃∞

k=nAk

)

,
by the continuity property of probability. Next use the fact that
P
(
⋃∞

k=nAk

)

= 1−P
(
⋂∞

k=nA
c
k

)

. Using the independence of the events
An and the continuity property of probability measure, it is readily ver-
ified that P

(
⋂∞

k=nA
c
k

)

=
∏∞

k=n P (Ac
k). By P (Ac

k) = 1 − P (Ak) and
the inequality 1− x ≤ e−x, we get

P
(

∞
⋂

k=n

Ac
k

)

≤
∞
∏

k=n

e−P (Ak) = e−
∑

∞

k=n P (Ak) = 0 for n ≥ 1,

where the last equality uses the assumption
∑∞

n=1 P (An) = ∞. This
verifies that P

(
⋃∞

k=nAk

)

= 1 for all n ≥ 1 and so P (A) = 1.

2.38 Let A be the event that you have picked the ball with number 7 written
on it and Bi the event that you have chosen box i for i = 1, 2. By
the law of conditional probability, P (A) = P (A | B1)P (B1) + P (A2 |
B2)P (B2). Therefore

P (A) =
1

10
× 1

2
+

1

25
× 1

2
= 0.07.

2.39 Let A be the event that HAPPY HOUR appears again, B1 be the event
that either the two letters H or the two letters P have been removed,
and B2 be the event that two different letters have been removed. Then
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P (B1) = 2
9 × 1

8 + 2
9 × 1

8 and P (B2) = 1 − P (B1). Obviously, P (A |
B1) = 1 and P (A | B2) =

1
2 . By the law of conditional probability,

P (A) =
2
∑

i=1

P (A | Bi)P (Bi) = 1× 1

18
+

1

2
× 17

18
=

19

36
.

2.40 Let A be the event that the cases with $1,000,000 and $750,000 are
still in the game when you have opened 20 cases. Also, let B0 be the
event that your chosen case does not contain either of the amounts
$1,000,000 and $750,000 and B1 be the complementary event of B0.
Then P (A) = P (A | B0)P (B0) + P (A | B1)P (B1), which gives

P (A) =
[

(

23

20

)

/

(

25

20

)

]

× 24

26
+
[

(

24

20

)

/

(

25

20

)

]

× 2

26
=

3

65
.

2.41 Let A be the event that you ever win the jackpot when buying a
single ticket only once. Also, let B be the event that you match the
six numbers drawn and C be the event that you match exactly two
of these numbers. It follows from P (A) = P (A | B)P (B) + P (A |
C)P (C) that P (A) = P (B) + P (A)P (C). Since P (B) = 1/

(

59
6

)

and

P (C) =
(

6
2

)(

53
4

)

/
(

59
6

)

, we get P (A) = 1/40,665,099.

2.42 Let A be the event that Joe’s dinner is burnt, B0 be the event that he
did not arrive home on time, and B1 be the event that he arrived home
on time. The probability P (A) = P (A | B0)P (B0) + P (A | B1)P (B1)
is equal to 0.5 × 0.2 + 0.15 × 0.8 = 0.22. The inverse probability
P (B1 | A) is given by

P (B1A)

P (A)
=

P (B1)P (A | B1)

P (A)
=

0.8× 0.15

0.22
=

6

11
.

2.43 Let A be the event of reaching your goal, B1 be the event of winning
the first bet and B2 be the event of losing the first bet. Then, by
P (A) = P (A | B1)P (B1) + P (A | B2)P (B2), we get P (A) = 1 ×
12
37 + 9

37 × 25
37 . Thus the probability of reaching your goal is 0.4887.

Note: This probability is slightly more than the probability 0.4865 of
reaching your goal when you use bold play and stake the whole $10,000
on a 18-numbers bet.

2.44 Let A be the event that the player wins and Bi be the conditioning
event that the first roll of the two dice gives a dice sum of i points
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for i = 2, . . . , 12. Then, P (A) =
∑12

k=2 P (A | Bk)P (Bk). We have
P (A | Bi) = 1 for i = 7, 11, and P (A | Bi) = 0 for i = 2, 3, 12.
Put for abbreviation pk = P (Bk), then pk = k−1

36 for k = 2, . . . , 7
and pk = p14−k for k = 8, . . . , 12. The other conditional probabilities
P (A | Bi) can be given in terms of the pk. For example, the conditional
probability P (A | B4) is no other than the unconditional probability
that the total of 4 will appear before the total of 7 does in the (com-
pound) experiment of repetitive dice rolling. The total of 4 will appear
before the total of 7 if and only if one of the events E1, E2, . . . occurs,
where Ek is the event that the first consecutive k− 1 rolls give neither
the total of 4 nor the total of 7 and the kth consecutive roll gives a
total of 4. The events E1, E2, . . . are mutually exclusive and so

P (4 before 7) = P
(

∞
⋃

i=1

Ei

)

=
∞
∑

i=1

P (Ei).

Any event Ek is generated by physically independent subexperiments
and thus the probabilities of the individual outcomes in the subex-
periments are multiplied by each other in order to obtain P (Ek) =
(

1− p4 − p7
)k−1

p4 for any k ≥ 1. This leads to the formula

P (4 before 7) =
∞
∑

k=1

(

1− p4 − p7
)k−1

p4 =
p4

p4 + p7
,

In this way, we find that P (A | Bi) = pi
pi+p7

for i = 4, 5, 6, 8, 9, 10.
Putting all the pieces together, we get

P (A) =
12
∑

k=2

P (A | Bk)pk = 0.4929.

2.45 Apply the gambler’s ruin formula with p = 0.3, a = 3 and b = 7. The
sought probability is 0.0025.

2.46 For fixed integer r, let Ar be the event that there are exactly r winning
tickets among the fifty thousand tickets sold. Let Bk be the event
that there exactly k winning tickets among the one hundred thousand
tickets printed. Then, by the law of conditional probability,

P (Ar) =
∞
∑

k=0

P (Ar | Bk)P (Bk).
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Obviously, P (Ar | Bk) = 0 for k < r. For all practical purposes the
so-called Poisson probability e−1/k! can be taken for the probability
of the event Bk for k = 0, 1, . . ., see Example 1.19. This gives

P (Ar) =
∞
∑

k=r

(

k

r

)(

1

2

)r e−1

k!
= e−1 (1/2)

r

r!

∞
∑

j=0

1

j!
= e−

1

2
(1/2)r

r!
.

Hence the probability of exactly r winning tickets among the fifty
thousand tickets sold is given by the Poisson probability e−

1

2
(1/2)r

r! for
r = 0, 1, . . ..

2.47 It is no restriction to assume that the starting point is 1 and the first
transition is from point 1 to point 2 (otherwise, renumber the points).
Some reflection shows that the probability of visiting all points before
returning to the starting point is nothing else than the probability

1
1+10 = 1

11 from the gambler’s ruin model.

2.48 Let A be the event that the card picked is a red card, B1 be the
event that the removed top card is red and B2 be the event that the
removed top card is black. The sought probability P (A) is given by
P (A | B1)P (B1) + P (A | B2)P (B2). Therefore

P (A) =
r − 1

r + b− 1
× r

r + b
+

r

r + b− 1
× b

r + b
=

r

r + b
.

2.49 Let A be the event that John needs more tosses than Pete and Bj

be the event that Pete needs j tosses to obtain three heads. Then
P (Bj) =

(

j−1
2

)

(12)
j and P (A | Bj) =

(

j
0

)

(12)
j +

(

j
1

)

(12)
j . By the law of

conditional probability, the sought probability P (A) is

P (A) =
∞
∑

j=3

P (A | Bj)P (Bj) = 0.1852.

2.50 Take any of the twenty balls and mark this ball. Let A be the event
that this ball is the last ball picked for the situation that three balls
were overlooked and were added to the bin at the end. If we can show
that P (A) = 1

20 , the raffle is still fair. Let B1 (B2) be the event that the
marked ball is (is not) one of the three balls that were unintentionally
overlooked. Then, by the law of conditional probabilities,

P (A) = P (A | B1)P (B1) + P (A | B2)P (B2) =
1

3
× 3

20
+ 0× 17

20
.
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Hence P (A) = 1
20 , the same win probability as for the case in which

no balls would have been overlooked.

2.51 Let state i mean that player A’ s bankroll is i. Also, let E be the event
of reaching state k without having reached state a + b when starting
in state a and F be the event of reaching state a + b without having
reached state k − 1 when starting in state k. Then the unconditional
probability of player A winning and having k as the lowest value of its
bankroll during the game is given by P (EF ) = P (E)P (F | E). Using
the gambler’s ruin formula, P (E) = b

a+b−k and P (F | E) = 1
a+b−k+1 .

Thus the sought conditional probability is

b(a+ b)

a(a+ b− k)(a+ b− k + 1)
for k = 1, . . . a.

This probability has the values 0.1563, 0.2009, 0.2679, and 0.3750 for
k = 1, 2, 3, and 4 when a = 4 and b = 5.

2.52 Let A be the event that two or more participating cyclists will have
birthdays on the same day during the tournament and Bi be the event
that exactly i participating cyclists have their birthdays during the
tournament. The conditional probability P (A | Bi) is easy to calcu-
late. It is the standard birthday problem. We have

P (A | Bi) = 1− 23× 22× · · · × (23− i+ 1)

23i
for 2 ≤ i ≤ 23.

Further, P (A | Bi) = 1 for i ≥ 24. Also, P (A | B0) = P (A | B1) = 0.
Therefore the probability P (Bi) is given by

P (Bi) =

(

180

i

)(

23

365

)i(

1− 23

365

)180−i

for 0 ≤ i ≤ 180.

Putting the pieces together and using P (A) =
∑180

i=2 P (A | Bi)P (Bi),
we get

P (A) = 1− P (B0)− P (B1)−
23
∑

i=2

23× 22× · · · × (23− i+ 1)

(23)i
P (Bi).

This yields the value 0.8841 for the probability P (A).

2.53 Let pn(i) be the probability of reaching his home no later than mid-
night without having reached first the police station given that he is
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i steps away from his home and he has still time to make n steps be-
fore it is midnight. The sought probability is p180(10). By the law of
conditional probability, the pn(i) satisfy the recursion

pn(i) =
1

2
pn−1(i+ 1) +

1

2
pn−1(i− 1).

The boundary conditions are pk(30) = 0 and pk(0) = 1 for k ≥ 0, and
p0(i) = 0 for i ≥ 1. Applying the recursion, we find p180(10) = 0.4572.
In the same way, the value 0.1341 can be calculated for the probability
of reaching the police station before midnight. Note: As a sanity check,
we verified that pn(10) tends to 2

3 as n gets large, in agreement with
the gambler’s ruin formula. The probability pn(10) has the values
0.5905, 0.6659, and 0.6665 for n = 360, 1,200 and 1,440.

2.54 Let A be the event that John and Pete meet each other in the semi-
finals. To find P (A), let B1 be the event that John and Pete are
allocated to either group 1 or group 2 but not to the same group and
B2 be the event that John and Pete are allocated to either group 3 or
group 4 but not to the same group. Then P (B1) = P (B2) =

1
2× 2

7 = 1
7 .

By the law of conditional probability,

P (A) = P (A | B1)×
1

7
+ P (A | B2)×

1

7

=
1

2
× 1

2
× 1

7
+

1

2
× 1

2
× 1

7
=

1

14
.

Let C be the event that John and Pete meet each other in the final. To
find P (C), let D1 be the event that John is allocated to either group 1
or group 2 and Pete to either group 3 or group 4 and D2 be the event
that John is allocated to either group 3 or group 4 and Pete to either
group 1 or group 2. Then P (D1) = P (D2) =

1
2 × 4

7 = 2
7 . By the law

of conditional probability,

P (C) = P (C | D1)×
2

7
+ P (C | D2)×

2

7

=
1

2
× 1

2
× 1

2
× 1

2
× 2

7
+

1

2
× 1

2
× 1

2
× 1

2
× 2

7
=

1

28
.

The latter result can also be directly seen by a symmetry argument.
The probability that any one pair contests the final is the same as that
for any other pair. There are

(

8
2

)

different pairs and so the probability

that John and Pete meet each other in the final is 1/
(

8
2

)

= 1
28 .
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2.55 Let A be the event that you have chosen the bag with one red ball
and B be the event that you have the other bag. Also, let E be the
event that the first ball picked is red. The sought probability that the
second ball picked is red is

1

4
P (A | E) +

3

4
P (B | E),

by the law of conditional probability. We have

P (A | E) =
P (AE)

P (E)
=

P (A)P (E | A)
P (E)

.

Further, P (B | E) = 1− P (A | E). Since P (A) = P (B) = 1
2 , P (E) =

P (A) × 1
4 + P (B) × 3

4 = 1
2 and P (E | A) = 1

4 , we get P (A | E) = 1
4

and P (B | E) = 3
4 . Thus the sought probability is 1

4 × 1
4 +

3
4 × 3

4 = 5
8 .

2.56 The key idea for the solution approach is to parameterize the starting
state. Define Ds as the event that Dave wins the game when the game
begins with Dave rolling the dice and Dave has to roll more than s
points in his first roll. Similarly, the event Es is defined for Eric. The
goal is to find P (D1). This probability can be found from a recursion
scheme for the P (Ds). The recursion scheme follows by conditioning
on the events Bj , where Bj is the event that a roll of the two dice
results in a sum of j points. The probabilities pj = P (Bj) are given
by pj =

j−1
36 for 2 ≤ j ≤ 7 and pj = p14−j for 8 ≤ j ≤ 12. By the law

of conditional probability,

P (Ds) =
12
∑

j=s+1

P (Ds | Bj)pj for s = 1, 2, . . . , 11.

Obviously, P (D12) = 0. Since P (Ds | Bj) = 1 − P (Ej) for j > s and
P (Ek) = P (Dk) for all k, we get the recursion scheme

P (Ds) =
12
∑

j=s+1

[1− P (Dj)]pj for s = 1, 2, . . . , 11.

Starting with P (D12) = 0, we recursively compute P (D11), . . . , P (D1).
This gives the value P (D1) = 0.6541 for the probability of Dave win-
ning the game.
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2.57 Fix j. Label the c =
(

7
j

)

possible combinations of j stops as l =
1, . . . , c. Let A be the event that there will be exactly j stops at
which nobody gets off and Bl be the event that nobody gets off at
the j stops from combination l. Then, P (A) =

∑c
l=1 P (A | Bl)P (Bl).

We have that P (Bl) = (7 − j)25/725 for all l and P (A | Bl) is the
unconditional probability that at least one person gets off at each
stop when there are 7 − j stops and 25 persons. Thus P (A | Bl) =
1−∑7−j

k=1(−1)k+1
(

7−j
k

)

(7−j−k)25/(7−j)25, using the result of Example
1.18. Next we get after some algebra the desired result

P (A) =

7−j
∑

k=0

(−1)k
(

j + k

j

)(

7

j + k

)

(7− j − k)25

725
.

Note: More generally, the probability of exactly j empty bins when
m ≥ b balls are sequentially placed at random into b bins is given by

b−j
∑

k=0

(−1)k
(

j + k

j

)(

b

j + k

)

(b− j − k)m

bm
.

2.58 Let A be the event that all of the balls drawn are blue and Bi be the
event that the number of points shown by the die is i for i = 1, . . . , 6.
By the law of conditional probability, the probability that all of the
balls drawn are blue is given by

P (A) =

6
∑

i=1

P (A | Bi)P (Bi) =

5
∑

i=1

(

5
i

)

(

10
i

) × 1

6
=

5

36
.

The probability that the number of points shown by the die is r given
that all of the balls drawn are blue is equal to

P (Br | A) =
P (BrA)

P (A)
=

(1/6)
(

5
r

)

/
(

10
r

)

5/36
.

This probability has the values 3
5 ,

4
15 ,

1
10 ,

1
35 ,

1
210 and 0 for r = 1, . . . , 6.

2.59 Let A be the event that the both rolls of the two dice show the same
combination of two numbers. Also, let B1 be the event that the first
roll of the two dice shows two equal numbers and B2 be the event
that the first roll shows two different numbers. Then P (B1) =

6
36 and
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P (B2) = 30
36 . Further, P (A | B1) = 1

36 and P (A | B2) = 2
36 . By the

law of conditional probability,

P (A) =
2
∑

i=1

P (A | Bi)P (Bi) =
1

36
× 6

36
+

2

36
× 30

36
=

11

216
.

2.60 Let Aj be the event that the team placed jth in the competition wins
the first place in the draft and Bj be the event that this team wins
the second place in the draft for 7 ≤ j ≤ 14. Obviously,

P (Aj) =
15− j

36
for j = 7, . . . , 14.

By the law of conditional probability, P (Bj) =
∑

k 6=j P (Bj | Ak)P (Ak).

We have P (Bj | Ak) =
15−j

36−15+k for k 6= j. Therefore

P (Bj) =
∑

k 6=j

15− j

36− 15 + k
× 15− k

36
for j = 7, . . . , 14.

The probability P (Bj) has the numerical values 0.2013, 0.1848, 0.1653,
0.1431, 0.1185, 0.0917, 0.0629, and 0.0323 for j = 7, 8, . . . , 14.

2.61 This problem can be seen as a random walk on the integers, where the
random walk starts at zero. In the first step the random walk moves
from to 1 with probability p and to −1 with probability q = 1 − p.
Take p < 1

2 . Starting from 1, the random walk will ever return to zero
with probability 1− limb→∞[1−(q/p)a]/[1−(q/p)a+b] with a = 1. This
probability is 1. Starting from −1, the random walk will ever return to
zero with probability 1− limb→∞[1− (p/q)a]/[1− (p/q)a+b] with a = 1.
This probability is p

q . The sought probability is p×1+(1−p)× p
1−p = 2p

(this result is also valid for p = 1
2).

2.62 Let A be the event that the drunkard will ever visit the point which is
one unit distance south from his starting point. Let B1 be the event
that the first step is one unit distance to the south and B2 be the event
that the first step is two units distance to the north. By the law of
conditional probability, P (A) = P (A | B1)P (B1) + P (A | B2)P (B2).
Obviously, P (B1) = P (B2) =

1
2 and P (A | B1) = 1. Noting that the

probability of ever going three units distance to the south from any
starting point is P (A)× P (A)× P (A), it follows that

P (A) = 0.5 + 0.5
[

P (A)
]3
.
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The cubic equation x3 − 2x + 1 = 0 has the root x = 1 and so the
equation can be factorized as (x−1)(x2+x−1) = 0. The only positive
root of x2+x−1 = 0 is x = 1

2(
√
5−1). This is the desired value for the

sought probability P (A). Next some reflection shows that 1
2(
√
5 − 1)

gives also the probability of the number of heads ever exceeding twice
the number of tails if a fair coin is tossed over and over.

2.63 It does not matter what question you ask. To see this, let A be the
event that your guess is correct, B1 be the event that the answer of
your friend is yes and B2 be the event that the answer is no. For the
question whether the card is red, we have P (A) = 1

26× 1
2+

1
26× 1

2 = 1
26 ,

by the law of conditional probability. For the other question, P (A) =
1× 1

52 + 1
51 × 51

52 = 1
26 . The same probability.

2.64 Let A be the event that player 1 wins the game. We have P (A) = 0.5,
regardless of the value ofm. The simplest way to see this is to define E1

as the event that player 1 has more heads than player 2 after m tosses,
E2 as the event that player 1 has fewer heads than player 2 after m
tosses, and E3 as the event that player 1 has the same number of heads
as player 2 after m tosses. Then P (A) =

∑3
i=1 P (A | Ei)P (Ei), by

the law of conditional probability. To evaluate this, it is not necessary
to know the P (Ei). Since P (E2) = P (E1) and P (E3) = 1 − 2P (E1),
it follows that

P (A) = 1× P (E1) + 0× P (E2) +
1

2
× P (E3)

= P (E1) +
1

2
×
(

1− 2P (E1)
)

= 0.5.

2.65 Let A be the event that you roll two consecutive totals of 7 before a
total of 12. Let B1 be the event that each of the first two rolls results
in a total of 7, B2 be the event that the first roll gives a total of 7 and
the second roll a total different from 7 and 12, B3 be the event that
the first roll gives a total different from 7 and 12, B4 be the event that
the first roll gives a total of 7 and the second roll a total of 12, and B5

be the event that the first roll gives a total of 12. Then,

P (A) = 1× 6

36
× 6

36
+P (A)× 6

36
× 29

36
+P (A)× 29

36
+0× 6

36
× 1

36
+0× 1

36

and so P (A) = 6
13 .
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2.66 A minor modification of the analysis of Example 2.11 shows that the
optimal stopping level for player A remains the same, but the win
probability of player A changes to 0.458.

2.67 The recursion is

p(i, t) =
1

6− i+ 1

6−i
∑

j=0

p(i+ 1, t− j),

as follows by conditioning upon the number of tokens you lose at the
ith cup. This leads to p(1, 6) = 169

720 .

2.68 For fixed n, Let A be the event that the total score ever reaches the
value n. To find pn = P (A), condition on the outcome of the first
roll of the die. Let Bj be the event that the outcome of this roll is j.
Then, P (A | Bj) = pn−j and so, by the law of conditional probability,

pn =
6
∑

k=1

pn−k ×
1

6
for all n ≥ 1

with the convention pj = 0 for j ≤ 0. The result that pn tends to 1
3.5

as n gets large can be intuitively explained from the fact that after
each roll of the die the expected increase in the total score is equal to
1
6(1 + 2 + · · ·+ 6) = 3.5.

2.69 (a) Define rn as the probability of getting a run of either r successes
or r failures in n trials.Also, define sn as probability of getting a run
of either r successes or r failures in n trials given that the first trial
results in a success, and fn as probability of getting a run of either r
successes or r failures in n trials given that the first trial results in a
failure. Then rn = psn+(1−p)fn. The sn and fn satisfy the recursive
schemes

sn = pr−1 +
r−1
∑

k=1

pk−1(1− p)fn−k

fn = (1− p)r−1 +
r−1
∑

k=1

(1− p)k−1psn−k

for n ≥ r, where sj = fj = 0 for j < r − 1.
(b) Parameterize the starting state and let p(r, b, L) be the probability
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that the longest run of red balls will be L or more when the bowl
initially contains r red and b blue balls. Fix r > L and b ≥ 1. Let A be
the event that a run of L red balls will occur. To find P (A) = p(r, b, L),
let BL be the conditioning event that the first L balls picked are red
and Bj−1 be the conditioning event that each of the first j − 1 balls
picked is red but the jth ball picked is blue, where 1 ≤ j ≤ L. Then

P (BL) =
r

r + b
× · · · × r − (L− 1)

r + b− (L− 1)

P (Bj−1) =
r

r + b
× · · · × r − (j − 2)

r + b− (j − 2)
× b

r + b− (j − 1)
, 1 ≤ j ≤ L.

Note that P (A | BL) = 1 and P (A | Bj−1) = p
(

r − (j − 1), b − 1, L
)

for 1 ≤ j ≤ L. Then

P (A) = P (BL) +
L
∑

j=1

P (A | Bj−1)P (Bj−1)

gives a recursion scheme for the calculation of the probability p(r, b, L).

2.70 For the case of n dwarfs, p(k, n) is defined as the probability that the
kth dwarf will not sleep in his own bed when the first dwarf chooses
randomly one of the n beds (the dwarfs 1, 2, . . . , n go to bed in this
order and dwarf j has bed j). Let us first note that the dwarfs 2, . . . , j−
1 sleep in their own beds if the first dwarf chooses bed j. The first
dwarf chooses each of the n beds with the same probability 1

n . Fix
k ≥ 2. Under the condition that the first dwarf chooses bed j with
2 ≤ j ≤ k, the conditional probability that the kth dwarf will not sleep
in his own bed is equal to 1 for j = k and is equal to the unconditional
probability p

(

k− (j − 1), n− (j − 1)
)

for 2 ≤ j ≤ k− 1 (when dwarf j
goes to bed, we face the situation of n− (j − 1) dwarfs where bed 1 is
now the bed of dwarf j and dwarf k is in the k − (j − 1)-th position).
Hence, by the law of conditional probability, we find the recursion

p(k, n) =
1

n
+

k−1
∑

j=2

p
(

k − (j − 1), n− (j − 1)
) 1

n

for k = 2, . . . , n and all n ≥ 2. Noting that p(1, n) = n−1
n for all n ≥ 1,

we get p(2, n) = 1
n and p(3, n) = 1

n−1 . Next, by induction, we obtain

p(k, n) =
1

n− k + 2
for 2 ≤ k ≤ n.
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Hence the probability that the kth dwarf can sleep in his own bed is
equal to 1− n−1

n = 1
n for k = 1 and 1− 1

n−k+2 = n−k+1
n−k+2 for 2 ≤ k ≤ n.

A remarkable result is that p(n, n) = 1
2 for all n ≥ 2. A simple intuitive

explanation can be given for the result that the last dwarf will sleep
in his own bed with probability 1

2 , regardless of the number of dwarfs.
The key observation is that the last free bed is either the bed of the
youngest dwarf or the bed of the oldest dwarf. This is an immediate
consequence of the fact that any of the other dwarfs always chooses
his own bed when it is free. Each time a dwarf finds his bed occupied,
the dwarf chooses at random a free bed and then the probability of
the youngest dwarf’s bed being chosen is equal to the probability of
the oldest dwarf’s bed being chosen. Thus the last free bed is equally
likely to be the bed of the youngest dwarf or the bed of the oldest
dwarf.
Note: Consider the following variant of the problem with seven dwarfs.
The jolly youngest dwarf decides not to choose his own bed but rather
to choose at random one of the other six beds. Then, the probability
that the oldest dwarf can sleep in his own bed is 5

6 × 1
2 = 5

12 , as can
be seen by using the intuitive reasoning above.

2.71 Let’s assume that the numbers 1, 2, . . . , R are on the wheel. It is
obvious that the optimal strategy of the second player B is to stop
after the first spin if and only if the score is larger than the final score
of player A and is larger than a2, where a2 is the optimal switching
point for the first player in the two-player game (a2 = 53 for R = 100).
Denote by S3(a) [C3(a)] the probability that the first player A will beat
both player B and player C if player A obtains a score of a points in the
first spin and stops [continues] after the first spin. Let the switching
point a3 be the largest value of a for which C3(a) is still larger than
S3(a). Then, in the three-player game it is optimal for player A to
stop after the first spin if the score of this spin is more than a3 points.
Denote by P3(A) the overall win probability of player A. Then, by the
law of conditional probability,

P3(A) =
1

R

a3
∑

a=1

C3(a) +
1

R

R
∑

a=a3+1

S3(a).

To obtain S3(a), we first determine the conditional probability that
player A will beat player B when player A stops after the first spin
with a points. Denote this conditional probability by Pa. To find, we
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first note that the probability S(a) = a2

R2 from the two-player game
represents the probability that the second player in this game scores
no more than a points in the first spin and has not beaten the first
player after the second spin. Thus, taking into account the form of
the optimal strategy of player B, we find for a ≥ a2,

Pa = P (B gets no more than a in the first spin and A beats B)

= S(a) =
a2

R2

and for 1 ≤ a < a2,

Pa = P (B gets no more than a in the first spin and A beats B)

+ P (B gets between a and a2 + 1 in the first spin and A beats B)

= S(a) +
1

R

a2
∑

j=a+1

(

1− R− j

R

)

=
a2

R2
+

1

2R2

[

a2(a2 + 1)− a(a+ 1)
]

,

where 1 − (R − j)/R denotes the probability that B’s total score af-
ter the second spin exceeds R when B’s score in the first spin is j.
Obviously, for the case that player A stops after the first spin with a
points, the conditional probability of player A beating player C given
that player A has already beaten player B is equal to a2

R2 . Thus, the
function S3(a) is given by

S3(a) =







a2

R2 × a2

R2 , a2 ≤ a ≤ R
(

a2

R2 + 1
2R2 [a2(a2 + 1)− a(a+ 1)]

)

× a2

R2 , 1 ≤ a < a2.

Further,

C3(a) =
1

R

R−a
∑

k=1

S3(a+ k) for 1 ≤ a ≤ R.

Noting that S3(a) =
a4

R4 and C3(a) =
1
R

∑R−a
k=1

(a+k)4

R4 for a ≥ a2 and
taking for granted that a3 ≥ a2, the switching point a3 is nothing else
than the largest integer a ≥ a2 for which

1

R

R−a
∑

k=1

(a+ k)4

R4
>

a4

R4
.

The probability P3(B) of the second player B being the overall winner
can be calculated as follows. For the situation of optimal play by the
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players, let p3(a) denote the probability that the final score of player
A will be a points and, for b > a, let p3(b | a) denote the probability
that the final score of player B will be b points given that players’s A
final score is a. Then,

P3(B) =
R−1
∑

a=0

p3(a)
R
∑

b=a+1

p3(b | a)
b2

R2
.

It easily follows that p3(0) =
∑a3

k=1(1/R) × (k/R) = 1
2a3(a3 + 1)/R2,

p3(a) =
∑a−1

k=1(1/R) × (1/R) = (a − 1)/R2 for 1 ≤ a ≤ a3, and
p3(a) = 1/R+ a3/R

2 for a3 < a ≤ R. Then, for 0 ≤ a < a2 and b > a,

p3(b | a) =
b− 1

R2
for b ≤ a2, p3(b | a) =

1

R
+

a2
R2

for b > a2,

p3(b | a) = 1/R+ a/R2 for a2 ≤ a < R and b > a.

Numerical results: For R = 20, we find a3 = 13 (a2 = 10), P3(A) =
0.3414, P3(B) = 0.3307, and P3(C) = 0.3279 with P3(C) = 1−P3(A)−
P3(B). For R = 100, the results are a3 = 65 (a2 = 53), P3(A) =
0.3123, P3(B) = 0.3300, and P3(C) = 0.3577, while for R = 1,000 the
results are a3 = 648 (a2 = 532), P3(A) = 0.3059, P3(B) = 0.3296, and
P3(C) = 0.3645 (see also the solution of Problem 7.35).

Note: The following result can be given for the s-player game with
s > 3. Denoting by as the optimal switching point for the first player
A in the s-player game, the value of as can be calculated as the largest
integer a ≥ as−1 for which

1

R

R−a
∑

k=1

(

a+ k

R

)2(s−1)

>
( a

R

)2(s−1)
.

For R = 20, as has the values 14, 15, 16, and 17 for s=4, 5, 7, and 10.
These values are 71, 75, 80, and 85 when R = 100 and are 711, 752,
803, and 847 when R = 1,000.

2.72 Let the hypothesis H be the event that a 1 is sent and the evidence E
be the event that a 1 is received. The posterior odds are

P (H | E)

P (H | E)
=

P (H)

P (H)
× P (E | H)

P (E | H)
=

0.8

0.2
× 0.95

0.01
= 380.

Hence the posterior probability P (H | E) that a 1 has been sent is
380

1+380 = 0.9974.
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2.73 Let the hypothesis H be the event that oil is present and the evidence
E be the event that the test is positive. Then P (H) = 0.4, P (H) = 0.6,
P (E | H) = 0.9, and P (E | H) = 0.15. Thus the posterior odds are

P (H | E)

P (H | E)
=

P (H)

P (H)
× P (E | H)

P (E | H)
=

0.4

0.6
× 0.90

0.15
= 4

The posterior probability P (H | E) = 4
1+4 = 0.8.

2.74 Let the hypothesis H be the event that it rains tomorrow and E be
the event that rain is predicted for tomorrow. The prior odds of the
event H are P (H)/P (H) = 0.1/0.9. The likelihood ratio is given by
P (E | H)/P (E | H) = 0.85/0.25. Then, by Bayes’ rule in odds form,
the posterior odds are

P (H | E)

P (H | E)
=

P (H)

P (H)
× P (E | H)

P (E | H)
=

0.1

0.9
× 0.85

0.25
=

17

45
.

It next follows that the posterior probability P (E | H) of rainfall
tomorrow given the information that rain is predicted for tomorrow is
equal to 17/45

1+17/45 = 0.2742.

2.75 Let the hypothesis H be the event that the blue coin is unfair and the
evidence E be the event that all three tosses of the blue coin show
a head. The posterior odds are 0.2

0.8 × (0.75)3

(0.5)3
= 27

32 . The posterior

probability P (H | E) = 27
59 = 0.4576.

2.76 Let the hypothesis H be the event that Dennis Nightmare played the
final and the evidence E be the event that the Dutch team won the
final Then, P (H) = 0.75, P (H) = 0.25, P (E | H) = 0.5, and P (E |
H) = 0.3. Therefore the posterior odds are

P (H | E)

P (H | E)
=

0.75

0.25
× 0.5

0.3
= 5.

Thus the sought posterior probability P (H | E) = 5
6 .

2.77 Let the hypothesis H be the event that both children are boys.
(a) If the evidence E is the event that at least one child is a boy, then
the posterior odds are

1/4

3/4
× 1

2/3
=

1

2
.
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The posterior probability P (H | E) = 1
3 .

(b) If the evidence E is the event that at least one child is a boy born
on a Tuesday, then the posterior odds are

1/4

3/4
×
[

1−
(6

7

)2 ]
/

[1

3
× 1

7
+

1

3
× 1

7
+

1

3
× 0
]

=
13

14
.

The posterior probability P (H | E) = 13
27 .

(c) If the evidence E is the event that at least one child is a boy born
on one of the first k days of the week, then the posterior odds are

1/4

3/4
×
[

1−
(

1− k

7

)2 ]
/

[1

3
× k

7
+

1

3
× k

7
+

1

3
× 0
]

=
14− k

14
.

The posterior probability P (H | E) = 14−k
28−k for k = 1, 2, . . . , 7.

2.78 Let the hypothesis H be the event that the inhabitant you overheard
spoke truthfully and the evidence E be the event that the other in-
habitant says that the inhabitant you overheard spoke the truth. The
posterior odds are

P (H | E)

P (H | E)
=

1/3

2/3
× 1/3

2/3
=

1

4
.

Hence the posterior probability P (H | E) that the inhabitant you

overheard spoke the truth is 1/4
1+1/4 = 1

5 .

2.79 Let the hypothesis H be the event that the suspect is guilty and the
evidence E be the event that the suspect makes a confession. To verify
that P (H | E) > P (H) if and only if P (E | H) > P (E | H), we use
the fact that a

1−a > b
1−b for 0 < a, b < 1 if and only if a > b. Bayes’

rule in odds form states that

P (H | E)

P (H | E)
=

P (H)

P (H)
× P (E | H)

P (E | H)

If P (E | H) > P (E | H), then it follows from Bayes’ rule in odds form

that P (H|E)
1−P (H|E) >

P (H)
1−P (H) and so P (H | E) > P (H). Next suppose that

P (H | E) > P (H). Then P (H|E)
1−P (H|E) >

P (H)
1−P (H) and thus, by Bayes’ rule

in odds form, P (E | H) > P (E | H).
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2.80 Let the hypothesis H be the event that the bowl originally contained a
red ball and the evidence E be the event that a red ball is picked from
the bowl after a red ball was added. Then, P (H) = 0.5, P (H) = 0.5,

P (E | H) = 1, and P (E | H) = 0.5. Therefore P (H|E)

P (H|E)
= 1/2

1/2×
1

1/2 = 2.

Thus the posterior probability P (H | E) = 2
3 .

2.81 Let the hypothesis H be the event that the woman has breast cancer
and the evidence E be the event that the test result is positive. Since
P (H) = 0.01, P (H) = 0.99, P (E | H) = 0.9, and P (E | H) = 0.1, the
posterior odds are 0.01

0.99 × 0.9
0.1 = 1

11 . Therefore the posterior probability
P (H | E) = 1

12 .
Note: As a sanity check, the posterior probability can also be obtained
by a heuristic but insightful approach. This approach presents the
relevant information in terms of frequencies instead of probabilities.
Imagine 10,000 (say) women who undergo the test. On average, there
are 90 positive tests for the 100 women having the malicious disease,
whereas there are 990 false positives for the 9,900 healthy women.
Thus, based on the information presented in this way, we find that the
sought probability is 90/(90 + 990) = 1

12 .

2.82 Let the hypothesis H be the event that Elvis was an identical twin
and the evidence E be the event that Elvis’s twin was male. Then
P (H) = 300

425 = 5
17 , P (H) = 12

17 , P (E | H) = 1, and P (E | H) = 0.5.

Then, by Bayes in odds form, P (H|E)

P (H|E)
= 5

6 . This gives P (H | E) = 5
11 .

Note: A heuristic way to get the answer is as follows. In 3000 births
(say), we would expect 3000/300 = 10 sets of identical twins. Roughly
half of those we would expect to be boys. That’s 5 sets of boy-boy
identical twins. In 3000 births, we would expect 3000/125 = 24 sets
of fraternal twins. One fourth would be boy-boy, one-fourth would
be girl-girl, one fourth would be boy-girl, and one fourth girl-boy.
Therefore six sets would be boy-boy. So, out of 3000 births, five out of
eleven sets of boy-boy twins would be identical. Therefore the chances
that Elvis was an identical twin is about 5/11.

2.83 Let the hypothesisH be the event that you have chosen the two-headed
coin and the evidence E be the event that all n tosses result in heads.
The posterior odds are

P (H | E)

P (H | E)
=

1/10,000

9,999/10,000
× 1

0.5n
.
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This gives P (H | E) = 2n

2n+9,999 . The probability P (H | E) has the
values 0.0929, 0.7662, and 0.9997 for n = 10, 15, and 25.

2.84 Let the random variable Θ represent the unknown probability that a
single toss of the die results in the outcome 6. The prior distribution
of Θ is given by p0(θ) = 0.25 for θ = 0.1, 0.2, 0.3 and 0.4. The
posterior probability p(θ | data) = P (Θ = θ | data) is proportional to
L(data | θ)p0(θ), where L(data | θ) =

(

300
75

)

θ75(1 − θ)225. Hence the
posterior probability p(θ | data) is given by

p(θ | data) =
L(data | θ)p0(θ)

∑4
k=1 L(data | k/10)p0(k/10)

=
θ75(1− θ)225

∑4
k=1(k/10)

75(1− k/10)225
, θ = 0.1, 0.2, 0.3, 0.4.

The posterior probability p(θ | data) has the values 3.5×10−12, 0.4097,
0.5903, and 3.5× 10−12 for θ = 0.1, 0.2, 0.3, and 0.4.

2.85 Let the random variable Θ represent the unknown win probability of
Alassi. The prior of Θ is p0(0.4) = p0(0.5) = p0(0.6) = 1

3 . Let E
be the event that Alassi wins the best-of-five contest. The likelihood
function L(E | θ) is θ3 +

(

3
2

)

θ2(1− θ)θ+
(

4
2

)

θ2(1− θ)2θ. The posterior
probability p(θ | E) is proportional to p0(θ)L(E | θ) and has the values
0.2116, 0.3333, and 0.4550 for θ = 0.4, 0.5, and 0.6.

2.86 The prior density of the unknown success probability is

p0(θ) =
1

101
for θ = 0, 0.01, . . . , 0.99, 1.

For a single observation, the prior is updated with the likelihood factor
θ if the observation corresponds to a success of the new treatment and
with 1− θ otherwise. The first observation S leads to an update that
is proportional to θp0(θ), the second observation S to an update that
is proportional to θ2p0(θ), the third observation F to an update that
is proportional to θ2(1 − θ)p0(θ), and so on, the tenth observation F
to an update that is proportional to θ2(1−θ)θ2(1−θ)θ3(1−θ)p0(θ) =
θ7(1 − θ)3p0(θ). The same posterior as we found in Example 2.17,
where we simultaneously used all observations.

2.87 Let the random variable Θ be 1 if the student is unprepared for the
exam, 2 if the student is half prepared, and 3 if the student is well
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prepared. The prior of Θ is p0(1) = 0.2, p0(2) = 0.3, and p0(3) = 0.5.
Let E be the event that the student has answered correctly 26 out of
50 questions. The likelihood function L(E | θ) is

(

50
26

)

a26θ (1 − aθ)
24,

where a1 = 1
3 , a2 = 0.45 and a3 = 0.8. The posterior probability

p(θ | E) is proportional to p0(θ)L(E | θ) and has the values 0.0268,
0.9730, and 0.0001 for θ = 1, 2, and 3.

2.88 Let the random variable Θ represent the unknown probability that a
free throw of your friend will be successful. The prior probabilities are
p0(θ) = P (Θ = θ) has the values 0.2, 0.6, and 0.2 for θ = 0.25, 0.50,
and 0.75. The posterior probability p(θ | data) = P (Θ = θ | data) is
proportional to L(data | θ)p0(θ), where L(data | θ) =

(

10
7

)

θ7(1 − θ)3.
Hence the posterior probability p(θ | data) is given by

θ7(1− θ)3p0(θ)

0.257 × 0.753 × 0.2 + 0.507 × 0.503 × 0.6 + 0.757 × 0.253 × 0.2

for θ = 0.25, 0.50, and 0.75. The possible values 0.25, 0.50 and 0.75
for the success probability of the free throws of your friend have the
posterior probabilities 0.0051, 0.5812 and 0.4137.


