2 Slope Stability

Planar Block Slides

1. Given: Planar block slide
Find: Algebraic FS.

Solution:
By definition

R
FS=—
D
R =resisting forces: Assume
Mohr-Coulomb
D =driving forces

W= Weight: W=w,—W,

By inspection:
H?b h?
Y (cota — cot B) —

coto

W =

R=W,tan¢ + cA
Note: £F, =0 . 0=W,—-N & N'=W,

A

FS

4.0 1

2.0+

[

tan «

»
»

0 T T T
0 0.0005 1/H 0.001

SCHEMATIC PLOT (FSvs H 1)
Note: almost linear in 1/H
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Also

Ao )
Sin o SN o

And W,, = W cos o

SR =
D =

ES =

W cosatan¢ + cA
W sin o
W cosatang + cA
W sin o
H b
tang Cb(m - m)
tano (sina)[(%zh)(cotoe — cot B) — %Zbcota]
b
tan ¢ N 2¢ (1 - ﬁ)
tana - (gip ot)z[(yH)[(cotot — cot ) — I’fl—zzcota]]
b
tan ¢ N 2c (1 - E)

tan« yH (sin a)2|:<1 - (%)2>cota — cot ﬂ]
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2. Given: Problem 1 data
Find: Max B (algebraically).

Solution:

Solve ES for B then set % =0

Find B* stationary pts

Find relative maximum

Find absolute maximum (end pts) or note by inspection that as 8 increases the ES
decreases so B will be max when FS is min, that is, when FS =1, then

2 2c(1- 2%
[yH(sina)2]|:(1 - <%> ) cota — cot,Bj| = M

tano

bh\? 2c (1 - %)
€Ot Bmax = (1 — (E) ) cota — S HGna)? (1.0 = tan¢)

tan o

Note: g > B > « (physical constraints) & if no tension crack (h=0)

2¢
yH(sina)? (1 — ta“‘75)

tan o

cot Bnax = cota —
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Given: Problem 1, data allow for water (below bottom of tension crack)
Find: ES (with water).

Solution:
A
(previous) FS = Weosa ta}n otc
W sin «
H?b 2
where W = ¥ > (cota — cot B) — > cota
b
and A= ——(H-5h)
sin &
Now
FS — N'tan¢ + cA (3)
W sin o

where TF, =0 requires N'= W, — P with P = water force

AN\
A
hw
z y Ww.T
Zz
2
V4
Z
2
v

as before W,, = W cos(a)
but P=?

P= ﬁAwa Ay = wa
p= [%(rectangle)

Pmax = Yw 2/2 (a linear increase of water pressure with depth below water table is

assumed)
: (1)<H ~ )
2 2

where h,, = water table depth below crest

Lo_®
Y sina
= )@
Ywb??

4sino
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Hence:
(Wcosa— P)tang + cA (4)
ES = - '
W sin o
where:
2
po YO g,
4sino
b
A = ——(H —b); b =tension crack depth
sino
H?b h?
W = Y (cota — cot B) — cotua
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4. Given: Problem data
Find: FS for seismic load.

Solution:

By definition S= Kas
g
where a, = seismic acceleration
Le. as=aopg
where ay = seismic coefficient
e.g. ap=0.15
S S=ayW
S, =ao Wsin«a

[z —

Ss=ao W cosa

N=W,-S8,
R=N'tan¢+cA
D=W;+S;
ES — (W,,—Sn)tan¢+cA (5)
W, + S;
where W,= Wsina,
Ss=ayW cosa
W,= Wcosa,
S,=ayWsina
b
A=——H-h)
sina
b*H?
W= Y (cota — cot B)

2
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Given: Data in Fig. § and a uniform
surcharge o with FS=1.1 and b=25’

Find: .

Solution:

_ N'tan¢ + cA + F, tan ¢

ES
W, + F;

F=obl
F,=Fcosa
F;=Fsina
then 500 ft
(FS)Fs — F, tan ¢
=N'tan ¢+ cA — FS(W;)
F[(sin a)FS — cosatan ¢]

ES
=N't A —
an¢ +c¢ (Ws>

W=yV
2
V= T(cotcx —cot f)

2
= m(cot40 —cot 50)

V =(3.125)105(0.35265)
V= 1.102(10°) f’

W = (156)(1.02)(10°)
W =1.719(108) Ibf

N' = Wcosa
= 1.719(108) cos 40
N’ = 1.317(109%)

N'tan ¢ = 7.3001(107) Ibf

(25)(500)
~ sin40
A (50)(144)(25)(500)
sin 40
cA = 1.4002(108) Ibf
FS(W,) = (%) 108 (sin 40)

FS(W,) = 1.2156(10%)
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N'tan¢ + cA — FS(W;) = 7.3001(107) 4+ 1.4002(10%) — 1.2156(108)

[9.146(107) Ibf]
- [(sin40)(1.1) — cos 40 tan 29]
9.146(107)
T 02824
- F=3.238(10%) Ibf
3.238(109%)
(25)(500)(cot a — cot B)
o = 7.346(10%) psf

o =510psi

FS without surcharge.

[N’ tan¢ + cA]
W
1.317(10%) tan 29 + 1.4002(108%)
1.719(108) sin 40
ES =1.93(1.928)

ES =
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6. Given: Fig. 5 planar block slide and 7o surcharge
Find: Hpax.

Solution:

H,.x occurs when FS is min i.e., when

R
1=— 1
5 (1)
R = N'tan¢ + cA
D = W,
W, = Wsina
W), = Wcosa =N’
H
A = b—
sina
bH?
W = Y (cota — cot B)

Solving (1)

H
1 = tanqb + Rb(sina)

2 .
tano 7/”TH(cotoz — cot B) sina

2c 1
Hpax = [y(sina)z(cota - COt.B)i| |:1 - 2%5}
(2)(50)(144)

(156)(sin 40)2(cot 40 — cot 50)(1 — &223)

Hypax = 1,867 ft P
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7. Given: Sketch data and cable bolts
Bolt spacing vertical = 50 ft Bolt angle n=—5°
Bolt spacing horizontal =25ft ~ Bolt tension = 60% ultimate
Bolts: 12 strand type 270

Find: FS, AF.
Solution:
25’
r Y ]
+
L
50" ¢ = 50psi
500 ft + T Tp 40 Zb z;g? pof
Fp = nf,
" b b
n = number of bolts
il + f, = load per bolts

fu: using Table A1.1 270k ultimate strength =495,600 Ibf for 12 strands.

f, = 4.956(10°) Ibf
H
- (vert. space)
500
50
n = 10 holes (benches)

F, = (10)(4.956)10° Ibf

Nj = Fycos4S5
1
N, = (10)°(4.956)—
» = (10)°( >ﬁ
Tb = Fbsin45
1
T, = (10°%)(4.956 (—)
p = (107)( ) 7

_ N'tan¢ + cA + (N tan¢ + T,,)(0.6)
B W sin«

FS (60% mobilized)
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(Nptan ¢ + T)(0.6)

F = F ©
’ v W sin o
: 1
— 1.928 + (0-6)[(106) (ﬁ) (4.956)tan 29 + 10° (72)]
o (sin40) 1.719(108)
5.447(10°)
—1.928+ 217 /g
P28+ 1.105(108)

1.928 4 (0.049)(0.6)
FS=1.958, AF=0.30
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Given: Planar block slide data and water table at crest

Find: FS.

Solution:

ES=

S| =

R=N'tan¢ + cA

¢ =50psi y= 156 pcf
¢ =29 a=40°
B =50°

<

D= W; ")
N'=W,—p /(r\
bH? !
W= Y 5 (cota — cot B) < | o

W, = 1.105(10%) Ibf
cA = 1.400(108) Ibf

W, = 1.317(108)lbf} <

P=pA,
H
A=t
SN o
—_pmax
==
_ YuZ
max—T
ke
— =250
2 250 500
P=(674) — ) (2
() 29 (a0)

P=1.5168(10%)
R=N'tan¢ + cA

prior
calculations / Note: (

o l normal
(negative)

v
normal load is negative)

=(1.317 — 1.517)10% tan 29 + 1.400(10%)

R=—1.109(107) 4 1.4(108%)
D =1.105(108)
8
s 1.289(108)
1.105(108)
FS=1.167
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9. Given: Planar block slide in sketch with cohesion destroyed

Find: acceleration a
Solution:

Assume o =0 (no surcharge)

R
then FS = —
en D

But also for the slide mass center

F=ma
w
m=—
g
F=D-R
w
-.D(1 —FS) = <—> a
g
c.a>0ifFS<1
N’ tan ¢
FS =
W
_ Wecosatang
- W sin o
_ tan ¢
" tana
_ tan29
~ tan40
FS = 0.66
acceleration — yes downhill = parallel to slide surface
FS=0.66

W
then D(1 —0.66) = Ea

D=Wsina
cca=gsina(l —0.66)

= 32.2(sin40)(0.34)
4= 7.04 ft/s2 (parallel to failure surface)

tangential direction
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10. Given: Planar block slide

Find: « for FS=1.5. e
H

. . w- -

Solution: =475 1 T ¥
$p=28° c=2?
(Free body) l ¥ = 160 pef 4
£,F=0 W,—N -P=0 ¥
N=W,-P
W, = Wsina W,=Wcosa
bH?

W = Y (cota — cot B)

2
= (150)(1) <4§> (cot 35 — cot45)

=7.728
W = 7.252(108) Ibf
W, = 7.252(10°) cos 35

W,
(10) ¢
(10°)
W, = 5.941(10°) Ibf
(10°)
(10°)

T

%
N
W, = 7.252(10°) sin 35

W, = 4.156(109) Ibf NP

. b4
Water force must check for water head if tan 8 > 2 tan o, then b, = 3 else

b % (_1 N tanﬁ)
2 tan o

check
tan45 > 2tan 35
(1) >2(0.700)
no.
by = 42) 1) 14 tan45
2 2 tan 35
b, = 50.84 ft
Pmax = (62.4)(50.84)
- DPmax _ (6.24)(50.84)
b= 2 2
p=1.586(10%) psf
P=DpA
= 1.586(103)(1)<H—w>
sin o
475
_ 3 2
= 1.586(10°)(1) EY:

P=6.567(10°) Ibf
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N’ = 5.941(10°) — 0.6567(10°)
N’ = 5.284(10°)

N'tan¢ + cbL
WS
cbL = (1.5)(4.156)(10°) — tan 28(5.284)10°
= 3.424(10°)
3.424(109)
(1)(475)

sin 35
c=4.135(103) psf

ES =
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11. Given: Planar block slide in sketch:

Find:
(a) Formula for FS with relieving bench V;
(b) Formula for FS with toe berm
Solution:
By definiti 'FS—R

y definition: FS =

R =resisting forces
D =driving forces

faite [

(Same.)
(a) (b)
Assume M~-C criterion
N't C N't C
Fs, = N tang+C Fs, = N tang+C
W sina W sina
t C t C
S, = Pe Fs, = 200

~ tana  yVpsina ~ tana  p(Vo— Vi)sina
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C=CcA,

A =area of failure surface
N =(Wcosa—P)

W= )/Vo

(Wcosa — P)tang + C

Wsina

But P =0 when W.T. is below to toe.
The first terms are the same, but the

second term in ES,, is greater because
Vo — V7 is less then Vj is FS.

S — (N'tan¢ + C) + Wy tan¢ + C; ()
W,
Witan¢y + c1Aq

W

ES(with berm) = FS(without berm) + > FS(without berm) (b)

The added resistance W; tan ¢; + C;, comes without added driving force and
thus increases the ES.
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12. Given: sketch, data
No tension crack, no benches, « =29°, y =156 pcf, 8 =50°, persistence = 0.87
¢, =64,800psf ¢, =1,620 psf

¢y =32° ¢j=25°
Find:
(a) Hypax when WT at crest
(b) Hpnax when WT at toe
Solution:
R
D=Wsina
R=N'tan¢ + C
N = (Wn - P)
C=cA
W,=W cosa

(b) When depressurized P =0

HZ
W = J/T(cotoe — cot B)

H
A= —
sin o
H
S — W cos o tan ¢ o
W sin « W sin «
cH
ES — tan¢ sna

2 .
tano %(cota — cot B)sina

] tan¢\ /y\ [ cota — cot B _l
(-2 (reses)

sin“o

By inspection T is minimum when FS is minimum

.. Hppax occurs of ES=1.
need rock mass c, ¢

c=(1-=pler+pg
=(1-0.87)64,800 + 0.87(1,620)
— 8,424 4 1,409

c= 9,833 psf

tang= (1 —p)tan¢, +ptang;
=(1—-0.87)tan32 + 0.27tan 25
tan¢ = 0.08123 + 0.4057
= 0.4829
¢=25.96 ~ 26°
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Water force:

iftan B> 2tana

tan(50) > 2 tan 29

1 0.4829\ /156 [0.96495
H 1= 0.5543)\ 2 )\ 985 -
’ (0.4848)2
= (0.12157)(78)(0.2307)(10~*)
1
— =2.188(10~*
i ( )
H=4.571ft
W. T
4
H

20
then use —

1.1918 > 2(0.5543)=1.1086

o.k.

H
L
2 sina
2
p o el
4sin«a
ES — (W cosa — p.)tan¢>—|- B
W sin o
= tan¢ sircmt
" tanw (%) H(cota — cot B)sin
L dgang
(#) (cota — cot B)sin «
K — Ywtan ¢
(%) (sin*a)(cota — cot )
(3) (62.4)tan 26
"~ (19) (sin*29)(cot 29 — cot 50)
K = 0.4301
tan ¢ % (y) cota —cotf | 1
tana 2 sincza B H

Hmax dI'Y
«— -

formula
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1 29 — 1

0.5502] (%6) cot29 — cot 50 -
(9,833) (sin%29>

1

9.899(107%) = —
( ) i

H=1,010ft Hinax wet
_ <«
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13. Given: Planar block slide
y = 158 pcf
¢, = 38° ¢ =27°
¢ =1,000psi ¢; =15psi
Aj/A=0.93

bench height =355 ft

b =breadth

Find: Hpax. =X

} Mohr-Coulomb

Solution:

Hi.x occurs when FS=1 H

R
FS=—
D

R=W/tan¢+cLb
D=W,

- W,=W,tan¢ +cLb
Wsina=(W cosa — P)tan¢ + cLb

2

VT(cota — cot f3)

= (158) (%) H?(cot 32 — cot 49)

w

W = 57.75 H?

H(1
57.75 H? sin 32 = 57.75 H? cos 32 tan ¢ — Ptan ¢ + L)

sin 32
Ptan¢

Hl

30.60 = 48.98 tan ¢ + %1.887 _

need, ¢, ¢ for rock mass
¢ =(1-0.93)c +0.93¢;
— 0.07(1,000) + 0.93(10.0)
c=79.3psi (11,719 psf)

tan¢ = 0.07tan38 + 0.93tan 27
tang = 0.5286 ¢ =27.9°

return

(11,419)(1.887) P

30.60 = 48.98(0.5286) + 7 - m(0.5286)
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need: P = pLb
_(rHY (_H
_< 4 )(sin(x)(l)
P (62.4) H?

H2~ 4 sina
1
30.60 =25.89 + H(22,812) —
1 _ 30.60 —25.89 +15.56

H~ 21,549
H = 1,065 ft

62.4
0.5286
3 )

4 sin
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14. Given: Planar block slide data
ES(min) = 1.05
Bench height = 60’

. Aj
Persistance = 79% "

Wit=1.351(10") Ibf per ft of thickness.

50 60’

— v

z =240

¢, =33° ¢,=2,870psi ;=28 ¢;=10.0psi y=158pcf
Find: If FS=1.05 possible.

Solution:

Assume water distribution as p = y,,z where z is 1/2 distance (vertical) to toe

(540 — 60) (62.4)(240)

2 bmax = ""44
2 =240ft, Prmax = 104 psi

pmax
2

2 psi
A

_ 480
=p(1) (—) (144)

~ o
([ |
| »

sin(32)
P = 6.783(10°) Ibf

W, = Wcosa
=1.351(107) cos 32
W, = 1.146(107) Ibf

W, = 1.351(107) sin 32
W, = 7.159(10°) Ibf (no seismic force)
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W, =W, —P
= 1.146(107) — 6.783(10°)

W' = 4.6745(108) Isf (no seismic force)

W = W, —P—S.

S, =Ssin«a Ss =Scosa
=0.15 Wsin 32 =0.15 Wcosa
=0.15W, =0.15W,
=0.15(7.159)(10°) =0.15(1.146)107

S, = 1.074(10°)1bf S, = 1.719(10°) Ibf

W/ = 4.6745 — 1,074(10°)
W/ = 3,600(10)1bf  with seismic force

need: ¢, ¢
c=0.79¢+021¢,
= (0.79)(10) + (0.21)(2870)

=7.94603
¢ =610.9psi
tan¢ = (0.79) tan 28 4 (0.21) tan 33
tan¢ = 0.556
¢ =29.1°
W/ tan¢ + cA Note:
FS= 2 _—— 540 — 50
WS + Ss ’ L = —

sin 32
3.60(10°)tan29.1 + (611)(144)(92.5)(1)
7.159(108) + (1.719)(10¢)
2.004(10°) 4 8.139(107)
8.878(10°)
81.72(10°)
8.878(10¢°)
FS = 9.39 Yes.

Note: The actual water pressure is less because of the slope and failure surface
angles, so FS is even higher.
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15. Given: Planar block slide Mohr—Coulomb failure
Find: Bmax (dry).

\
Solution: T /

Fs=— 613'= H ¢ = 30°
D ¢ = 1440 psf
_ N'tang +cA
= Ws y =162
N =W, A
W, = Wcosa \A/
H
A= — (1 £t thick)
sin o
W, = Wsina
,'.FS:tan¢+ cH

tana  (sina)2W
HZ
But W = VT(l)(com — cot )

So ES is min when B is max.
FSmin = 1.0
1= tan ¢ cH
- tano  sin®(a)W
tan 30 4 (1,440 psf)(613 ft)(1 ft)

1 =
tan 34 sin®(34) W
2.823(10°)
1=0. et b
0.856 + W
_2.823(10°)
W="0142
W = 19.598(10°) Ibf
2
W = v (cota — cot B)
coter —cot f (2)(19.598)(106)
“ = T (162)(613)2

cota —cot B = 0.64387
cot 8 =cot34 — 0.64357
cot B =0.83869
Bnas = 50° Pax
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16. Given: Slope, sketch, no seismic load, etc.

»l
>

y = 162 pcf

Rock 33 2580psi A;=086A
Joint 33 0.0

Find: H at FS=1.15.

Solution:
Fr
FS = —
Fp
FD = Ws
= Wsina
H2
Fp = ”Tua)(cot o — cot ) sin(a)
162)(1
= HZ( U )(c0t37 — cot48)sin(37)
Fp = H?*(81)(0.4266)sin(37)
Fp = 20.80 H?
Fr = W, tan¢ + cL
W, =W, —P
W, = Wcosa
= H?*(81)(0.4266) cos(37)
W, = 27.60 H>
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I An+ AA,~ H
= CrA C’A sin o

H
= (0.14)(2,580)(144) <sin37)

cL = 8.643(10YH

Fr  (27.60 H? — 25.92 H?)tan(33) + 8.643(10Y)H

“Ey 20.80 H2
Fr 4.155(10%)
“R o 0.0525 4 o200
o tTH
F
But Fg = %
4.155(10°
1.15 = 0.0525 + +

1
— =2.641(10"*
7 (1077)

H = 3,786 ft depth at F[S=1.15
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17. Given: Sketch of the potential slope failure shown in the sketch,
Find:

(a) Factor-of safety of a cable bolted slope when the water table is drawn down
100 ft
Bench height =40’ (vertical bolt spacing)
Horizontal bolt spacing =20’
Bolt angle = 5° down
Bolt loading = 700 kips/hole

(b) Factor of safety of the same slope but without bolts when the water table is
drawn below the toe

(c) Reasons for preferring one over the other.

Bench ft — Tension crack
s
v
0 @ - L A~
¢ = 28°
44— Failure Surface ¢ = 1440 psf
y = 158 pcf
S Not to Scale
A
T777

Sketch for problem with given data.

Solution:

Free body diagram.

+—

| 100" WT

o

Bolted Wet
Slope

Dry Slope i \

(a) Factor of safety of a bolted slope with water table

o

n = bolting angle = —5
n = number of holes per row
320
T 40 T
YF,=0
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N = Wcos(a) — Ps + n Py sin(a — n)
T=Ntan(¢)+c|:H_hC:|b

sin(o)
R = T + nPycos(a — 1)

D = Wsin(«a)
R
FS = —
S D
[W cos(a) — Ps + nPy sin(a — n)] tan(¢) + ¢ [5&23] b+ nPycos(a—n)
- W sin («)
BS — tan(¢) B Pstan(¢p) c(H —h.)b  nPy[sin(a — n)tan ¢ + cos(a — n)]
"~ tan(a) W sin(a) W sin?(c) W sin o
_ tan(¢) B Pstan(¢p) c(H—h. )b nPycos(a —n — @)
~ tan(e) Wsin(@)  Wsin?(a) W sin « cos ¢
using—sin(A) sin(B) + cos(A) cos(B) = cos(A — B)
FS = FS, unbolted + AFS bolt T S
37’
100’
R
Assume e=18%
G="11¢ f
Yw 220’
G= ézs—iu.m) —2.99 = grain SG gravity ¥
2.99+0.18 G + Se
VYwet = <W>62.4— ( Tte )Vw
= 168 pcf
Weer = Vdry Vdry + (ywet - Vdry)Vwet
H,)?
Ve = P feot(a) — corlply
2
= (2220) [cot(32) — cot(40)]1
= 9,888 ft°
2 1
Vary = —-lcot(a) — cot(8)1b — [Ebf cot(30)i|

2 2
= 3§—0 [cot(32) — cot(40)]1 — |:3’2—7 cot(32):|

=1,9824 f¢’
Waer = (158)1,9824(20) + (168 — 158)9,888(20)
= 64,621,440 lbs




82 Solutions Manual to Design Analysis in Rock Mechanics

/

P, =2 / Pbdl
| T
= 2[ by, Isin(a)d! T 110’ h
° . 220’

A lb:ywhlb / 110’ h
? 110 \ _L

— (62.4)(110) [—] (20) = 28,496,420 Ibf

sin(32) LR AL

_ tan(28)  (28,496,420)tan(28) = 1,440(320 — 37)(20)
" tan(32)  (64,621,440)sin(32)  (64,621,440)sin%(32)
(8)(700 x 10%) cos(32 + 5§ — 28)
(64,621,440) sin(32) cos(28)
= 0.851 —0.442 +0.449 4+ 0.183

ES=1.041

FS wet, bolted slope

(b) Factor of safety of a dry slope.

W = Vdry Vdry
= (158)19,824(20) = 6,26,43,840 Ibs

XF, =0
N = Wcos(a)
b

sin(a)

T = Ntan¢ + c(H — h,)
R=T
= [W cos(a)] tan(¢) + c(H — /oc),L
sin(a)
D = W sin(«)
£ W cos(a) + tan(¢) + c(H — /og)ﬁw)
dry = N W sin o
(¢)  c(H—h)b
(@) W sin®(a)
— 0851+ 1440 (320 — 3.71(20)
6,26,43,840sin"(32)
= 0.851+0.463

| =

g8 O
==

FS dry, unbolted

ES=1.314
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Wedge Failures

18. Given: Wedge data

Ara=0° §=60°
B:a=90° §=60°

Find: normals Cy4, Cp.

Solution:
x y z
C |sindsine | sindcosa | cosé
Al (F)o | (F)m | @)
B:| ()| (L))o | ()

Cu = (o, 5z,

Cp = (4.0,

[Ny
N—"

Mol

Ca: (90°,30°,60°)

) direction cosines

2 direction angles

Cp: (30°,90°,60°)




84 Solutions Manual to Design Analysis in Rock Mechanics

19. Given: The wedge from problem 18,
A= (Os \/ng %)
CB= (JTgs 03 %)

Find: Dip direction and dip of the line of intersection s.

Solution:
s=¢4 x¢g | form “determinant”
i | b
. ¥3 1
CA: 0 3 3
. V3 1
CB: 510 g

dir. numbers

¢

=
I
1
—~
5
SN—"
(3]
+
SN—"
5
3]
+
T
ENI)

direction cosines:

Sc ISy | S
NENERR
V5| VS| VS
t S
ana; = —
Sy
4
tanag = %
e
tanos = 1
a; = 45°
)
tan g, = 3 72
[S3 + 8]
V3
+3 V3
tan §; = Vs V3

Cs Ca
o =
8 = ° s, 8
» Z U
y(N)
S
Qg
S;
S
X » x(E)
O
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20.

Given: Table 2.7 data and ad = 120 ft

Find: Joint plane areas A4, B4 (no tension crack).

Solution:

Vectors S1, S3 along lines 1 and 2 can be found from intersections of (1) Joint
plane A and Face F, and (2) Joint Plane A and Upland U, since normals to F and
U can be found from their dip directions and dips. The normal to A is known
from problem 18.

e The angle 613 can be found from Sy - S3=81||S3/cos 813 |S1]=1 |S3]=1 by
normalization

e Similarly angles 055 & 651 can be found

e The distance Ly can be found from the dip of line 1 (S;) and H =120'".

e The distance L3 can be found.

From the sine law

L Ly Ls

sinfys  sinfss  sinfi3
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F = face
U = upland

Ls

Need vectors Sy, S3, S5 that are formed by planes of intersection e.g. S5 = C A X C B
(as in problems 18 & 19) Need direction cosines of C4, Cf, Cy, Cp

C:sindsina sin 8 cos « cos S
(problem 18) C4 =0 0.8660 0.5000 |Cal=1
(Problem 18) Cp = 0.8660 0 0.5000 |Cgl=1
Crsin 85sin45 sin85cos45 cos85
Cr=0.7044 0.7044 0.08716 |Cgl=1
Cy =0.06163 0.06163 0.9962 |Cyl=1
CROSS PRODUCTS
Cis xCg= 04330 0.4330 —0.7500 |Ss| = 0.9682
(0.4472) (0.4472) (—0.7746) normalized
CaxCp= -=0.2767 0.3522 —0.6100 [S1] = 0.7568
(—0.3657) (0.4654) (—0.8060) normalized
Cis xCz= 0.8321 0.0308 —-0.0534 |S3] = 0.8344
(0.9973) (0.03692) (—0.06400) normalized
dir. cos
x y z
Ss 0.4472 | 0.4472 | —0.7746
Sy | —0.3657 | 0.4654 | —0.8060
S3 0.9973 | 0.03692 | —0.06400
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DOT PRODUCTS

S13 = 8111851 cos 013 = S1x83x + 81583y + $1:53;
S13=-0.2959 .63 =107° (or 73° alt. sol.)
S15 =0.6689 . 015 = 48.0° [Look of direction of S3]

S35 =0.5102 S 635 =59.3°

Note: 615 + 635 +6013=180° -. 613 = 73°
Sine law for length

Ly L;

Sil‘l935 B sin915
H
" sindy

need dip of Ly, &
_Slz
[S7, + S%y]
—(—0.8060)
[0.36572 + 0.46342]1/2
tand; = 1.3617

tandy =

81 = 53.70°
120
~ sinS$3.7
L, =148.9ft
(sin 48)
Ls= <148'9)sin(59.3)
L;=128.7ft

Aa = 3L1L3|S11S3] sin 613
= (1) (148.9)(128.7)sin 73

Ap = 9,161sq ft _Aa
by symmetry of this problem
— By
Ba =9,161sqft )

Computer check using WEDGE (course download) A4 = B4 = 9,161 sq ft o.k.
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20.

(Alternative)
Given: Data in Table where the vertical distance between @ and d is 120 ft,

Find: Areas of A and B (without a tension crack)

Solution:

This is a lengthy calculation best done with the aid of a computer program:
Using WEDGE from course downloads

A(area) = B(area) = 9,160 ft* -

Using SWEDGE from ROCSCIENCE (same results)
Given: Data in Table & vertical distance ad =120 ft, y =158 pcf water below
toe slope tension crack offset =90 ft

Find: A, B areas and FSq,, and volume.

Solution:

Using WEDGE course download.
A=B=38,072ft
FS4ry =1.28
Volume = 11,683 yds>.
Same results using SWEDGE from ROCSCIENCE.
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21. (no tension crack)

DIP DIRECTION DIP ANGLE

WEDGE DEGREES DEGREES
PLANE A 0.0 60.0
PLANE B 90.0 60.0
LINE OF INTERSECTION 45.0 50.8
SLOPE FACE 45.0 85.0
UPLAND 45.0 5.0
TENSION CRACK 45.0 75.0
EXTERNAL LOAD 0.0 0.0
WEDGE HEIGHT (LEFT SIDE) 120.0 FT.
LENGTH PLANE A TRACE (UPLAND) 128.8 FT.
TENSION CRACK OFFSET (PLANE A TRACE) 128.8 FT.
EXTERNAL LOAD MAGNITUDE 0.0 KIPS
ROCK UNIT WEIGHT 158.0 PCE.
FRICTION ANGLE COHESION
DEGREES PSE.
PLANE A 32.0 1080.0
PLANE B 37.0 1640.0
AREA WATER FORCE
SQ. FT. KIPS
PLANE A 9160.1 0.0
PLANE B 9160.1 0.0
TENSION CRACK 0.0 0.0

WEDGE VOLUME = 3,27,142.6 CU. FI.= 12116.4 CU. YD.
WEDGE WEIGHT = 51,688.5 KIPS

FACTOR OF SAFETY =1.33

Checks Table 18.
DIP DIRECTION DIP ANGLE

WEDGE DEGREES DEGREES
PLANE A 0.0 60.0
PLANE B 90.0 60.0
LINE OF INTERSECTION 45.0 50.8
SLOPE FACE 45.0 85.0
UPLAND 45.0 5.0
TENSION CRACK 45.0 75.0
EXTERNAL LOAD 0.0 0.0
WEDGE HEIGHT (LEFT SIDE) 120.0 FT.

LENGTH PLANE A TRACE (UPLAND) 128.8 FT.
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TENSION CRACK OFFSET (PLANE A TRACE)  90.0 FT.

EXTERNAL LOAD MAGNITUDE 0.0 KIPS
ROCK UNIT WEIGHT 158.0 PCE.
FRICTION ANGLE COHESION
DEGREES PSE.
PLANE A 32.0 1080.0
PLANE B 37.0 1640.0
AREA WATER FORCE
SQ. FT. KIPS
PLANE A 8071.9 0.0
PLANE B 8071.9 0.0
TENSION CRACK  1312.0 0.0

WEDGE VOLUME =315429.3 CU. FT.= 11682.6 CU. YD.
WEDGE WEIGHT =49837.8 KIPS

FACTOR OF SAFETY =1.28

E.S.
<«
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22.

Given: Wedge data

Wedge forms as shown in sketch.
Line of intersection has dip direc-
tion of 135° and is in the same
direction as the face dip direction.
When the face dips £90 to line of
intersection, then kinematic fail-
ure is impossible. Thus, the range
of concern is for face dip direc-
tions. (45°, 225°).

z, U
Y(N)
A
7.
—» X(E)
180 B
X \\ B
Wedge

X F135
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23.

Given: Wedge data
Kj joints a=110° §=38°
K, joints «a=147° §=42°
n1: (0.5785, —0.2106, 0.7880)
ny: (sin é sin ¢, sin & cos a, cos J)
sin(42) sin(147) sin(42) cos(147) cos(42)

ny: (0.3644, —0.5662, 0.7431)

nx 1, =8(0.2857 —0.1427 —0.2479)

s| =[(0.285)> + (—0.1427)% + (—0.2479)*]1/
|s| =0.4043

dir. cos: $=(0.7067, —0.3530, —0.6132)

tano; = i
Sy cosd = —0.6132
0.7067 8 =127.8°
= 203530 6=48-90°

tana, = —0.2002 8s = 37.8°
os=—63.5° or 116.5°

sy>0 s,<0 .. in4thquadrant
o, =116.5°

z(U)

A

y(N)

143°

v

110°

»
»

200

YN)
A

\116.50 =«

s

38° K1 I

A 1T N jas=116.5°

—

Ki

5= 37.8°

(1
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24, Given: Wedge data

Find:

(a) dip direction and dip of lines of intersection of A & B
(b) Range of azimuths that are safe
(c) Length of line formed by A & F (Face)

Solution:

(a) Need normals to A & B

Notes:
Cy =sindsina Cy=cosécosa | C; =cosé
x y z
4| V31 V33 1
122 2 2 2
5 | V33 V31 1
122 2\ 2 2
IVEAYAATRER V31 31\ | [V3( 3\ 3 3
’ 4)\2 42 42 42 4 4 4 4
P EERE 3-43 (943
’ 8 8 16
S: 1 0.9915 0.1585 —0.7500
2 2
13
13
]
]
1 73
. 0.5915 Sy
sSinoa = =
(0.59152 4 0.15852)1/2 — (82 4 §2)1/2
sinae = 0.9659
o=75° JXAB
sng— %
(S2 + 8+ 82)1/2
B 0.75
"~ (0.59152 4 0.15852 + 0.752)1/2
sind = 0.7746
5 =50.8° dap
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(b) The face dip direction is 75° if a line of intersection does not penetrate the
face, then sliding cannot occur. Thus 75° + 90° defines range of dip direction
that are unsafe (—15°, +165°)

- safe (165°, 345°) safe oy
(c) X y z

a | 31 V33 1

22 2 2 2
F: sin85sin75 sin 85 cos 75 cos 85
E: 0.9623 0.2578 0.0872
Sar: | 0.0654 —0.1289 | —(0.03776 — 0.48115) | 0.1116 — 0.7217
Sar: | —0.0635 0.44339 —0.6101

. —0.0635
sina =

[(—0.0635)2 4 (0.44339)2]1/2
sina = —0.1418
o =—8.2° quadrant!

Gins = —(—0.6101)
(0.06352 + 0.44332 1 0.61012)1/2
sin 8 = 0.8062
§=353.7°
H
= sing
85
~ 0.8062

L=105.51t
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25.

Given: Wedge slide data and required FS=1.10
Find: If can obtain FS =1.10.

Solution:

Try quick screening for sliding down line of intersection assuming zero cohesion
and lowest ¢(28°)

c T Ca Cs
A B
s=1
0
\ §>
Direction cosines (from T.2)
x y z
Cs| 0.7501| 0.432110.5000
Cp | —=0.4337 | —0.7501 | 0.5000
§ = éA X éB = (Sx, Sy, Sz)

— (0.4321)(0.5000) — (—0.7501)(0.5000)
—(0.7501)(0.5000) + (—0.4333)(0.5000)
+(0.7701)(—=0.7501) — (—0.4337)(0.4321)

S =(0.5911,-0.5911,+0.3753)
o 0.5911
0= —
(—0.5911)
a = 135° dip direction
S
tand = ——~
[S2+ 82
B 0.3753
~[(0.5911)2 + (0.5911)2]1/2
tana = 0.44895
§=24.2°
FS(dry, C = 0, § = hrin) = o?
tand
_ tan 28
" tan24.2
FS=1.18 PRI
- (>1.10)

(added cohesion and added friction will increase this FS)
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26. Given: Wedge data in table, sketch
Find: dip, dip direction, length of AO

Solution:
y(N)
A
(0]
(PLAN)
/< B [ ) O/
Trace AO
~F
- F
L1 A
> x(E)
A
Note:
X y 2z
C, | sina,sind, | cosa,sind, | cosd,
Cp | sinaysinds | cosaysindy | cosdy
o, =0° §,=45°
af = 90° (Sf =45°
S 1S 1S |8
1 1
ol I Bl
1 1
©% 1519 15
S

Isin35.5 =120
[=208ft

y(N)

A

a=45°
%

§=35.3°

length
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Given: Wedge data
Find:

(a) Dip direction and dip of lines of intersection of A & B
(b) Range of azimuths that are safe
(c) Length of line formed by A & F (face)

Solution:
(a) Need normals to A & B
Notes:
Cy=sindsina Cy=sindcosa C,=cosé
x y z
A | V31 V33 1
122 2 2 2
5 | V33 V31 1
1202 2 2 2
s LTV (R B | (8L 31 [|3(_v3)_33
’ 4)\2 4 2 42 42 4 4 4 4
o |3tV3 3-V3 (943
’ 8 8 16
S: 1 0.5915 0.1585 —0.7500
. 0.5915 S«
sina = =
(0.59152 +0.15852)1/2 (S}C+S§)1/2
sina = 0.9659
o=75° JXAB
Gns— S
(S2 + 82+ 82)1/2
. 0.75
"~ (0.59152 4 0.15852 + 0.752)1/2
sind = 0.7746
8=50.8° Oam

(b) The face dip direction is 75° if a line of intersection does not penetrate the
face, then sliding cannot occur. Thus 75° & 90° defines range of dip direction
that are unsafe (—15°, +165°)

.. safe (165°, 345°) Safe o]
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(c)

x y z
. | NI '
) 2 2 2 2 2
F: sin 85sin 75 sin 85 cos 75 cos 85
F: 0.9623 0.2578 0.0872
Sar: | 0.0654 —0.1289 | —(0.03776 — 0.48115) | 0.1116 — 0.7217
Sar: | —0.0635 0.44339 —0.6101

sino =

—0.0635

[(=0.0635)% + (0.4433)2]1/2

sina = —0.1418

a = —8.2° quadrant!
“ins — —(—0.6101)
(0.06352 + 0.44332 + 0.61012)1/2
sin§ = 0.8062
8§=53.7°
-
sin §
259
~0.8062
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30. Given: Slices analysis with S loads

0 N
X

RY}(N!tan¢ + C))
RX%(Wisina; 4 S;% cos ;)
when N/ = W;cosa; — P; — §;sin ;.

Show: FS=

Solution:

Overall equilibrium

E'{(W,'x,' + Siyi) = E?‘C,‘A,'R

Z[W,R sin(w;) + SiR; cos(B;)] <
AR

= Y7, max ——
’ fsi Ws
e assume fs; =fs;j=fs=FS —
e and MC strength so Ss

Free body

T;max =o; tan; +¢;

. 2(W;Rsing; 4+ S;R; cos B;)

X(o] +tan ¢; + ¢;)A;R
B ES
_ ¥¥(N/tang; + C;))R ’\P
N 7 [W,- sina; + S; (%) cos ﬂ,»]
when N/ =0/A; & Cj=¢;-A;
e Normal force equilibrium
o Neglect side forces

>,F=0

0=W,-N-P-S§,
N!= W, cosa; — P; — S;sina; (each slice i)

- ES
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31.

Given: Figure and table data

R=300ft H=120ft y=95psf C=367psf ¢=16° p=29°

Find:

(1) Seismic force on slice 7, a;=0.15

(2) Water force on bottom of 7

(3) ES of 7 S w2
(4) FS slip surface, dry & no seismic force. S\

Solution:

(1) § = ma iz 24° XNI
P

_ Woisge
g

S=015W
S = 0.15(10.29)(10°)
S = 1.544(10°) Ibf

(2) P=pA p=rH
= (62.4)(82)(75)(1)
P = 3.838(10°) Ibf

R(7)
() ES(7)= 5o
D= W.+5,

= (10.29)(10°) sin 24 + 1.544(10°) cos 34
D = 5.596(10°) Ibf
R = N'tan¢ + cL

N = W,—P—S§,
= 10.29(10°) cos 24 — 3.838(10°) — 1.544(10°) sin 24
N’ = 4.934(10°) Ibf

. 4.934(10") tan 16 + (367)(75)(1)
B 5.596(10%)

FS(7)
FS(7) = 0.302
Note: (Slopes 1-5 are neg.)
Y Mg
sMp
Y W,tang+ Y10 C+ YT W,

Yo W
_ 52.67(105) tan 16 + (367)(540) + 5.97(105)
N 12.93(105)

(4) FS =

(dry, no seismic force)

FS=1.78
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32. This amounts to part 4 of 31.

FS =1.78
XMy
ES =
YMp

1OR(W cosatang 4 cL) + Y} R Wsina
TR Wsina

ES =

coasin 31(4).
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33.

Given: Circular are failure data in Fig. 2.33 and Table 2.14.
Find: FS(2), ES(7), show total FS.

Solution:

FS=XMg/EMp, R =radius of slips circle

Slice 2
ps _ RlOWtang) £ C)
RW,
P = y,WL(1)
= (62.4)(1)(52)(30)

P = 9.734(10%) Ibf

C = cL(1)
= (367)(30)(1)
C =1.101(10%) Ibf

normal equilibrium:

W, = Wcosa— P
= 27.78(10%)(cos 28) — 9.734(10%)
= 24.49(10%) — 9.734(10%)

W/ = 14.76(10%) Ibf

W, = Wsina But is resisting!

CFS — [(W, tan¢ + C)R 4+ RW]
.. - O

FS — oo Slice 2 Slice2

Slice 7

P = (62.4)(1)(75)(82)

P = 3.838(10°) Ibf
W/ = 10.29(10°) cos(24) — 3.838(10°)
W/ = 5.563(10°) Ibf

C = (367)(75)(1)
C =2.753(10%) Ibf

W, = 10.29(10%)sin 24
W, = 4.185(10°) Ibf
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Mg = R(W.tan¢ + C)
= R(5.563(10°) tan 16 + 0.275(10°)
Mg = R(1.870)10° Ibf

Mp = RW,
Mp = R(4.185)(10°)

b _ R(1.870)(10%)
~ R(4.185)(10%)
FS = 0.447

Algebraically

SMg
XMp
_ LS R(W,tang + C)i+ 37, R(W.);

ES =

ES
10 R(W,);

Slice 7
«— "
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34. Given: Circular failure in sketch

Find: Expression for safety factor

Solution:

By definition

S — Mg _ <Moments resistance)

Mp Moments driving
Mg = Z (forces)(lever arm)
slices R
Mp = Z (forces)(lever arm)
slices D

lever arm =R
since circular failure

5 2
Mg = RY (Ntang¢+C);+ Y RT;
i=1 i=1
5
Mp =R T
i=1
T = Tangential component of weight
N = Normal component of weight
a = inclination of slice bottom from horizontal
N = W cos(a)
T = Wsin(«)

Note: No water table shown, assume dry
_ Y R(Ntang + C); + 37| RT;

Y03 RT;
where ¢cA = C and A = area of slice base

ES
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Dynamics, Toppling

35. Given: Slope situation

Find: a, v, s, of mass center.

Solution:

Mass center obeys

F = ms where s = down hill distance
$ = velocity
§ = acc. of mass center

e Choose origin of coordinates 7, s at mass center starting point A
Attimet=0, s=5§=5=0
e Downbhill forces = D, Resisting up hill forces=F

SoF=D-R
D = downhill component of weight

M.C
Free body of slide mass -
D = Wsina
N = Wecosa
P = 0 dry assumption Wn

e Frictional resistance W, ia N '\P

Ff=N'tan¢
W
. Wsinae — Wceosatang = —5§

Wsina — Wcosatangp = —s

gzg[w} (@ > @)

cos ¢

(If > « then no sliding occurs and § = 0) (a < ¢)
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At constant slope
§=5t+35(0)

i = [M]t (> 0)
cos ¢
|:sin(oz - ¢)] t?
s=g|—

cos @ 2 (@2 0)
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36. Given: Profile p =15°

Find: h5
Solution:

(1) Draw ¢-line
(2) From notes on dynamics of sliding, 0 = Wh — Wd tan ¢

h
tang = 7

h = 1,200+ 650 — hs
d =dy+dy+100+ds

tan 35 = 1’;00
650
tan70 = N
tan70 = Z—‘Z
4= s s T 10
can 15° — (1,200 + 650 — hs)

1,200 65° hs
(tar135 + tan 20 + 100 + tanZO)

h
(0.260) (1,713.0 + 1,786 + 100 + 520) = 1,850 — hs

tan
0.268 b
964 + — 273 _ 1,850 — b
tan 20
1,738 hs = 886
hs = 510
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37.

Given: Topping rock block

Show: tan(«) < % tan B for stabil-
ity against toppling.

Solution:
Equilibrium requires

Y, F=W Wcosa=N
F=0 Wsina=T
b

b
O:WSE+NX—N—

YoM =0 3

where x = distance from 0 to N

b
,',Wsinaz—}—Wcosa(
. b_b
emozz_2 x

_b /ot
x—2 2anoz

but with a triangular stress distribution

x
v
w|

NS
|
| S
w| S

tana >

b

tan o, 5= tan 8

N
%
ST

Stana < 3 tan B

b
x—z)zo

(for stability w.r.t. toppling)
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38. Given: Rock block on slope
Find: Dimension necessary to prevent

toppling.
To prevent toppling, must be in equilibrium

YF=0:N=W,=Wcosa
T=W,=Wsina
b
M=0 Nx—T§=0
o b T
SLx = > N

x = <§> (tana) & x<é

2

. b t
. E ano
> tano

b > btan28
b > h(0.5317)

b
2

IA

I
\

square base .-, ¥’ into page=>.
eg. if h=10b=0b'"> 53171t
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Added Problems

39. Consider a “highwall” in flat sedimentary strata as shown in the sketch. Three
sets of joints are present. One set, J1, is composed of bedding plane joints. The
other two sets, J2 and J3, are at right angles to the bedding and to each other as
is often the case. The vertical joints ]2 and ]3 allow vertical separation of a large
block of ground. For each meter of block into the page, estimate the acceleration
(from blasting) that will just move the block forward as it slips along the clay
interface. Note: the cohesion of the clay interface is 100 kPa; the friction angle
is zero.

|<—65m—>|

Sandstone

Siltstone

Shale

Sandstone —

Given: large rock block, material properties of the interface
Find: acceleration a necessary to move the block.

Solution:

Draw a free body diagram with inertial force.

Thus, W = weight, N = normal reaction,
S =inertial force, T = tangential reaction.
Now consider a safety factor with respect
to sliding. Thus, «

S
FS = R/D
= (Ntan (¢) + cA)/S w
= (0+ cA)/S Y
= (0.1)(65)(1)/(W/g)a ———
N T

= (0.1)(65)(1)/(22.6)(65)(50)(a/g)
FS = 0.0885/(a/g)

where a reasonable specific weight of 22.6 kN/m? is assumed. The ratio (a/g) is
a seismic coefficient. At the instant of slip, FS=1, so (a/g) =0.0885.
Thus, a=(0.0885)(9.807), so a=0.868 m/s*
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40.

Suppose the cohesion of the failure surface in the sketch is diminished with each
blast by fracturing of the interface, so the persistence p, defined as the ratio of
facture area to total area, decreases by steps with each blast. Further suppose
blasting occurs twice a day and the slope moves downhill 0.1 inch per blast. Is
there a day when the slope continues to accelerate after a blast? Note: cohesion
and angle of friction of the failure surface are (900 psi, 40°). The fractured portion
of the failure surface has cohesion and friction angle (0 psi, 30°). Specific weight
is 150 pcf.

500 ft

Given: slope data
Find: days to failure.

Solution:

By inspection, the failure surface inclination is less than the friction angle before
any blast damage has occurred (40 versus 35 degrees), so the slope is safe at
the outset. However, the friction angle of damaged, fractured failure surface is
less than the failure surface slope (30 versus 35 degrees) and is also cohesion-
less, so failure will occur when blast damage extends the length of the slope.
Blasting occurs twice per day, so the fracturing is 0.2 inch per day. The slope
length is 500/sin(35) =872 ft or 10,461 inches. Days to failure are no more than
10,461/0.2 = 52,300 or about 14.3 yrs.

When the factor of safety is unity, then the next blast will accelerate the slope.
In this situation

FS = R/D = (W cos(35) tan(¢) + cA)/ W sin(35)

The weight of the slide mass remains constant as do the area and inclination of
the potential failure surface. However, the cohesion and properties of the failure
surface change with persistence. These properties may be estimated with the help
of the Terzaghi jointed rock mass model. Thus, from equations 2.4 in the text

tan(¢) = (1 — p)tan(¢,) + (p) tan(¢;)
c = (1=ple + (p)c))
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Thus,

tan(¢) = (1 — p)tan(40) + (p) tan(30) = 0.8391 — 0.2617p
¢ = (1= p)(900) + (p)(0) = 900 — 900p (psi)

After substitution into the factor of safety equation and setting FS =1,
W sin(35) = W cos(35)(0.8391 — 0.2617p) + (900 — 900p)A
that may be solved for persistence p after computing W and A.

W = (yH*/2)(cot(e) — cot(B)

= (150)(500)(500/2)(cot(35) — cot(45))
W = 8.028(10°) Ibf
A = H/sin(a) = 500/sin(35) = 871.7 ft

After substitution

(8.028)(10°)(0.5736) = (8.028)(10°)(0.8192)(0.8391 — 0.2617p)
+(900 — 900p)(871.7)(144)

and solving: p=0.993 indicating the entire failure surface will sustain blast
damage before slope failure.

Check so far:

tan(¢) = (1 —0.993) tan(40) + (0.993) tan(30) = 0.5792
¢ = (1-0.993)(900) + (0.993)(0) = 6.3 psi

8.0280(10°)sin(35) = 8.028(10°) cos(35) tan(30) + 6.3(144)(500/sin(35))
4.605(10°) = 3.797(10°) + 7.908(10%)
= 4.588(10°)

which is a reasonably close check, although not exact.
The time to failure is therefore as before, 14.3 yrs.

Comment: Slopes sometimes appear to fail for no apparent reason. Day after day,
operations are much the same, so the question that arises is what has changed?
Why the failure? One answer is blasting causes slope acceleration but with pass-
ing of the transient, safety returns. However, the some loss of cohesion occurs
with each blast. Eventually, the slope may fail as cohesion is destroyed entirely.
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41.

Bolting reinforcement of a potential wedge failure is anticipated. Bolts will be
installed perpendicular to the face of the wedge as indicated in the sketch. All
bolts will be tensioned the same amount and installed on a square pattern S x Sm.
Derive a formula for the wedge factor of safety with respect to sliding down the
line of intersection of joints A and B that includes the effect of bolting. Assume
there are m4 and mp bolts intersecting planes A and B.

Given: Wedge failure data (dip and dip direction, cohesion and friction angles,
specific weight, upland, face and foreland dip and dip directions, water table)
and bolting data (spacing, number, tension)

Find: Bolted wedge safety factor formula.

Solution:

The FS expression without bolting is equation 2.23 in the text. Thus,
FS, = R/D = (Ra + Rg)/D
Bolting will improve the resistance by mobilizing more frictional resistance via

normal force (N) components and directly by uphill components (T) of bolt
tension in much the same way as in planar block slides. Thus,

FS, = R/D = (R4 + Natan(¢4) + T4 + Rg + N tan(¢p) + Tp)/D

An actual computation requires procedures for computing the bolting force com-
ponents. Because all bolts have the same direction and tension, the total forces
in this formula are simply the number of bolts times the force per bolt, that is,

Fa (bolt) = my f(bolt), Fg (bolt) = mp f(bolt)
These forces are directed normal to the face, that is, parallel to the face normal,

ng. With the normal to the joint faces, 74 and 7. These normal directions may
be obtained from Table 2.1 in the text.
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Projection of the bolt forces onto the normal directions of the joint planes is
achieved with the vector dot product 7 - 724 = cos(04f), and similarly, 7 - 77 =
cos(0gr). Thus,
N = Facos(0ar) and Np = Fpcos(6F)
The uphill components of the bolt forces should point up the line of intersection.
If a unit vector s down the line of intersection has been computed in the process
of determining the dip and dip direction of the line of intersection, then the vector
dot product may again be used, such that
S np = cos(6sr).
The uphill bolt forces are then
Ty = Facos(fsg) and Tp = Fgcos(sF)

which completes the analysis.
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42.

Consider a potential wedge failure with seismic load Ws illustrated in the asso-
ciated sketch. The seismic force is estimated as wedge weight W times a seismic
coefficient a; appropriate for the region. The seismic force acts horizontally
through the center of the wedge and has an azimuth equal to the dip direc-
tion of the line of intersection. Modify a wedge safety factor formula to include
such a seismic force.

Given: Given: wedge failure data (dip and dip direction, cohesion and friction
angles, specific weight, upland, face and foreland dip and dip directions, water
table) and seismic coefficient.

Find: Factor of safety formula.

Solution:

The seismic force (Ws) will decrease resistance by decreasing frictional resistance
via normal force (N) components, but also will add to the driving force directly
by downbhill components in much the same way as in planar block slides. Thus,

[Ra + (Na — Nia) tan(¢pa) + Rp + (Np — N;p) tan(¢p)]

ES, =
D + TsA + TsB

To be useful, details for calculating the seismic force components are needed.
With reference to the sketch that shows the line of intersection in true dip, the
normal and tangential components are seen to be similar to weight components,
although the normal component of seismic force acts in the opposite direction
of weight. Therefore, the formulas for normal weight components may be used
to compute the normal components of seismic force.

Ns
Ts
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Thus, from equations 2.31 in the text

Ns) sin(§ Ns) sin(§
Noa = M’ N = M, Ws = Wa,, Ns= (Ws)cos(s,)
sin(8, + 8p) sin(8, + 8p)

where Ws follows from the definition and Ns is simply the normal component
of Ws.

The angle between the horizontal and the downhill direction is simple the
inclination of the line of intersection §;. The downhill seismic forces are then

Tia = Ws cos(8s) and Teg = Ws cos(ds)

which completes the analysis.
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43.

Consider a rotational slide in the form of a spherical segment as shown in the
sketches. Outline a “method of columns” analogous to the method of slices
that accounts for three-dimensional effects not present in the two-dimensional
analysis using the method of slices. (After Chen, 1981)

o)

Single column

Given: Spherical slid mass with center of rotation at O with radius R in a slope
of height H with angle § from the horizontal.
Find: Method of columns similar to the method of slices.

Solution:

First fix a coordinate system with origin at the center of rotation, then partition
the slide mass into slabs. Begin with a conventional slices partition of a central
slab; proceed to the outer boundary of the spherical segment as shown in the
sketch using a distance Az for a total of # slabs. Let the angles from the toe of
the central slab to the crest be @ and B (sphere radius =R).
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y
(0] x n
S —
AZ /ﬁ
z B 1 o4
>
a
:
1
! s H
1 —_—
1
' R
1
1
: |
! Y
1

The mid-planes of a slab “i” have coordinates —z(i) = (2i — 1)(Az/2) from i=1
to i =n slabs. The radius (i) of the ith slab is 7(i) = R?> — z(i)*>. Each slab may
now be treated in the same manner in the two-dimensional method of slices.
Recall, moment equilibrium requires [, RTdA = |, rydV that is approximated
by 3" Rsin(a;) W; = Y~ RTj(strength)/fs;. The last is just equation 2.43 in the text.
Assuming, as in the method of slices, that the global ES is equal to the local slice
fs, one has for the central slab with radius R

Z RTj(strength)

ES =
Z R sin(e;) W;

The same analysis applies to the other slabs with radius 7(7). In consideration of
all slabs (i) requiring summation over (i):

Z [Z r(i)Ti(strength)] _
> [ rtisin(a) W; |
Geometric details could be computed systematically in a spread sheet for a site-

specific spherical segment slip surface. Obviously, only the outline is given here.
Two references that lead to more details about the method of columns are:

ES =

Chen, R. H. (1981) “Three-dimensional slope stability analysis.” Joint Highway
Research Project, Engineering Experiment Station, Purdue University, Report
JHRP-81-17.

Hovland, H. J. (1977) “Three-dimensional slope stability analysis method.”
Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. 9,
pp- 971-986.



Slope Stability 125

44.

Consider a rotational failure as shown in the sketch with the water table at the
crest. The water pressure on the circular slip surface is given by p = y,,z, that s, by
the product of water specific weight times water depth. The pressure distribution
will show an increase from zero at the crest to a maximum and then a decrease
to zero at the toe of the slope (a). An impervious seal is applied to the slope, but
no drain holes are provided (b). Derive a formula that shows the effect of the
seal on the slope safety factor

A Impervious seal

Zaih

In this cases (a) and (b), the water pressure on the slip surface will increase
steadily with depth below the water table to a point directly below the crest.
At points further down the slip surface the water pressure in (a) depends on the
vertical distance between the slip surface and the slope face. In case (b), the water
pressure below the crest will be greater than in case (a) from the difference in
water heads (distance below water tables). This difference will affect all slices
below the slope face and is equal to the distance from the crest elevation to the
slope face. Thus, the pressure difference between the two cases is Ap = y,, Az and
according to equation 2.45 in the text the decrease in slope safety factor is

(W, — AP)tan(¢)
AFS = Z’
W

where AP =AAp (A=area of slice base) and summation is over only the slices
below the crest to the left of the dotted lines. The decrease in safety factor is the
effect of the seal without drains.
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45. An unstable slope poses a threat to a housing development below. The height to
the unstable mass is H = 185 ft and the slope angle a = 30 degrees. The effective
angle of sliding friction is ¢. (a) Estimate the “run-out” distance the mass center
moves from the slope toe before coming to rest. (b) Estimate a barrier height
required to stop the slide mass before traveling the entire run-out distance.

Given: Unstable slope
Find: (a) run-out distance, (b) barrier height.

Solution:

First sketch the situation.

Barrier height h B H

) _r—u_n‘-—o—u-t distance = D
— x—» fe— 1 —

From the sketch:

D=L-1
D = [H/cot(¢)] — [Hcot(a)]

The height of a barrier necessary to stop the mass center short of the full run-out
distance is given by

tan(p) = h/x
. h = xcot(p)



