
Chapter 2

Methods of Proof

2.1 What is a Proof?

2.2 Direct Proof

1. If m, n are odd then, by definition, m = 2k+1 and n = 2`+1 for some
k, ` ∈ Z. Multiplying, we obtain:

m · n = (2k + 1) · (2` + 1) = 2(2k` + k + `) + 1,

which is odd by definition.

2. If n is even then, by definition, n = 2` for some ` ∈ Z. Multiplying, we
obtain:

m · n = m(2`) = 2(m`),

which is even by definition.

3. If n is even, then n− 1 is odd. Now, n = (n− 1)+1, so n is the sum of
two odds. If n is odd, then n = n, so n is the sum of one odd integer.

4. Let α < β be distinct real numbers. Let ε = β − α > 0. Choose a
positive integer N so large that 1/N < ε. Look at the numbers {j/N}
as j runs through the integers. These numbers, in sequence, are closer
together than ε. So one of them must lie between α and β. The solution
of Exercise 5 is similar.
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6. The property is true for k = 3, since 23 = 8 > 7 = 1 + 2 · 3. Assume
that the property is true for k = n−1. We want to show that it is true
for k = n. In other words, we want to prove that

2n > 1 + 2n.

Observing that 2n = 2 · 2n−1, we find an obvious place to apply the
mathematical induction hypothesis:

2n = 2 · 2n−1

> 2 · (1 + 2(n− 1)) from the mathematical induction hypothesis

= (1 + 2n) + (2n − 3)

> 1 + 2n since 2n − 3 > 0 for n ≥ 2.

7. It is true for n = 5:

25 = 32 > 26 = 52 + 1.

Assume that it is true for n− 1 ≥ 5. We must prove it for n. We can
write:

2n = 2 · 2n−1

> 2((n− 1)2 + 1) by the mathematical induction hypothesis

= n2 + 1 + (n2 − 4n + 3)

= n2 + 1 + (n2 − 4n + 4) − 1

= n2 + 1 + (n− 2)2 − 1

> n2 + 1 since (n− 2)2 − 1 > 0 if n > 4.

8. Assume that we have n mailboxes. Let `(j) be the number of letters
in box j. Now

`(1) + `(2) + · · · + `(n) = n+ 1 ,

since all the letters taken together total n + 1 letters. Dividing by n
gives

`(1) + `(2) + · · · + `(n)

n
=
n+ 1

n
> 1 .

So the average number of letters per box exceeds 1. This can only be
true if some box contains more than 1 letter. Thus some box contains
two letters.
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9. It cannot be that just one letter is in the wrong envelope. If letter a
went into envelope B, then at least letter b went into envelope A (of
course it could be more complicated than that).

10. If k = 2j + 1 is odd and ` = 2m+ 1 is odd, then

k + ` = (2j + 1) + (2m+ 1) = 2j + 2m+ 2 = 2(j +m+ 1) ,

which is even.

2.3 Proof by Contradiction

1. By the usual pigeonhole principle, some mailbox will contain at least
two letters. Clearly, of these two letters, either both are red or both
are blue or there is one of each color.

2. We can write m = 3k and n = 3` for some k, ` ∈ N. Let us assume,
without loss of generality, that k ≤ `. Seeking a contradiction, assume
that m+ n = 3r, for some r ∈ N. Then we have:

m+ n = 3` + 3k = 3k(1 + 3`−k) = 3r , with `− k ≥ 0.

Now note that since 3k = m < m + n = 3r, it must be that k < r.
Hence,

1 + 3`−k = 3r−k, with r − k ≥ 0.

The righthand side of the last equality is either 1 or divisible by 3,
whereas the lefthand side is bigger than or equal to 2 and definitely
not divisible by three. Thus, the equality must be false, which means
that our original hypothesis m+ n = 3r, for some r ∈ N) was false.

6. Following the given scheme, we have 2q2 = p2. If q has, say, r prime
factors, then q2 has 2r prime factors. Thus 2q2 has 2r+1 prime factors.
On the other hand, p2 must have an even number of prime factors, and
we arrive at a contradiction. Hence our original assumption

√
2 = p/q

must be false.

7. Write n = k2, and suppose that n + 1 = `2 for some l ∈ N. Then
1 = (n + 1) − n = `2 − k2 = (` + k)(`− k). Then ` + k = 1, and that
is impossible for natural numbers ` and k.
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8. Suppose not. If neither integer is even, then they are both odd. So one
is k = 2m+ 1 and the other is ` = 2j + 1. But then

k · ` = (2m+ 1)(2j + 1) = 4mj + 2j + 2m+ 1 = 2 · (2mj + j +m) + 1 ,

which is odd. That is a contradiction.

9. Refer to the solution of Exercise 8.

10. False. 12 + 22 = 5, which is not a perfect square.

11. True: Suppose, seeking a contradiction, that there are no perfect squares
in that list. This means that all the numbers in the list fall between
two consecutive squares, i.e., there is a k such that k2 < n < n + 1 <
. . . < 2n + 2 < (k + 1)2. We then have:

2n + 2 < (k + 1)2 = k2 + 2k + 1 < n+ 2k + 1,

or
n+ 1 < 2k.

Squaring both sides, we obtain:

n2 + 2n+ 1 < 4k2 < 4n,

or
(n − 1)2 = n2 − 2n+ 1 < 0,

which is impossible.

12. Certainly 6 = 3+2+1. There are many other examples. Such integers
are called perfect numbers.

13. Notice that
m2 − n2 = (m+ n) · (m− n) ,

which is composite.

14. We see that 12 + 22 = 5, which is prime.

15. Certainly
(1 + x)2 = 1 + 2x+ x2 > 1 + x2 .
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16. False: Take n = 2, a1 = 1, a2 = 4. Then the inequality would read:

5

2
=

1 + 4

2
≤ (1 · 4)1/2 = 2,

which is clearly false.

18. Let p < q be distinct rational numbers. Let ε = q − p. Choose an
integer N so large, N not a perfect square, so that 1/N < ε2. Then
1/
√
N < ε, and 1/

√
N is irrational. Examine the sequence {j/

√
N}.

These numbers, in sequence, are closer together than ε. So one of them
must lie between p and q.

2.4 Proof by Induction

1. Now P (n) is the statement

12 + 22 + · · ·n2 =
2n3 + 3n2 + n

6
. (∗)

The statement P (1) is obvious becaise (2 + 3 + 1)/6 = 1. Assume now
that we know P (n), and we shall use this hypothesis to prove P (n+1).

We add (n+ 1)2 to both sides of (∗) to obtain

12 + 22 + · · ·n2 + (n+ 1)2 =
2n3 + 3n2 + n

6
+ (n+ 1)2

or

12 + 22 + · · ·n2 + (n + 1)2 =
2n3 + 3n2 + n+ 6(n2 + 2n+ 1)

6

=
2(n+ 1)3 + 3(n + 1)2 + (n+ 1)

6
.

This is the statement P (n + 1). The induction is complete.

2. The inductive statement is of course that

2 + 4 + · · · 2k = k2 + k .

The statement is obvious for k = 1.
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Now assume that P (k) is known. So

2 + 4 + · · · + 2k = k2 + k .

We add 2k + 2 to both sides to obtain

2 + 4 + · · · + 2k + (2k + 2) = k2 + k + (2k + 2)

or
2 + 4 + · · · + 2k + (2k + 2) = (k + 1)2 + (k + 1) .

But this is just the statement P (k + 1). The induction is complete.

3. The flaw in the reasoning is that we never enunciated what P (n) was.

4. Of course the case k = 3 is a triangle, and we certainly know that the
sum of the angles in a triangle is 180◦. Now assume that the result is
known for a convex polygon with k sides.

Let P be a convex polygon with (k+1) sides. Then P may be thought
of as a convex polygon with k sides with a triangle added on. And that
adds 180◦ to the interior angles. That completes the induction.

5. That ordinary induction implies complete induction is obvious.

Now suppose that complete induction is valid. Assume that we have a
statement P (n) and that P (1) and P (j) have been established.

6. If one starts the mathematical induction process from a number n0 +
1, n0 ≥ 1, then P (1) might not be true (it might not even be defined),
and we would not be able to use mathematical induction according to
the statement in the text. But we can modify this statement using the
following trick:

Define a property P ′ as follows:

P ′(k) is true if P (n0 + k) is true .

Then P ′(1) is true since P (n0 + 1) is true, and P ′(n − 1) ⇒ P ′(n)
because P (n0 + n − 1) ⇒ P (n0 + n) by hypothesis. But now we can
apply mathematical induction (as stated in the text) to the property
P ′, so that P ′(n) holds for any natural number n. This implies that
P (n0 + n) holds for all n ∈ N, or equivalently, P (m) holds for all
n ≥ n0 + 1.
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9. Let P (n) be the statement, “If n + 1 letters are placed into n mail-
boxes, then some mailbox must contain two letters. When n = 1, the
claim is that if we put two letters into one mailbox, then some mailbox
must contain two letters. Obvious. Now suppose that P (n − 1) has
been proved. We have n mailboxes, and we place n + 1 letters into n
mailboxes. If the last mailbox contains two letters, then we are done.
If not, then the last box contains one or two letters. But then the first
n− 1 mailboxes contain at least n letters. So the inductive hypothesis
applies, and one of them must contain two letters. That completes the
inductive step, and the proof.

10. The assertion is true for n = 1 by inspection.

Assume now that the assertion is verified for n = j. Then we have

(
a 2
0 a

)j+1

=

(
a 2
0 a

)
·
(
a 2
0 a

)j

=

(
a 2
0 a

)
·
(
aj 2jaj−1

0 aj

)

=

(
aj+1 2(j + 1)aj

0 aj+1

)
.

That completes the inductive step.

11. The assertion is clear for n = 1. Now assume that it is true for n = j.
We write

(j + 1)3 − (j + 1) =
(
j3 + 3j2 + 3j + 1

)
− (j + 1)

= j3 + 3j2 + 2j

= (j3 − j) + (3j2 + 3j) .

Now, by the inductive hypothesis, j3 − j is divisible by 6. Also

3j2 + 3j = 3j(j + 1) .

Since either j or j + 1 is divisible by 2, this last expression is also
divisible by 6. Hence (j + 1)3 − (j + 1) is divisible by 6, and the
mathematical induction is complete.
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13. We will prove that, for any positive integer n,

1√
1

+
1√
2

+ · · · + 1√
n
≥

√
n .

The claim is plainly true for n = 1. Now assume that it has been
established for n = j. Then we have

1√
1

+
1√
2

+ · · · + 1√
j

+
1√
j + 1

≥
√
j +

1√
j + 1

.

So we need to show that

√
j +

1√
j + 1

≥
√
j + 1 .

Multiplying both sides by
√
j + 1, we see that this is the same as

√
j(j + 1) + 1 ≥ j + 1

or √
j(j + 1) ≥ j .

Now squaring both sides gives the result. The mathematical induction
is complete, and the result proved.


