
 

Chapter 2 

 

Problem 2.1 In FCC the relation between the lattice parameter and the atomic radius is  
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R
  , then α=4.95 Angstroms. On the cube phase (100) correspond 2 atoms (4x1/4+1). Then 

the density of the (100) plane is  

 r(100) =
2

4.95x10-7
= 8.2x1012  atoms/mm2 

In the (111) plane there are 3/6+3/2=2 atoms. The base of the triangle is 4R and the height 2 3R  

After some math we get ρ(111)=9.5x1012 atoms/mm2. We see that the (111) plane has higher 

density than the (100) plane, it is a close-packed plane. 

 

Problem 2.2 The (100)-type plane closer to the origin is the (002) plane which cuts the z axis at 

½. This has  

 d(002) =
a

0 + 0 + 22
=

a

2
=

2R

2
 

Setting R=1.749 Angstroms we get d(002)=2.745 Angstroms. 

In the same way 

 d(111) =
a

1+1+1
=

a

3
=

4R
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and d(111)=2.85 Angstroms. We see that the close-packed planes have a larger interplanar spacing. 

 

Problem 2.3. The structure of vanadium is BCC. In this structure, the close-packed direction is 

[111] , which corresponds to the diagonal of the cubic unit cell where there is a consecutive 

contact of spheres (in the model of hard spheres). Furthermore, the number of atoms per unit cell 

for the BCC structure is 2. The first step is to find the lattice parameter α.  The density is 
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Where  is the Avogadro’s number. Therefore the lattice parameter is 
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The length of the diagonal at the [111]  close-packed direction is 3a , which corresponds to 2 

atoms. Hence the atomic density of the close-packed direction of vanadium (V) is 
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The aforementioned atomic density result translates to 3750 atoms/μm or 3.75 atoms/nm. 

Problem 2.4. The lattice parameter for the FCC structure is 
4
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R
  . The (100)  plane is the 

face of the unit cell. The face comprises ¼ of atoms at each corner plus 1 atom at the center of 

the face. Hence the face consists of 4 (1/ 4) 1 2    atoms.  The atomic density of the (100)

plane is 
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The (111)  plane corresponds to the diagonal equilateral triangle of the unit cell. The base of this 

triangle is 4R . Using the Pythagorean Theorem, we can calculate the height of the triangle which 

is 2 3R . Thus the area of the triangle is 2( / 2) 4 3base height R  . The equilateral triangle 

comprises 6 of the atoms at each corner and ½ of the atoms at the middle of each side. Thus the 

equilateral triangle consists of 3 (1/ 6) 3 (1/ 2) 2     atoms. The atomic density of the (111)  

plane is 
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The ratio of the atomic densities is  
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Therefore (111) (100)   and specifically the (111)  plane has 15% higher atomic density than the 

(100) plane. This is important since the plastic deformation of metals (Al, Cu, Ni, γ-Fe, etc.) is 

accomplished with dislocation glide on the close-packed planes. 

Problem 2.5. The ideal c/a ratio in HCP structure results when the atoms of this structure have 

an arrangement as dense as the atoms of the FCC structure. The distance between the (0001)  

bases of the HCP structure is c. Using the fact that the (0001)  planes of HCP structure 

correspond to the (111)  planes of the FCC structure, we get 

 (111)2
FCC

c d     

Where (111)d  is the distance between the (111) close-packed planes. We find that 
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Thus, 
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Therefore, the ideal ratio c/a for close packing in HCP structure is equal to 1.63. The c/a ratio for 

zinc (Zn) is 1.86 while for titanium (Ti) is 1.59 (see Table 7.1, Book). This means that the 

distance between the (0001)  planes is longer in Zn than in Ti. This fact affects the plastic 

deformation in these metals, since the slip on (0001)  planes is easier in Zn than in Ti. Indeed the 

critical shear stress of Zn is only 0.18 MPa, while of Ti is 110 MPa. Due to this, the plastic 

deformation in Ti is performed on (10 1 0)  plane, where the critical shear stress is approximately 

49 MPa. Thus in Ti the slip is not performed on the close-packed planes of the crystal structure. 

For more details look at the 7.3 paragraph of the book (plastic deformation of single crystals with 

slip). 

 

Problem 2.6. The cell volume of HCP structure is the product of the base area (hexagon) 

multiplied by the height c. The base of hexagon is 26 3A R and the height is 
8
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R
c  . As a 

result, the cell volume is  

324 2V R  

 The number of atoms per unit cell for the HCP structure is 6, thus the atomic packing factor is 
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Regarding the BCC structure, the number of atoms per unit cell is 2 and the cell volume is 
3a , 

where 
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a  . Therefore the atomic packing factor of BCC structure is  
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Since the atomic packing density of BCC is less than that of the HCP, the diffusion in BCC 

(movement of atoms inside the lattice) is faster. 

 

Problem 2.7 The density is 

mass of cell atoms

cell volume
   

The structure of copper (Cu) is FCC and the number of atoms per unit cell is 4. The atomic mass 

is 
AN


, where   is the atomic weight and AN  is the Avogadro’s number. The cell volume is
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, thus the density is  
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Problem 2.8 Notice that the atomic volume is not 34

3
R ! It is the corresponding volume of 

every atom of the structure plus the empty surrounding space inside the cell. Due to the fact that 

the structure of gold (Au) is FCC, the number of atoms per unit cell is 4. Therefore the atomic 

volume is 
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For the FCC structure we get that 
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After replacing the value of the atomic radius of gold R , we find that 
29 31.7 10 m  . Since

101 10
o

m   , the atomic volume of gold is  
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The molar volume mV  is the volume corresponding to one mole of gold and is obtained by 

multiplying the atomic volume by the Avogadro’s number. Thus the molar volume is 

5 31.02 10 /m AV N m mol     

 

Problem 2.9  

For the atomic radius of the iron atom,  RFCC=1.270 and RBCC=1.241 Angtroms (A) 

FCC has 4 atmos/cell while BCC has 2 atoms/cell.  

In FCC a = 4R 2 = 3.591A,VFCC = a3 = 46.34A3  

In BCC  a = 4R 3 = 2.865A,VBCC = 23.51A3  

Taking 4 atoms as a reference, this corresponds to 1 FCC cell and 2 BCC cells, then 

 
DV

V
=

2VBCC -VFCC

2VBCC

= 0.0144  

or 1.44% volume increase. 

Assume that the initial volume is V and the final volume is tV . Hence the volume change is 
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Using the two previous relations, we get that the respective length change is 

  (1+ DL / L)3 = 1+ DV /V ÞDL / L = 1+ DV /V3 -1= 0.00477  

Therefore there is a 0.477% increase in length. 

 

  


