FIGURE 2.1

Semilog plot of DRAM bits and minimum feature size as a function of time. (Courtesy of Dr. Rashid Bashir, Purdue University.) See also
Volume I, Chapter 4.
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FIGURE 2.2

Ray Kurzweil is on the left, but does Bill believe him?




FIGURE 2.3

What $1000 of computing buys. The number of million instructions per second (MIPS) is a general measure of computing performance.
(Based on Ray Kurzweil.)
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FIGURE 2.4
(a) Thin film read/write head. (b) STM-based read/write head (IBM’s millipede).




FIGURE 2.5
Schematic of an EUVL lithography setup. (From SEMATECH’s Next Generation Lithography Workshop brochure.)
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FIGURE 2.6

Two schematic representations of EUVL reflective masks. In EUVL, only reflective optics will work (see text).
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FIGURE 2.7

A comparison of (a) photolithography, (b) electron-beam, (c) x-ray lithography, and (d) ion-beam. (Based on Brodie, I., and J.J. Muray. 1982.
The Physics of Microfabrication. New York: Plenum Press. With permission.'?)
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FIGURE 2.8

(a) Schematic of a synchrotron. (b) Grenoble synchrotron (http://www.esrf.eu).

Electron storage Beam-line

ring

@




FIGURE 2.9

The LIGA process.
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FIGURE 2.10

Ant with gear. (From Forschungszentrum Karlsruhe, Program Microsystem Technologies. With permission.)




FIGURE 2.11

LIGA structures obtained at IMM using an x-ray scanner enabling continuous tilt angles of the mask/substrate assembly. (Ehrfeld, W., and
A. Schmidt. 1998. Recent developments in deep x-ray lithography. J Vac Sci Technol B16:3526-34.1%) (Courtesy IMM.)
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FIGURE 2.12

X-ray mask structure: Ta patterns on SiC or SiN membrane. The absorber Ta is 300 nm thick (stress ~ 0 MPa). Membrane SiC or SiN is 2 m
thick (stress = 100 MPa ~ 200 MPa), 20 ~ 30 mm square. The minimum pattern width is 50 nm. Pattern position accuracy: 3¢ < 30 nm
(http://www.ntt-at.com/products_e/x-ray_masks/index.html).




FIGURE 2.13

Fabrication of a silicon membrane-based x-ray mask with a gold absorber pattern. For use in high-aspect-ratio micromachining, the gold
absorber layer must be between 5 and 15 pm. (Based on Brodie, 1., and J.J. Muray. 1982. The physics of microfabrication. New York: Plenum
Press. With permission.'?)

5000 A Si (B)
2000 A Si

Write
pattern

Ion etching




FIGURE 2.14

X-ray lithography with an electron-beam x-ray source. Inset, extent of penumbral effect calculated from geometric considerations. (Based
on Brodie, I., and J.J. Muray. 1982. The physics of microfabrication. New York: Plenum Press. With permission.!3)
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FIGURE 2.15

Scattering of the e-beam inside the resist and substrate and backscattering from the substrate exposing the resist over a greater area than
the beam spot size.
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FIGURE 2.16

Proximity effect in direct write e-beam lithography.
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FIGURE 2.17

Photoemission, thermionic emission, and field emission.
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Fermi level

FIGURE 2.18

SE field strength

SE and CFE energy distributions.
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FIGURE 2.19

Scattering with angular limitation projection lithography or SCALPEL, a projection electron beam technique.
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FIGURE 2.20
SCALPEL mask.




FIGURE 2.21

SCALPEL writing strategy involves step-and-scan writing.
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FIGURE 2.22

Array of focused electron writing beams operating at 300 eV or less. Setup (a) and detail of the lens system (b). (Redrawn from Zlatkin, A.,
and N. Garcia. 1999. Functional scanning electron microscope of low beam energy with integrated electron optical system for nanolithog-

raphy. Microelectron Eng 46:213-17.36)
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FIGURE 2.23

A microcolumn based on STM aligned field emission (SAFE) and arrayed microcolumn lithography. (From Editorial. 1993. Novel electron-
beam lithography system being explored at Cornell’s NNF. Solid State Technol 36:25-26. With permission.’’) Acronyms are explained in
the text.
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FIGURE 2.24

FIB deposition can produce features 200 nm or less in thickness. FIB milling can produce even finer results. Approximately 30 minutes of
FIB time was required to produce this structure (http:/fibics.com/Micromachining.html).
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FIGURE 2.25
Ion projection lithography (IPL).
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FIGURE 2.26

IPL mask 80-nm feature sizes etched into a Si membrane mask. The patterns were defined using a Leica VB6 EBL. (From http://www.cnf.
cornell.edu/image.)




FIGURE 2.27
Schematic illustration of the nano imprint lithography (NIL). The technique is used here to pattern a metal film via liftoff.
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FIGURE 2.28

Schematic of step-and-flash imprint lithography (SFIL). (Colburn, M., S. Johnson, M. Stewart, S. Damie, T.C. Bailey, B. Choi, M. Wedlake,
T. Michaelson, S.V. Sreenivasan, J. Ekerdt, and C.G. Wilson. 1999. Step and flash imprint lithography: a new approach to high-resolution
patterning. Proc SPIE 3676:379—-89.47)

Transparent template
«-""ﬁ (mold)

4— Planarization layer

_1— Substrate

Step 1: Orient template and substrate

. ; !4— Resist dispenser
g S W By B A )
- o o o M [mprint resist

Step 2: Dispense drops of liquid imprint resist

¥ ¥

E LW i',‘ Imprint fluid fills
[ template.pafienn

Step 3: Lower template and fill pattern

UV blanket
[

Step 4: Polymerize imprint fluid with UV exposure

Arirrnr Exact replica of

template pattern

Step 5: Separate template from substrate



FIGURE 2.29
Usage domains of photocure (SFIL) and thermal nanoimprinting (NIL). (Based on a figure by Hitachi.)
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FIGURE 2.30

Schematic diblock copolymer phase diagram: f = volume fraction of A in B, % = Flory-Huggins interaction parameter, N = diblock degree
of polymerization. Known equilibrium mesophases are spheres, cylinders, gyroid, and lamellae, as well as the disordered (homogeneous)
state at small interblock segregation strength (V). (Diagram adapted from Matsen, M.W., and E.S. Bates. 1996. Unifying weak- and strong-
segregation block copolymer theories. Macromolecules 29:1091-98.5%)
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FIGURE 2.31

Traditional lithography compared with block copolymer lithography. Conventional lithography exposes a photoresist to ultraviolet light.
A solvent etchant then removes the exposed part of the photoresist (for a positive type photoresist). Self-assembly patterning occurs when a
diblock copolymer is heated, thereby separating the two polymers in the material into PMMA and polystyrene domains. The PMMA can
then be selectively etched away, and the template of cylindrical holes can be transferred into the silicon dioxide. (Adapted from Stix, G. 2004.
Nano patterning: IBM brings closer to reality chips that put themselves together. http://www.fractal.org/Fractal-Research-and-Products/
Nano-patterning.htm.%)
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FIGURE 2.32

Flash memory: a layer of self-assembled silicon nanocrystals is inserted into an otherwise standard device as part of a novel IBM manufactur-
ing process. (Based on Stix, G. 2004. Nano patterning: IBM brings closer to reality chips that put themselves together. http://www.fractal.org/
Fractal-Research-and-Products/Nano-patterning.htm; and Black, C.T., R. Ruiz, G. Breyta, J.Y. Cheng, M.E. Colburn, K.W. Guarini, H.-C. Kim,
and Y. Zhang. 2007. Polymer self assembly in semiconductor microelectronics. IBM J Res Dev 51: 605-33.656%)
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FIGURE 2.33

Patterned wettability of the surface causes the alignment of the nanodomains of a block copolymer. PMMA, polymethylmetacrylate; PS,
polystyrene.
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FIGURE 2.34

A Fresnel lens. (From http://xradia.com.)
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FIGURE 2.35

(a) Lumarray (http://www.lumarray.com) has demonstrated fully multiplexed ZPAL writing. (b) A laser beam is passed through a spatial
filter and a collimating lens onto a digitally controlled programmable spatial light modulator (SLM), which replaces the photomask.”7!
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FIGURE 2.36

The entangled photon pair comes out from a point of the object plane, undergoes two-photon diffraction, and results in twice narrower point

spread function on the image plane.
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FIGURE 2.37

Two-photon 3D lithography. (a) Microspider array, the body of the spider is above the substrate; it is supported by eight 1-um thick legs
(http://www.laser-zentrum-hannover.de). (b) Venus micromodels on a human hair (http://www.laser-zentrum-hannover.de).
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FIGURE 2.38

Schematic representation of plasmon printing showing glancing angle illumination using polarized visible light, producing enhanced resist
exposure directly below the metal nanostructures in the mask layer (a), and the resulting pattern in the resist layer after development (b).
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FIGURE 2.39

Nanotube mounted on the micromachined tip of a Si cantilever is used as a nanopencil for lithography of 20—10-nm lines (courtesy of
Dr. M. Meyyappan, NASA Ames). SEM picture of nanotube mounted on tip of Si cantilever (http://cnst.rice.edu/pics.html).




FIGURE 2.40

Schematic of AFM lithography on SiO, using a multilayered resist system. (a) Cross-section. (b) Exposure by drawing patterns into the
ODS-SAM layer by current injection from an AFM probe. (c) First development step by HF etching to remove the SiO, just formed.
(d) Second development step by TMAH etching to remove the a-Si in the exposed area. (e) Pattern transfer with HF to remove the thermal
oxide in the exposed area. (f) Resist removal, i.e., removal of all the remaining a-Si in TMAH etch. (Based on Sugimura, H., O. Takai, and
N. Nakagiri. 1999. Multilayer resist films applicable to nanopatterning of insulating substrates based on current-injecting scanning probe
lithography. J Vac Sci Technol B17:1605-08.87)
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FIGURE 2.41

Line width versus dose for SAL601 resist using both EBL and SPL lithography systems. (Wilder, K., C.F. Quate, B. Singh, and D.F. Kyser.
1998. Electron beam and scanning probe lithography: a comparison. J Vac Sci Technol B16:3864-73.3%)
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FIGURE 2.42

Spindt field emitter array. For its fabrication see Chapter 7, and for its application in a field emission display see Volume III, Chapter 10
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FIGURE 2.43

Atom manipulation for nanomatching. (a) A 60 x 48 A STM image of four Pt adatoms assembled into a linear array on a Pt (111) surface.
Pt atoms were herded four unit cells apart along a close-packed direction of the Pt (111) surface. (b) A 40 x 40 A STM image of a compact
array of seven Pt adatoms. (From Stroscio, J.A., and D.M. Eigler. 1991. Atomic and molecular manipulation with the scanning tunnel-
ing microscope. Science 254:1319-26. With permission.?) For more pictures of STM atom manipulation, visit http://www. almaden.ibm.
com:80/vis/stm/gallery.html.




FIGURE 2.44

STM topographic images from a single Au atom to a linear chain of 20 atoms, arranged in single-atom increments from left to right. The
images are cut from 20 separate scans, each taken with a sample bias voltage between 2.0 and 2.5 V and a tunneling current between 1.0 and
1.5 nA. Each chain has an apparent height between 2.4 and 2.7 A. The chains between 12 and 20 atoms long were constructed and imaged
with a tip different than the tip used to construct and image the other chains. (Wallis, T.M., N. Nilius, and W. Ho. Electronic density oscil-
lations in gold atomic chains assembled atom by atom. Phys Rev Lett 89:236802-1-2-4.°7)
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FIGURE 2.45

Assembly sequence and schematic for a structure consisting of a CuPc molecule and two Aus chains (2Au;). All images were taken with
Vs =1 V, I =1 nA. (a) CuPc molecule (appears as a protruding four-lobe structure) on the NiAl surface together with seven Au atoms,
which appear as round protrusions. Four of the atoms have been aligned along the same Ni trough. Image size is 74 A by 74 A. (b) One of
the atoms has been manipulated along the Ni trough to create a Au, chain. (c) First Aus is created; another atom is positioned five Ni-Ni lat-
tice sites (5 x 2.89 A) away from Au,, marking the starting position for another Au, chain. (d) A second Au, chain is created. (e) Assembly
of the second Auj, chain and the 2Au, junction is completed. (f) Zoom-in image of the 2Au; and CuPc molecule; the area of image is 47 Ax
47 A. The image was taken with a tip modified by a CuPc molecule adsorbed on it. (g) The CuPc molecule has been moved into the junction
between the two Au, chains. As is clear from the image, the molecule is adsorbed only on one of the chains. (h) The position of the molecule
was adjusted by manipulating the leftmost lobe of the molecule in (g) toward the lower Au, chain. The molecule is adsorbed symmetrically
between the two chains, forming CuPc@2Au;. (The tip still has a CuPc molecule adsorbed on the apex.) (i) Image of same structure taken
after removing the molecule adsorbed on the tip. The area corresponds to that of (e). (j) Schematic showing the relation between the internal
molecular structure, adsorption geometry, and STM image. Black circles represent the Au atoms comprising the two Au, chains. (From
Nazin, GV., X.H. Qiu, and W. Ho. 2003. Visualization and spectroscopy of a metal-molecule-metal bridge. Science 302:77-81.%)




FIGURE 2.46

Dip pen nanolithography: transport of molecules to the surface via water meniscus (http://chemgroups.northwestern.edu/mirkingroup/dpn.htm).
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FIGURE 2.47

Diagram illustrating thermal dip pen nanolithography. When the cantilever is cold (a), no ink is deposited. When the cantilever is heated (b),
the ink melts and is deposited onto the surface. (Image courtesy of Naval Research Laboratory, http:/gtresearchnews.gatech.edu/newsrelease/
tdpn.htm.)
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FIGURE 2.48

A topographic image of a surface scanned with a heated AFM cantilever tip for 256 s in each of four 500-nm squares. The cantilever
temperature is shown for each of the four scans. No deposited material is observed from the two low-temperature scans. The scan at 98°C
resulted in light deposition. Robust deposition occurred during the final scan when the cantilever temperature was 122°C. (Courtesy of Naval

Research Laboratory.)
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FIGURE 2.50

Basic arrangement for holographic lithography. (a) The photomask pattern forms a hologram in the polymer recording layer. (b) Using the
illumination beam, the high-resolution holographic mask image is reconstructed into a printable masking layer in the resist-coated sub-
strate. (From Brook, J., and R. Dandliker. 1989. Submicrometer holographic photolithography. Solid State Technol 32:91-94; and Omar, B.,
S. Clube, F. Hamidi, M.D. Struchen, and S. Gray. 1991. Advances in holographic lithography. Solid State Technol September:89-94.108.109)
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FIGURE 2.51
Polydimethylsiloxane (PDMS). (Sylgard 184, Dow Corning, http://www.dowcorning.com.)
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FIGURE 2.52

Making a PDMS mold. (Based on Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Angew Chem Int Ed 37:550-75; and Xia, Y., and
G.M. Whitesides. 1998. Soft lithography. Ann Rev Mater Sci 28:153—84.113.114)
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FIGURE 2.53

Microcontact printing of protein.
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FIGURE 2.54

Schematic description of microtransfer molding (U-TM). (Based on Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Angew Chem Int Ed
37:550-75; and Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Ann Rev Mater Sci 28:153—84.113114) PU is prepolymer (polyurethane).
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FIGURE 2.55

Curved glassy carbon structure. (Schueller, O.J.A., S.T. Brittain, and G.M. Whitesides. 1999. Fabrication of glassy carbon microstructures
by soft lithography. Sensors Actuators A A72:125-39.1"" Courtesy of Dr. G.M. Whitesides, Harvard University.)




FIGURE 2.56

Schematic description of micromolding in capillaries (MIMIC). (Based on Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Angew
Chem Int Ed 37:550-75; and Xia, Y., and G.M. Whitesides. 1998. Soft lithography. Ann Rev Mater Sci 28:153—84.113.114)
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