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Introduction to Radiation Physics

1. E = NtelescopesPdetected∆t; and by Equation 2.2, Pdetected = FνAeff∆ν. Therefore,

E ≈ 100 (0.1 Jy×10−26 W m−2 Hz−1 Jy−1) 500 m2 (100×106 Hz) (0.8×45 yr) (3.16×107 s yr−1)

= 5.69× 10−6 J

This equals the kinetic energy gained by a mass, m, falling from a height of 1 m
on the surface of the Earth, where mgh = m (9.8 m s−2)(1 m) = 5.69 × 10−6 J, or
m = 5.80× 10−7 kg, or 0.58 mg!

2. a. Using Equation 2.2,

Fν =
P

A∆ν
=

4.00× 10−17 J/100 s

π(1 m)2(500× 103Hz)

= 2.55× 10−25 W m−2 Hz−1 = 25.5 Jy

b. Using Equation 2.1,

Lν = Fν4πd2 = (2.55× 10−25 W m−2 Hz−1)4π(9.45× 1016 m)2

= 2.87× 1010 W Hz−1

3. By Equation 2.4,

Iν =
Fν
Ω

=
5.00 Jy × 10−26 W m−2 Hz

−1

(π/4)(0.100◦ × π radians/180◦)2
= 2.09× 10−20 W m−2 Hz−1

4. a. Using Equation 2.1,

F =
L

4πd2
=

3.90× 1026 W

4π(1.50× 1011 m)2
= 1380 W m−2

b.

Fλ =
F in visible

∆λvisible
≈ 0.37(1380 W m−2)

300× 10−9 m
= 1.70× 109 W m−2 m−1

c.

Fν =
F in visible

∆νvisible
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and

∆ν =
c

λ2
∆λ ≈ 3.00× 108 m s−1

(550× 10−9 m)2
300× 10−9 m ≈ 2.98× 1014 Hz

(see discussion in Section 2.2 leading up to Equation 2.11). Therefore,

Fν ≈
0.37(1380 W m−2)

2.98× 1014 Hz
= 1.71× 10−12 W m−2 Hz−1

d. Using Equation 2.4,

Iλ =
Fλ
Ω
≈ 1.70× 109 W m−2 m−1

(π/4)(0.533◦ × π radians/180◦)2

= 2.50× 1013 W m−2 m−1 sr−1

e.

Iν =
Fν
Ω
≈ 1.71× 10−12 W m−2 Hz−1

(π/4)(0.533◦ × π radians/180◦)2

= 2.52× 10−8 W m−2 Hz−1 sr−1

5. Equation 2.5:

Bν(T ) =
2hν3

c2
1

exp(hν/kT )− 1

For the frequency, we use the middle of the visible window, which is about 550 nm.

ν = c/λ = 3.00× 108 m s−1/(550× 10−9 m) = 5.45× 1014 Hz

Substituting the frequency and temperature into Equation 2.5, we have

Bν(5800 K) =
2(6.626× 10−34 J s)(5.45× 1014 Hz)3

(3.00× 108 m s−1)2

× 1

exp[(6.626× 10−34 J s)(5.45× 1014 Hz)/(1.38× 10−23 J K−1)(5800 K)]− 1

= 2.65× 10−8 W m−2 Hz−1 sr−1

This is 1.06 times larger than the answer to 2.4(e). In 2.4(e) we calculated the total
visible flux divided by the bandwidth, which gives, essentially, an average intensity
over the visible. Here we calculated the intensity at a specific point near the middle
of the visible window. We showed in Section 2.2, that the Planck function at the
temperature of the Sun’s surface peaks in the infrared, and so Bν(5800 K) decreases
across the visible window, although relatively slowly since the peak is not that far
from the visible. Therefore, it is not surprising that our calculation of Bν(5800 K) in
the middle of the visible window is very close to the average value.

6. a. Equation 2.7: F = σ T 4;
and Equation 2.8: < Eph >= (3.73× 10−23 J K−1) T .
The number of photons, N, emitted per second, then, is

Nper sec =
F

Eph
=

σ T 4

(3.73× 10−23 J K−1) T
=

5.67× 10−8 J m−2 s−1 K−4

3.73× 10−23 J K−1
T 3
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Nper sec = [1.52× 1015 photons m−2 s−1 K−3] T 3

b. N ∝ T 3 and < Eph >∝ T .
The number of photons emitted per second increases much more rapidly with an
increase in temperature.

7. a. At frequencies low enough that the Rayleigh-Jeans approximation applies, then
Iν ∝ T and so Iν(A) = 2Iν(B)

b. By Equation 2.7, F ∝ T 4, and so F (A) ∝ 16 F (B)

c. By Equation 2.8, < Eph > ∝ T and so < Eph > (A) = 2 < Eph > (B)

8. A jansky is a unit of Fν so we first convert the given Fλ to Fν . We use Equation 2.11:

Fλ = c
λ2 Fν , or Fν = λ2

c Fλ.

Fν =
(12.0× 10−6 m)2

3.00× 108 m s−1
6.00× 10−7 W m−3

= 2.88× 10−25 W m−2 Hz−1 = 28.8 Jy

.

9. a. Taylor Series Expansion of f(x) for x near 0:

f(x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2 + ...

For f(x) = exp(x),
exp(x) = e0 + e0x+ ...

When x� 1 we can keep only the first two terms, and so

exp(x) ≈ 1 + x

Applying this to Bν where x = hν
kT we have

Bν(T ) ≈ 2hν3

c2
1

1 + (hν/kT )− 1
≈ 2hν3

c2
kT

hν
≈ 2kν2T

c2

Substituting in 1
λ2 for ν2

c2 this becomes

Bν(T ) ≈ 2kT

λ2
(for

hν

kT
� 1)

b. With λ = 1 mm, the frequency is

ν = 3.00× 108 m s−1/10−3 m = 3.00× 1011 Hz.

Starting with hν/kT ≈ 0.1, and solving for T we find

T =
(6.626× 10−34 J s)(3.00× 1011 Hz)

0.1(1.38× 10−23 J K−1)
= 144 K
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Using the Planck function (Equation 2.5), first, we have

Bν(144 K) =
2(6.626× 10−34 J s)(3.00× 1011 Hz)3

(3.00× 108 m s−1)2

× 1

exp[(6.626× 10−34 J s)(3.00× 1011 Hz)/1.38× 10−23 J K−1144 K]− 1

= 3.78× 10−15 W m−2 Hz−1 sr−1

Using the Rayleigh-Jeans approximation (Equation 2.13), we have

Bν(144 K) ≈ 2(1.38× 10−23 J K−1)144 K

(10−3 m)2
= 3.97× 10−15 W m−2 Hz−1sr−1

The Rayleigh-Jeans approximation is off by 5.0%, which is better than 10%. By trial
and error, you can find that at 77K, the Rayleigh-Jeans approximation is off by 10%.

c. Following the same procedure as in question b, but this time fixing the temper-
ature at 2.73 K and solving for the frequency we find:
hν/kT = 0.1 when ν = 5.77 × 109 Hz. When we substitute these into the Planck
function and Rayleigh-Jeans approximation, we get:
Planck function: Bν(2.73 K) = 2.65× 10−20 W m−2 Hz−1 sr−1 and
Rayleigh-Jeans: Bν(2.73 K) = 2.79 × 10−20 W m−2 Hz−1 sr−1, which is off by only
5.2%. Here the Rayleigh-Jeans approximation is off by 10% when ν = 1.07× 1010 Hz,
or λ = 2.8 cm.

10. The brightness temperature is given by setting the intensity of the radiation equal to
the Planck function and solving for the temperature. At longer wavelengths and higher

temperatures, so that the Rayleigh-Jeans approximation applies, TB = λ2

2k Iν and so
is directly proportional to the intensity. Its physical significance is that it directly
gives an estimate of the temperature of an opaque, thermally radiating source, since
the brightness temperature of the emitted radiation will equal the temperature of the
radiating body. If the body is transparent, emitting thermally, and has no background
radiation source, then the brightness temperature of the radiation is a lower limit to
the body’s temperature. It is primarily used at radio frequencies because the Rayleigh-
Jeans approximation makes the conversion from intensity to brightness very simple

(by multiplying by λ2

2k ) while at higher frequencies, the conversion requires solving for
T in the Planck function.

11. a. Since the CMB is a perfect blackbody, we use the Planck function (Equation 2.5).
The frequency of the observation was

ν =
3.00× 108 m s−1

0.0735 m
= 4.08× 109 Hz

and so the Planck function gives an intensity of

Bν(2.73 K) =
2(6.626× 10−34 J s)(4.08× 109 Hz)3

(3.00× 108 m s−1)2
×

1

exp[(6.626× 10−34 J s)(4.08× 109 Hz)/(1.38× 10−23 J K−1)(2.73 K)]− 1
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= 1.35× 10−20 W m−2 Hz−1 sr
−1

b. Using Equation 2.9,

νpeak = (5.88× 1010 Hz K−1) 2.73 K = 1.61× 1011Hz

which corresponds to a wavelength of

λpeak =
3.00× 108 m s−1

1.61× 1011Hz
= 0.00186 m = 1.86 mm.

c. T + ∆T = 2.73 K +2.73 × 10−5 K = 2.7300273K. The intensities at these two
temperatures are (using Equation 2.5)

Bν(2.7300273 K) = 1.3453028× 10−20 W m−2 Hz−1 sr
−1

and
Bν(2.7300000 K) = 1.3452888× 10−20 W m−2 Hz−1 sr

−1

To measure this temperature difference, then, one needs to be able to accurately

measure an intensity smaller than 1.48×10−25 W m−2 Hz−1 sr
−1

. With this radiation
filling a typical radio telescope beam of order 10−5 sr in diameter, this corresponds
to measuring fractions of a mJy in the change of the detected flux density.

12. a. By Equation 2.23, the net linear polarization is L =
√
Q2 + U2, where Q and U are

given by Equations 2.20 and 2.21. Since the radiation’s net polarization is horizontal,
we set U = 0. The net horizontal polarization of 5% then means that

0.05 = L/I =
√
Q2 + U2/I = (Ix − Iy)/(Ix + Iy),

and hence 1.05Iy = 0.95Ix and so Iy/Ix = 0.9048. The horizontal polarization inten-
sity relative to the total intensity is

Ix/Itotal = Ix/(Ix + Iy) = Ix/(1.9048Ix) = 0.525

and that of the vertical polarization is

Iy/Itotal = (Itotal − Ix)/Itotal = 1− 0.525 = 0.475

b. The unpolarized intensity it I −L, and so the unpolarized intensity relative to the
total intensity is 95%.

c. We need that 95% of the detected radiation travels straight to our telescope while
5% of the detected power has been scattered off the screen. We can imagine, for exam-
ple, a situation where the screen is the same distance as the emission source, but off
to one side, and catches about a quarter of the emitted radiation, but reflects about
15% of the incident radiation in our direction. This will yield a net linear polarization
of 5% because 15% of the 25% equals 5% of the 75% that does not meet the screen.

13. a. Equation 2.23: L =
√
Q2 + U2 where Q = Ix− Iy (Equation 2.20) and U = Ia− Ib

(Equation 2.21), where the a-axis is tilted 45◦ relative to the x-axis. We consider
radiation that is linearly polarized at angle θ relative to the x-axis. The electric field
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amplitude along the x-axis, then is Ecosθ, and that along the y-axis is Esinθ. The
electric field amplitude along the a-axis is

E cos(θ − π/4) = E[cos θ cos(π/4) + sin θ sin(π/4)] = (E/
√

2)(cos θ + sin θ)

and that along the b-axis is

E sin(θ − π/4) = E[sin θ cos(π/4)− cos θ sin(π/4)] = (E/
√

2)(sin θ − cos θ).

The total intensity of this radiation is, simply, E2.

The intensity in Q and U , then, are

Q = (E cos θ)2 − (E sin θ)2 = E2(cos2 θ − sin2 θ)

and

U = [(E/
√

2)(cos θ + sin θ)]2 − [(E/
√

2)(sin θ − cos θ)]2 = 2E2 sin θ cos θ

Relative to I, these are Q/I = cos2 θ − sin2 θ and U/I = 2 sin θ cos θ.
For L/I, then, we have

L/I =
√
Q2 + U2 =

√
cos4 θ − 2 sin2 θ cos2 θ + sin4 θ + 4 sin2 θ cos2 θ

=
√

cos4 θ + 2 sin2 θ cos2 θ + sin4 θ = cos2 θ + sin2 θ = 1

and hence, we get that the radiation is 100% polarized, just as we started with.

b. If the radiation is linearly polarized at an angle of 45◦ relative to the x-axis, then
Ix = E2cos2(π/4) = E2/2 and Iy = E2sin2(π/4) = E2/2 and so Q = Ix− Iy = 0, and
hence using Q without U would, incorrectly, suggest that the radiation is unpolarized,
when in fact it is 100% polarized.

14. a. The total intensity is I, which is given by:

I = 5.00× 10−18 W Hz−1 m−2 sr−1.

b. Since both Q and U are equal to zero, there is no linear polarization (L =√
Q2 + U2, Equation 2.23), so the answer to this question is 0.

c. By Equation 2.22,

V = IR − IL = 2.50× 10−20 W Hz−1 m−2 sr−1,

and using the total intensity, we know that

IR + IL = 5.00× 10−18 W Hz−1 m−2 sr−1.

By summing these two equations, and dividing by two, we get

IR = 2.513× 10−20 W Hz−1 m−2 sr−1.

Using either equation we can then solve for IL. We get

IL = 2.487× 10−20 W Hz−1 m−2 sr−1.


