
Chapter 2

Mathematical Preliminaries

This chapter is a review of the mathematical details that underpin many of
the topics of the previous chapter. These include elements of probability the-
ory, stochastic calculus and other issues that play an important role in the
development of financial mathematics in general, and the Black–Scholes and
EMM methods in particular. For a more detailed account on stochastic cal-
culus and sde’s, the reader is referred to the texts of Lamberton and Lapeyre
[50], Karatzas and Shreve [40] and Øksendal [59]. A recent very readable text
that is not too technical, and hence in the same vein as this book, is that by
Wiersema [75].

Another useful reference which covers almost everything in this chapter,
and the previous one, is the book by Jeanblanc et al [38]. This text is much
more technical and as such is perhaps more suitable for those with sufficiently
advanced mathematical expertise. However, any serious student of Quantita-
tive Finance ought to be familiar with this important contribution to the field.

We shall not present a fully integrated theory, which would take us far from
our goal of pricing exotic options, but prefer to step lightly through various
topics, identifying important concepts and earmarking important equations.
Thus the reader should treat this chapter as a list of mathematical tools,
rather than a coherent set of propositions and theorems. We offer only a few
formal proofs in this chapter. Others, in most cases, can be found in the cited
texts. It will take some skill to utilize the tools presented in this chapter, to
price exotic options. Hopefully, therefore, readers of this book will not fall
into the trap epitomized by the adage: a bad craftsman blames his tools.

2.1 Probability Spaces

We assume a market in which future prices up to a finite time horizon T ,
are random variables associated with a probability space (Ω,F, P ). Ω is the
set of all possible price outcomes; F is a σ−algebra (a family of subsets of Ω)
containing all sets pertaining to future prices, and P is a probability measure
(called the real-world measure) which determines the probability of any event
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36 An Introduction to Exotic Option Pricing

in F. We also equip this probability space with a filtration Ft. This is a
non-decreasing family of sub-σ-algebras of F, such that

Fs ⊂ Ft ⊂ FT ⊂ F for all 0 < s < t < T.

It is convenient to think of Ft as the price information available for all times
up to and including t. We assume that the resulting filtered probability space
(Ω,F, P,Ft) satisfies the so-called usual conditions. Technically, this means:
F is P−complete, F0 contains all P−null sets of Ω and Ft is right-continuous.

A stochastic price process Xt is then a family of random variables defined
on (Ω,F, P,Ft). Xt is said to be adapted to Ft if Xt is Ft− measurable. Ba-
sically, this simply means that Xt is known with certainty at time t.

An important operator on stochastic processes is the conditional expectation
denoted by E{XT |Ft}. By this we mean the expected value of XT given all
information up to and including t, for t ≤ T . The expectation operator is
linear, so that if (αt, βt) are processes adapted to Ft, then for any processes
(XT , YT ) with t < T ,

E{αtXT + βtYT |Ft} = αtE{XT |Ft}+ βtE{YT |Ft} (2.1)

The Tower Law
Let Xt be a stochastic process; then for all s ≤ t ≤ T ,

E{XT |Fs} = E{E{XT |Ft}|Fs}. (2.2)

This is also known as the Law of Iterated Expectations and demonstrates how
information can be nested through a non-decreasing filtration sequence. The
tower law has important ramifications for option pricing, as we saw in Section
1.9 and as we shall also demonstrate in the applications.

2.2 Brownian Motion

A standard P Brownian motion (or standard Wiener process) Bt for t > 0
is the stochastic process satisfying

1. Bt is continuous and B0 = 0
2. Bt has stationary and independent increments

3. For fixed t > 0, Bt
d
= N(0, t) under probability measure P
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where
d
= means “equal in distribution.” This characterization of Brownian

motion is due to Kolmogorov, and is known to define it uniquely.

REMARK 2.1 We list here a number of properties of Brownian motion.
We do not necessarily use all these properties, but it is nevertheless helpful
to be familiar them.

1. Although the sample paths of Bt are continuous, they are (with probability
one) nowhere differentiable. The sample paths are therefore fractal and have
similarity dimension H = 1

2
. That is, for all c > 0,

Bct
d
= cH Bt =

√
cBt.

2. The sample paths of Bt are of unbounded variation, but have bounded

quadratic variation. This means that if ∆n = {t(n)i : i = 1, 2, . . . , n} be a
sequence of partitions of the interval [0, t] such that

lim
n→∞

max
i

|t(n)i+1 − t
(n)
i | = 0

with t
(n)
0 = 0 and t

(n)
n+1 = t, then it can be shown that

lim
n→∞

n
∑

i=1

|B
t
(n)
i+1

−B
t
(n)
i

| → ∞

while

lim
n→∞

n
∑

i=1

|B
t
(n)
i+1

−B
t
(n)
i

|2 = t.

The quadratic variation of Bt is therefore equal to t.

3. It can also be shown that:

lim
t→∞

Bt

t
= 0 a.s.

lim sup
t→∞

Bt√
2t log log t

= 1 a.s.

lim inf
t→∞

Bt√
2t log log t

= −1 a.s.

The last two equations are collectively called the Law of the Iterated Loga-
rithm. The symbol a.s. stands for “almost surely,” which means the equations
are probabilistic statements, with probability one.
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4. The property of independent increments means that for any non-overlapping
intervals (s, t) and (u, v), the increment (Bt − Bs) is independent of the in-
crement (Bv − Bu). In particular, since B0 = 0, the increment (Bt − Bs) is
independent of Bs for all s < t.

The stationarity of these increments means that for any h + s ≥ 0, we

have Bt − Bs
d
= Bt+h − Bs+h. In particular, taking h + s = 0 leads to the

important conclusion

Bt −Bs
d
= Bt−s (2.3)

5. For any fixed t > 0, Bt is Gaussian with zero mean and variance equal to
t. Hence it is possible to write

Bt
d
=

√
t Z where Z ∼ N(0, 1). (2.4)

6. Bt is a Markov process. That is, for all s ≤ t,

P{Bt|Fs} = P{Bt|Bs}

where Fs denotes the filtration of the probability space induced by Bs. Hence
the Markov property implies that all the information at time s ≤ t is con-
tained in the value of Bs alone, independent of the history prior to time s. In
this sense, Brownian motion is said to be a zero-memory process.

7. The covariance of Brownian motion is given by

cov{Bs, Bt} = min(s, t) (2.5)

which leads to the correlation structure

corr{Bs, Bt} =
√

s/t for all s < t (2.6)

Thus while non-overlapping Brownian increments are independent, the above
implies that overlapping Brownian increments are dependent, with covariance
equal to the duration of the overlap. The correlation coefficient (2.6), for
Brownian motion at two distinct instants of time, plays an important role in
dual and multi-period exotic options considered in later chapters.

2.3 Stochastic DE’s

A very readable account of sde’s, and their numerical solution can be found
in Kloeden and Platen [43] or Wiersema [75]. A more technical approach is
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given in the book by Øksendal [59]. We present here a simplified account.

The stochastic process Xt is said to be an Itô process with instantaneous
drift µt = µ(Xt, t) and instantaneous variance σ2

t = σ2(Xt, t) if it satisfies the
stochastic differential equation (sde)

dXt = µtdt+ σt dBt (2.7)

where Bt is a P−Brownian motion. Such Itô processes are also Markov pro-
cesses.

Since E{dBt} = 0 and V{dBt} = dt, one way of interpreting this sde is to
say that it is equivalent to the pair of statements:

µ(x, t) = lim
dt→ 0

EP {Xt+dt −Xt|Xt = x}
dt

(2.8)

σ2(x, t) = lim
dt→ 0

VP {Xt+dt −Xt|Xt = x}
dt

. (2.9)

Both limits are assumed to exist for well-defined Itô processes.

Associated with every sde of the form of Equation (2.7) there exists a transi-
tion probability density function (pdf) f(x0, t0;x, t) that gives the probability
that Xt = x given Xt0 = x0 for all t0 < t. It can be shown that f(x0, t0;x, t)
satisfies a pair of pde’s called the forward and backward Kolmogorov equa-
tions. The forward equation is

∂f

∂t
= − ∂

∂x
[µ(x, t)f ] +

∂2

∂x2
[ 1
2
σ2(x, t)f ] (2.10)

with initial condition f(x0, t0;x, t) → δ(x − x0) as t → t0; and the backward
equation is

− ∂f

∂t0
= µ(x0, t0)

∂f

∂x0
+ 1

2
σ2(x0, t0)

∂2f

∂x2
0

(2.11)

with initial condition f(x0, t0|x, t) → δ(x0 − x) as t0 → t.

Since these pde’s are of the diffusion type (i.e. parabolic), Itô processes are
also called diffusion processes.

2.3.1 Arithmetic Brownian Motion

Arithmetic Brownian Motion or aBm is defined to be the process satisfying
a sde for t > t0 of the form

dXt = µdt+ σdBt; Xt0 = x0 (2.12)
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where µ and σ are constants. In this case the solution of the sde, using
Equation (2.3), can be written as

Xt
d
= x0 + µ(t− t0) + σBt−t0 (2.13)

and the transition pdf of Xt is obviously the Gaussian density with mean
(drift) x0 + µ(t− t0) and variance σ2(t− t0):

f(x0, t0;x, t) =
1

σ
√
t− t0

φ

[

x− x0 − µ(t− t0)

σ
√
t− t0

]

, (2.14)

where φ(z) = 1√
2π
e−

1

2
z2

for z ∈ R is the density of a N(0, 1) variate.

It is a straight forward matter to show that this f(x0, t0;x, t) satisfies both
the forward and backward Kolmogorov equations with constant µ and σ and
the given initial conditions. It should also be clear that aBm is simply a
re-scaled Brownian motion with non-zero deterministic drift.

2.4 Stochastic Integrals

The sde expressed by Equation (2.7) has an alternative meaning in terms
of stochastic integrals. This is the representation

Xt = X0 +

t
∫

0

µs ds+

t
∫

0

σs dBs. (2.15)

The last integral is an example of a stochastic integral — an integral with
respect to a Brownian motion. This integral is formally defined by the limit

t
∫

0

σs dBs = lim
n→∞

n
∑

i=0

σ(t
(n)
i ) [B(t

(n)
i+1)−B(t

(n)
i )],

where t
(n)
i determines the partition ∆n of [0, t] defined earlier. It is essential

in this definition that σ(t
(n)
i ) is evaluated at each left-hand point of the parti-

tion [t
(n)
i , t

(n)
i+1), because in this case, it is Fti−measurable (i.e. adapted to the

Brownian increment). It is this “non-anticipatory” feature that distinguishes
the Itô integral from other stochastic integrals such as the Stratonovich in-
tegral. In any case, the Itô integral above is found to be the ideal one in
financial applications. The next result, often referred to as Itô’s Isometry,
gives the mean and variance of a stochastic integral.
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Itô’s Isometry
If f(t) is a deterministic function of time (in fact it can also be a stochastic

process that is adapted to Bt), then Zt =
t
∫

0

f(s) dBs for each fixed t, is a

Gaussian random variable with zero mean and variance equal to

V{Zt} =

t
∫

0

|f(s)|2 ds. (2.16)

2.5 Itô’s Lemma

This is the stochastic extension of the chain rule for ordinary (deterministic)
calculus. Let Xt satisfy the sde dXt = αdt + βdBt for arbitrary (predictable
processes) α = α(Xt, t) and β = β(Xt, t). If F (x, t) is any C2,1 function
(i.e. twice differentiable in x and differentiable in t), then the random process
F (Xt, t) is an Itô process satisfying the sde

dF = (Ft + αFx + 1

2
β2Fxx)dt+ βFx dBt (2.17)

where subscripts on the function F (Xt, t) denote partial derivatives.

A useful alternate form of Itô’s lemma is:

dF (Xt, t) = (Ft +
1

2
β2Fxx)dt+ Fx dXt. (2.18)

2.5.1 Geometrical Brownian Motion

A process Xt is said to follow geometrical Brownian motion (gBm) with
constant drift rate µ and volatility σ if it satisfies the sde

dXt = Xt(µdt+ σ dBt); Xt0 = x0. (2.19)

This sde can be solved explicitly by transforming it to simple aBm through
Itô’s Lemma. Let F (Xt) = logXt independent of t. Then substituting

α = µXt; β = σXt; Ft = 0; Fx = 1/Xt; Fxx = −1/X2
t

into Itô’s formula Equation (2.17), there results the sde

dF = (µ− 1

2
σ2)dt+ σ dBt; F (Xt0) = log x0.

This is aBm with solution

F (Xt) = logXt
d
= log x0 + (µ− 1

2
σ2)(t− t0) + σBt−t0
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The solution for Xt is now obtained by exponentiation to yield the result

Xt
d
= x0 exp{(µ− 1

2
σ2)(t− t0) + σBt−t0}. (2.20)

The result is important because gBm is the basic asset price model in the
Black–Scholes framework. Since, under gBm Xt/x0 for fixed t, is the expo-
nential of a Gaussian rv with mean m(t0, t) = (µ− 1

2
σ2)(t− t0) and variance

v2(t0, t) = σ2(t − t0), its pdf is log-normal (see Section 3.6) with parameters
(m, v). The corresponding transition pdf of Xt is therefore

f(x0, t0;x, t) =
1

xv(t, t0)
φ

[

log(x/x0)−m(t0, t)

v(t0, t)

]

. (2.21)

This transition pdf can also be shown to satisfy the forward and backward
Kolmogorov equations with instantaneous drift µx and instantaneous variance
(σx)2.

2.5.2 Itô’s Product and Quotient Rules

Let Xt satisfy the sde dXt = αdt + βdBt and let F (Xt, t) and G(Xt, t)
be two given C2,1 functions. Then Itô’s product and quotient rules are given
respectively by

d(FG) = (FdG+GdF ) + β2FxGx dt (2.22)

and

d(F/G) =
GdF − FdG

G2
+

β2Gx

G3
(FGx −GFx) dt. (2.23)

These formulae (see Q6 in Exercise Problems) are interesting in that they
show that stochastic calculus includes the extra dt terms. Observe that these
terms vanish when β = 0, and we recover the standard product and quotient
rules for ordinary Newtonian calculus.

2.6 Martingales

A (P,Ft)−martingale Mt is a stochastic process satisfying

EP {Mt|Fs} = Ms for all s ≤ t. (2.24)

Martingales are important in financial mathematics because they are the
stochastic entities that capture the notion of a “fair game.” In other words,
they are intimately associated with the no-arbitrage assumption of idealized
markets. For example, if Mt denotes the time t random wealth of a gambler
playing a fair game, then Equation (2.24) above tells us that expected future
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wealth is equal to current wealth. It is in this sense, that the game is said to
be fair.

Example 2.1

All the following

Bt, B2
t − t and eσBt− 1

2
σ2t

are well-known martingales (see Q3(c) in Exercise Problems).

2.6.1 Martingale Representation Theorem

This essentially states that ifXt satisfies the zero drift sde dXt = σ(Xt, t)dBt

then Xt is an Ft− martingale1.

This is easily seen as follows. Assume 0 < s < t, then in terms of stochastic
integrals,

Xt = X0 +

∫ t

0

σ(Xu, u)dBu = Xs +

∫ t

s

σ(Xu, u)dBu

Hence E{Xt|Fs} = Xs since the last stochastic integral has zero mean.

The converse is also true. Thus if Xt and Yt are Ft−local martingales, there
exists an Ft−adapted process ct such that dYt = ctdXt.

Itô’s Lemma now provides the following corollary. If f(x, t) is a given C2,1

function, then f(Xt, t), where dXt = α(x, t)dt+β(x, t)dBt , is an Ft−martingale
if and only if f(x, t) satisfies the pde

ft + α(x, t)fx + 1

2
β2(x, t)fxx = 0. (2.25)

This is just the condition that the drift term vanishes in the sde for f(Xt, t).

The three processes in example 2.1 are now readily seen to be martingales
because

f(x, t) = x, f(x, t) = x2 − t and f(x, t) = eσx−
1

2
σ2t

all satisfy the pde (2.25) with (α = 0, β = 1).

1Strictly speaking, only a local martingale, a distinction we shall not elucidate further.
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2.7 Feynman–Kac Formula

Let α(x, t), β(x, t) and r(x, t) be given functions of (x, t) for t < T and
x ∈ D, where D is some subset of R+, and let A be the differential operator

defined by Au(x, t) = α
∂u

∂x
+ 1

2
β2 ∂

2u

∂x2
. Then, subject to technical conditions,

the unique solution of the pde

∂u

∂t
+Au− ru = 0; x ∈ D, 0 ≤ t ≤ T

with terminal value u(x, T ) = g(x), is given by

u(x, t) = E

{

e−
∫

T

t
r(Xs,s)ds g(XT )|Xt = x

}

, (2.26)

where the expectation is taken with respect to the transition density induced
by the sde dXt = α(Xt, t)dt+ β(Xt, t)dBt.

REMARK 2.2

1. The variables α, β2 are the instantaneous mean and variance of an un-
derlying Itô diffusion. The variable r plays the role of a time and state
dependent interest rate.

2. The operator A is the infinitesimal generator of the diffusion Xt and is
often called the Dynkin operator.

3. The technical conditions alluded to are required to make the proof,
outlined below, rigorous. In particular, the conditions allow interchange
of integration and differentiation and also allow us to bring the limit
t → T inside the integration.

4. The FK-formula provides an important link between the two principal
methods used to price options and derivatives. These are the PDE-
method and the EMM-method alluded to in Chapter 1.

Proof of FK-Formula
Let f(x, t;X,T ) denote the transition pdf of the process Xt. Then Equation
(2.26) is equivalent to

u(x, t) =

∫

D

e−
∫

T

t
rsds g(X)f(x, t;X,T ) dX.
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Formally differentiating inside the integral, we get

∂u

∂t
+Au− ru =

∫

D

e−
∫

T

t
rsds g(X)

[

rf +
∂f

∂t
+Af − rf

]

dX

=

∫

D

e−
∫

T

t
rsds g(X)

[

∂f

∂t
+Af

]

dX

= 0.

The last line follows from the observation that −∂f

∂t
= Af is the backward

Kolmogorov equation (2.11). It remains to demonstrate that the terminal
condition is satisfied.

u(x, T ) = lim
t→T

∫

D

e−
∫

T

t
rsds g(X)f(x, t;X,T ) dX

=

∫

D

g(X) lim
t→T

f(x, t;X,T ) dX

=

∫

D

g(X) δ(X − x) dX

= g(x) for x ∈ D.

This completes the proof. 2

It should now be clear that the FTAP described by equation (1.46) is just
a special case of the FK-formula.

2.8 Girsanov’s Theorem

IfBt is a standard P−Brownianmotion and λ(t) is an adapted (i.e. Ft−measurable)
process satisfying the Novikov condition,

EP {exp( 1

2

∫ T

0

λ2(t)dt)} < ∞,

then there exists a measure P∗ such that

1. P∗ is equivalent to P

2.
dP∗

dP = exp

(

−
T
∫

0

λ(t)dWt − 1

2

T
∫

0

λ2(t)dt

)

3. B∗
t = Bt +

∫ t

0 λ(s)ds is a P∗−Brownian motion
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The converse states that if Bt is a P−Brownian motion and P∗ is a measure
equivalent to P , then there exists an adapted process λ(t) such that

B∗
t = Bt +

∫ t

0

λ(s)ds

is a P∗−Brownian motion.

REMARK 2.3
1. Two probability measures are said to be equivalent if they have the same
null sets. That is P(A) = 0 ⇔ P∗(A) = 0.

2. The term Rt =
dP∗

dP is called the Radon-Nikodym derivative and gives the

factor needed in computing the change of measure formula: for any random
process Xt

EP∗{Xt|Fs} = R−1
s EP {RtXt|Fs} for all s ≤ t. (2.27)

3. For the sde dXt = µtdt + σtdBt, let B∗
t = Bt +

∫ t

0 (µs/σs) ds. Then
dXt = σtdB

∗
t and Xt, by the martingale representation theorem, is therefore

a P ∗−martingale.

Suppose we have a stochastic process satisfying an arbitrary sde with re-
spect to a measure P . This process will not in general be a martingale under
P . Girsanov’s theorem shows, by changing the drift as above, how to find a
new measure P∗, equivalent to P , under which the process is a martingale.

2.9 Time Varying Parameters

Under the EMM, the sde for the asset price Xt when the risk-free rate rt,
dividend yield qt and volatility σt are deterministic functions of t, is given by

dXs = Xs [(rs − qs) ds+ σs dBs] ; (s > t, Xt = x). (2.28)

We assume that rs, qs and σs are piecewise continuous. The solution of this
sde is readily obtained as (e.g. see Problem 8(b) in the Exercise Problems)

XT = x exp

[

∫ T

t

(rs − qs − 1

2
σ2
s )ds+

∫ T

t

σs dBs

]

(2.29)
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Now let us define

r̄ =
1

T − t

∫ T

t

rs ds; q̄ =
1

T − t

∫ T

t

qs ds (2.30)

σ̂ =

[

1

T − t

∫ T

t

σ2
s ds

]

1

2

. (2.31)

Then, (r̄, q̄) are the mean risk-free rate and mean dividend yield over [t, T ],
and σ̂ is the root mean square (rms) volatility over [t, T ]. Furthermore, by
Itô’s Isometry, (2.16), we have

∫ T

t

σs dBs
d
= N

[

0,

∫ T

t

σ2
s ds

]

= N(0, σ̂2τ); τ = (T − t)
d
= σ̂

√
τ Z; Z ∼ N(0, 1).

Hence, under the EMM, the asset price at time T has the representation

XT = x e(r̄−q̄− 1

2
σ̂2)τ+σ̂

√
τ Z . (2.32)

Comparing this expression with the stock price formula (1.51) for conditions
of constant parameters, we see that the case of time varying deterministic
parameters has exactly the same mathematical structure. It follows, that if
V (x, t; r, q, σ) is the price of a European derivative with fixed expiry date T ,
under constant parameters (r, q, σ), then V (x, t; r̄, q̄, σ̂) will be the correspond-
ing price when the parameters are deterministic functions of time.

2.10 The Black–Scholes PDE

We mentioned in Section 1.7 that the BS-pde for V (x, t)

Vt = rV − rxVx − 1

2
σ2x2 Vxx; V (x, T ) = f(x)

can be transformed by two distinct variable changes into the the standard
heat equation. We begin by converting the pde from a backward to a forward
pde by through τ = (T − t), under which the time partial derivative becomes
Vt = −Vτ . Thus, V (x, τ) satisfies the forward, initial value problem (IVP)

Vτ = −rV + rxVx + 1

2
σ2x2 Vxx; V (x, 0) = f(x)

Scheme 1
Let

y = log x; V (x, τ) = U(y, τ) e−
1

2
αy−βτ (2.33)
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This is the transformation scheme of Wilmott et al. [76]. The factor 1

2
in the

exponent is introduced for later identification with the image prices defined in
Section 7.2 on barrier options. To see how the transformation works, observe
that when y = log x, we have

Vx = Vy
∂y

∂x
=

1

x
Vy ⇒ xVx = Vy (2.34)

Vxx = − 1

x2
Vy +

1

x2
Vyy ⇒ x2Vxx = Vyy − Vy (2.35)

In terms of the variable y, the new pde for V (y, τ) becomes

Vτ = −rV + (r − 1

2
σ2)Vy +

1

2
σ2 Vyy; V (y, 0) = f(ey).

It is clear then, that the transformation y = log x converts the pde with non-
constant coefficients into one with constant coefficients. Next, observe that in
terms of U(y, τ),

Vτ = (Uτ − βU) e−
1

2
αy−βτ

Vy = (Uy − 1

2
αU) e−

1

2
αy−βτ

Vyy = (Uyy − αUy +
1

4
α2U) e−

1

2
αy−βτ .

So substituting into the new pde for U(y, τ), we are free to choose the constant
parameters (α, β) and do so by making the coefficients of U and Uy both equal
to zero. This yields, after a little algebra,

α =
2r

σ2
− 1 and β =

(r + 1

2
σ2)2

2σ2
. (2.36)

The pde for U(y, τ) then reduces to

Uτ = 1

2
σ2 Uyy; U(y, 0) = e

1

2
αyf(ey). (2.37)

This is the standard heat equation with “thermal conductivity” equal to 1

2
σ2

and initial “temperature” equal to e
1

2
αyf(ey). Note that appropriate domain

for this pde is [τ > 0; y ∈ R], so even though x > 0 in the BS pde, the variable
y may be any real number, positive or negative.

Scheme 2
Perhaps less well-known is this second scheme, which transforms the forward
BS-pde via the new variables y and U(y, τ) through

y = log x+ (r − 1

2
σ2)τ ; V (y, τ) = e−rτ U(y, τ). (2.38)

We omit the details, which follow similar calculations as in Scheme 1. The
new pde that results from this transformation is

Uτ = 1

2
σ2 Uyy; U(y, 0) = f(ey) (2.39)
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This is the same heat equation, as for Scheme 1, but with a different initial
value.

REMARK 2.4 Some texts price exotic options by transforming the BS-
pde to the heat equation, as above, and then solve the simpler looking pde
that results. However, that is really an illusion. With the right tools, as we
shall demonstrate throughout this book, it is just as easy to solve the BS-pde
as it stands. This avoids the need to both forward and back transform the
associated variables. Nevertheless, there are some situations where it is useful
to consider the heat equation transformation.

Once we have transformed the BS-pde into the heat equation, we have at
our disposal the vast theory that has been devoted to it. For example, the
text by Cannon [11], gives many important results about the heat equation.
While we don’t often use these results explicitly in this book, we may do so
implicitly. For example, we shall assume that the existence and uniqueness
of solutions of the heat equation are inherited by the corresponding BS-pde.
This means, that if we are able to construct a solution of the BS-pde by some
clever tricks, then we can be assured that this is the only solution. We actu-
ally use this idea in several places in later chapters.

Another use of the heat equation is to get a better understanding of the
image option, defined in Chapter 7 on barrier options. The image solution for
the BS-pde looks rather complicated, but is easy to describe and understand
for the heat equation.

2.11 The BS Green’s Function

Here is a specific example of where the heat equation transformation can
be used to good effect. The fundamental solution or Green’s Function for the
heat equation Uτ = 1

2
σ2Uyy is well-known and is given by the formula

G(y, τ ; y0) =
1

σ
√
2πτ

e−
(y−y0)2

2σ2τ =
1

σ
√
τ
φ

(

y − y0
σ
√
τ

)

. (2.40)

This is the unique solution expressed in terms of the Gaussian density φ(z),
with initial value U(y, 0) = δ(y− y0), where δ(y− y0) is again the Dirac delta
function.

If we now invert this expression for either of the above transformation
schemes, we arrive at the Green’s Function for the BS-pde. This leads to
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the important formula

G(x, t; ξ, T ) =
e−rτ

σ
√
τ
φ

(

log(x/ξ) + (r − 1

2
σ2)τ

σ
√
τ

)

(2.41)

where we have written ξ for log y0. The terminal condition satisfied by this
Green’s Function is G(x, T ; ξ, T ) = δ(x/ξ − 1).

But as mentioned previously, given the right tools, we could also derive this
result directly. We proceed to develop these tools in what follows.

2.12 Log-Volutions

We show in the present section how to obtain solutions of the BS-pde in
terms of an operator we call the logarithmic convolution or log-volution for
short.

Let f(x), g(x) and h(x) denote arbitrary functions defined on x ∈ R+. We
allow these to be generalized functions such as Dirac delta functions and their
derivatives.

DEFINITION 2.1 The log-volution of f(x) and g(x), written as
f(x) ⋆ g(x), is defined by

f(x) ⋆ g(x) =

∫ ∞

0

f(y) g

(

x

y

)

dy

y
(2.42)

The log-volution, as demonstrated next, is indeed a “logarithmic convolu-
tion.” Let x′ = log x; y′ = log y and write F (x′) = f(ex

′

); G(x′) = g(ex
′

).
Then

f(x) ⋆ g(x) =

∫ ∞

−∞
F (y′)G(x′ − y′) dy′ = F (x′) ∗G(x′).

The expression F (x′) ∗G(x′) is the usual way of writing a standard or linear
convolution. Hence, the log-volution in the variable x is seen to be equal to a
convolution in the variable x′ = log x, and hence the name.

The log-volution has many interesting properties, some of which are listed
in the table on the next page. In this table, (α, β) are arbitrary scalars; k > 0
is a positive scalar and D denotes the differential operator

D = x
d

dx
. (2.43)
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Further, L(x) = f(x) ⋆ g(x) denotes the log-volution of f(x) and g(x).

Log-Volution Properties
L1. f ⋆ (αg + βh) = α(f ⋆ g) + β(f ⋆ h)

L2. f ⋆ g = g ⋆ f

L3. f ⋆ (g ⋆ h) = (f ⋆ g) ⋆ h

L4. L(kx) = f(kx) ⋆ g(x) = f(x) ⋆ g(kx)

L5. [xαf(x)] ⋆ [xαg(x)] = xα [f(x) ⋆ g(x)]

L6. L(x−1) = f(x−1) ⋆ g(x−1)

L7. D[f ⋆ g] = (Df) ⋆ g = f ⋆ (Dg)

L8. f(x) ⋆ δ(x − 1) = f(x)

Thus log-volution is linear, commutative, and associative, and the identity ele-
ment under log-volution is the Dirac delta function δ(x−1). The log-volution
also has useful scaling, power, inversion, and derivative rules as given by
properties L4 to L7 inclusively. The proofs of these properties are relatively
straightforward using standard integration rules alone, but a simpler method
utilizes the Mellin Transform, which we introduce later in this section.

Consider now the BS-pde given by Equation (1.50) and repeated here in
terms of relative time τ = (T − t),

Vτ = −rV + (r − q)xVx + 1

2
σ2x2 Vxx.

Then if D is the operator defined by (2.43), it is a simple matter to show that

Vτ = 1

2
σ2D2V + (r − q − 1

2
σ2)DV − rV = Q(−D)V, (2.44)

where Q(s) is the quadratic function Q(s) = 1

2
σ2s2 − (r− q− 1

2
σ2)s− r. The

minus sign in Q(−D) is included for later convenience.

Thus, while the BS-pde for V (x, τ) in terms of the differential operator
d/dx has non-constant coefficients, under the operator D = xd/dx, it now
has constant coefficients.

The next theorem shows how to build solutions of the BS-pde from more
basic ones using log-volutions.

THEOREM 2.1
Let F (x) be any function independent of time τ defined on x > 0, such that
the log-volution F (x) ⋆ U(x, τ) exists. Then if U(x, τ) is a solution of the



52 An Introduction to Exotic Option Pricing

BS-pde, so is
V (x, τ) = F (x) ⋆ U(x, τ). (2.45)

PROOF Consider formally the operator ∂τ −Q(−D) applied to V (x, τ),

Vτ −Q(−D)V = F (x) ⋆ [Uτ −Q(−D)U ]

by the linearity and derivative properties of log-volution. However, this ex-
pression is equal to zero, since by assumption, U(x, τ) satisfies the BS-pde
Uτ = Q(−D)U .

The next theorem shows how to price European derivatives with an arbi-
trary payoff f(x), in terms of log-volutions.

COROLLARY 2.1
Let G(x, τ) denote the Green’s Function of the BS-pde (2.44) with the initial
value G(x, 0) = δ(x − 1). Then the solution of the BS-pde with initial value
(i.e. payoff) V (x, 0) = f(x), is given by

V (x, τ) = f(x) ⋆ G(x, τ). (2.46)

PROOF The proof of (2.46) follows directly from theorem 2.1 and log-
volution property L8. which yields, V (x, 0) = f(x) ⋆ δ(x− 1) = f(x).

2.12.1 The Mellin Transform

For any function f(x) on x > 0, for which the integral below exists, the
Mellin Transform of f(x) denoted by F (s), is defined by

F (s) = Ms[f(x)] =

∫ ∞

0

f(x)xs−1 dx. (2.47)

The parameter s is generally taken as a complex variable. The Mellin Trans-
form is closely related to the Laplace Transforms, and just like the latter, has
an inverse transform, which is given (with c real) by

f(x) = M−1
x [F (s)] =

1

2πi

∫ c+i∞

c−i∞
F (s)x−s ds. (2.48)

Properties and tables of Mellin Transforms can be found in Erdélyi et al. [22].
We present some of the more important ones in the following. With the same
notation we used in the log-volution table, we have the general properties
shown in the next table. Of particular importance is property M6, that the
transform of a log-volution of two functions is the product of their transforms.
In property M7, the function φ denotes the Gaussian pdf of Equation (3.1).
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Mellin Transform Properties
x-domain function Mellin Transform

M1. αf(x) + βg(x) αF (s) + βG(s)

M2. f(kx) k−s F (s)

M3. f(xα) |α|−1 F (s/α)

M4. xα f(x) F (s+ α)

M5. (−D)n f(x) sn F (s)

M6. f(x) ⋆ g(x) F (s)G(s)

M7. φ(log x) e
1

2
s2

M8. xγI(x<k) ks+γ(s+ γ)−1

The Mellin Transform provides a quick and efficient way of deriving an
explicit expression for the Green’s Function G(x, τ), defined in corollary 2.1.
The function G(x, τ) satisfies the IVP

Gτ = Q(−D)G; G(x, 0) = δ(x− 1).

Taking the Mellin Transform of this pde leads to the ode, for Ĝ(s, τ) =
Ms[G(x, τ)],

Ĝτ = Q(s) Ĝ(s, τ); Ĝ(s, 0) = 1

which follows directly from the derivative property. This has unique solution
Ĝ(s, τ) = eQ(s)τ , which can be written in the form,

Ĝ(s, τ) = e−rτ · k−s · e
1

2
(σ

√
τs)2

with k = e(r−q− 1

2
σ2)τ . Several of the Mellin Transform properties then lead

to the result

G(x, τ) =
e−rτ

σ
√
τ
φ

(

log x+ (r − q − 1

2
σ2)τ

σ
√
τ

)

. (2.49)

This expression (which now includes the dividend yield q) agrees with the
result (2.41) which we derived by first transforming the BS-pde to the heat
equation.

PROPOSITION 2.1
Let G(x, τ) defined by (2.49) be the BS Green’s Function. Then for any
k > 0,

xI(x>k) ⋆ G(x, t) = xe−qτ N (d1)

I(x>k) ⋆ G(x, t) = e−rτ N (d2)
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where

d1,2(x, τ) =
log(x/k) + (r − q ± 1

2
σ2)τ

σ
√
τ

.

We leave the proof as Q14 in the Exercise Problems to this chapter.

Sometimes we are interested in solving the inhomogeneous BS-pde (see
Equation (2.50)), where the added term represents cash instalment rates per
unit time to be paid if h < 0, or to be received if h > 0. The next theorem
shows how to price derivatives with such continuous instalments.

THEOREM 2.2
Let V (x, τ) satisfy the inhomogeneous BS-pde

Vτ = Q(−D)V + h(x, τ); V (x, 0) = f(x). (2.50)

Then, subject to the existence of the log-volutions, the solution of this pde is
given by

V (x, τ) = f(x) ⋆ G(x, τ) +

∫ τ

0

h(x, τ ′) ⋆ G(x, τ − τ ′) dτ ′. (2.51)

PROOF Take the Mellin Transform of the pde to arrive at

V̂τ = Q(s)V̂ (s, τ) + ĥ(s, τ); V̂ (s, 0) = f̂(s).

This ode has solution

V̂ (s, τ) = f̂(s)eQ(s)τ +

∫ τ

0

eQ(s)(τ−τ ′)ĥ(s, τ ′) dτ ′.

Inverting the Mellin Transforms using, Ms[G(x, τ)] = eQ(s)τ , and several
entries stated in table of Mellin Transform Properties, leads to the given
result.

Curiously, the second term in Equation (2.51) is simultaneously both a
convolution (in time) and a log-volution (in price).

Example 2.2 (American Call)

Consider a standard American call option on a dividend paying asset, with
constant dividend yield q. Then the price V (x, τ) with IV, V (x, 0) = f(x) =
(x− k)+, satisfies

LV = Vτ −Q(−D)V = 0 in x < b(τ)
V = x− k in x > b(τ)
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where L denotes the BS-pde operator and x = b(τ) ≥ k is the early exercise
boundary. The domain x < b(τ) is called the continuation region, in which
we continue to hold the option; the complementary domain x > b(τ) is the
stopping region in which we exercise the option before expiry. Both equations
are encompassed by the single inhomogeneous BS-pde

LV (x, τ) = −Q(−D)[x− k] · I(x>b(τ)) = (qx− rk)I(x>b(τ)).

Using Theorem 2.2 and Proposition 2.1, we therefore have the solution

V (x, τ) = (x − k)+ ⋆ G(x, τ) +

∫ τ

0

[(qx− rk)I(x>b(τ − s)) ⋆ G(x, s)] ds

= Ck(x, τ) +

∫ τ

0

[qxe−qsN (z1)− rke−rsN (z2)] ds,

where Ck(x, τ) denotes the European call option price, and

z1,2(x, τ, s) =
log(x/b(τ − s)) + (r − q ± 1

2
σ2)s

σ
√
s

.

The last expression for V (x, τ) determines the American call option price in
terms of the (yet) unknown early exercise boundary b(τ). The continuity
condition, V (x, τ) is continuous across the boundary x = b(τ), then yields the
following integral equation for b(τ)

b(τ)− k = Ck(b(τ), τ) +

∫ τ

0

[qb(τ)e−qsN (z1)− rke−rsN (z2)] ds

where now, z1 and z2 are evaluated at x = b(τ).

This representation of the price of a vanilla American call option was first
given by Kim [42] and Jamshidian [36]. A survey of similar results can be
found in Chiarella et al [15]. It is obviously not a closed form solution because
first the integral equation for b(τ) needs to be solved, and second the price
also involves an unknown integral in terms of b(τ).

2.13 Summary

This chapter dealt mainly with the mathematical and statistical tools needed
to price options in the Black–Scholes framework. Most of these tools were in-
troduced in a fairly non-technical way, consistent with the general approach
taken in this book. Proofs of the well-known results were generally ignored,
as these may be looked up in the quoted texts.

The most important topics we covered included:
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Tower Law Feynman–Kac Formula
Brownian motion Girsanov’s Theorem
SDE’s Time-Varying Parameters
Itô’s Lemma BS Green’s Function
Martingales Log-Volutions

Mellin Transforms

The section on Time-Varying Parameters is important, as it has a direct con-
sequence on the pricing of Asian options considered in Chapter 9.

The applications of the Mellin Transform and log-volutions to the BS-pde
contain significant unpublished material, which also will have an impact on ex-
otic option pricing in later chapters, particularly for reflecting barrier options.

We have seen that the FTAP applied to the BS model can be expressed
entirely in terms of Gaussian rv’s as the only stochastic variable required.
It is therefore of important to have a good understanding of Gaussian rv’s
and the next chapter is devoted exclusively to their study. This chapter
includes properties of univariate, bivariate and multi-variate Gaussian random
variables, with corresponding extensions for the BS-pde and FTAP.

Exercise Problems

1. Let V (x, t) denote the price of any European derivative on a single
underlying asset X , for t < T , that pays F (x) at expiry T . Now suppose
you are offered a contract at time t which pays at time s, the amount
V (x, s) for t < s < T . Use the Tower Law to prove that the price of the
derivative at time t should equal V (x, t).

2. Let Es{Xt} denote the conditional expectation E{Xt|Fs} for s < t. If
Bt is a standard Brownian motion, show that

Es{B3
t } = B3

s + 3(t− s)Bt.

Verify the Tower Law, for the example Eu{Es{B3
t }} = Eu{B3

t }
for u < s < t.

3. Prove by direct methods the following results for standard Brownian
motions Bt:

(a) cov{Bs, Bt} = min(s, t) and for s < t, corr{Bs, Bt} =
√

s/t

(b) Bt is self-similar with similarity dimension H = 1

2
;

i.e. Bct
d
= cH Bt for all c > 0.
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(c) Bt, B2
t − t and eσBt− 1

2
σ2t are Ft−martingales.

4. For the general linear sde

dXt = (atXt + αt)dt+ (btXt + βt)dBt; X0 = x

show that

dEt

dt
= atEt + αt; E0 = x

dVt

dt
= (2at + b2t )Vt + (btEt + βt)

2; V0 = 0

where Et = E{Xt} and Vt = V{Xt}.

5. Use Itô’s Lemma to show that the sde

dXt =
1

2
h(Xt)h

′(Xt)dt+ h(Xt)dBt

is reducible to simple aBm by the transformation Yt = f(Xt) where
f(x) =

∫ x
[1/h(u)]du. Hence solve the sde’s

(a) dXt =
1

3
X

1/3
t dt+X

2/3
t dBt, and

(b) dXt = a2 dt+ 2a
√
Xt dBt with a > 0 and X0 = 1 . Hence find the

probability that Xt < 1 at any time t > 0.

6. Let Xt satisfy the sde dXt = αtdt + βtdBt and suppose, F (Xt, t) and
G(Xt, t) are two C2,1 functions. Derive Itô’s Product and Quotient
Rules

d(FG) = FdG+GdF + β2(FxGx)dt

d(F/G) =
GdF − FdG

G2
+

β2Gx

G3
(FGx −GFx)dt.

7. Prove that f(Bt, t), where Bt is a standard Brownian motion, is a (local)
Ft martingale if f(x, t) satisfies the pde ft +

1

2
fxx = 0.

(a) Hence show that Xt = tn/2 Hn

(

Bt√
2t

)

, where Hn(x) are Hermite

polynomials, is an Ft martingale.

(b) Obtain polynomials of orders one through four, in Bt that are Ft

martingales.

(c) Use the Hermite polynomial generating function

e2xs−s2 =

∞
∑

n=0

1

n!
Hn(x)s

n

to show that eσBt− 1

2
σ2t is an Ft martingale.
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8. (a) Use the 2D Itô’s Lemma to prove that if X = Xt and Y = Yt

are two Itô processes relative to the same Brownian motion, with
instantaneous variances σ2

x and σ2
y , then

d(X/Y ) =
Y dX −XdY

Y 2
+

σy(σyX − σxY )

Y 3
dt.

(b) Let Xt satisfy the general linear sde

dXt = (atXt + αt)dt+ (btXt + βt) dBt

where at, αt, bt, βt are deterministic functions of t. Show that the
solution of this sde is given by

Xt = Φt
0X0 +

t
∫

0

(αs − bsβs)Φ
t
s ds+

t
∫

0

βsΦ
t
s dBs

where

Φt
s = exp





t
∫

s

(au − 1

2
b2u)du+

t
∫

s

bu dBu



 .

Hint: Solve the sde dYt = Yt(atdt + btdBt); Y0 = 1 and use Itô’s
Quotient Rule above, to solve for Zt = Xt/Yt.

9. The mean-reverting OU (Ornstein-Uhlenbeck) process is the solution of
the sde

dXt = a(γ −Xt)dt+ σdBt; X0 = x

where a, γ, σ are positive constants. Solve this sde and hence show that
Xt is Gaussian with mean and variance

E{Xt} = γ + (x− γ)e−at

V{Xt} =
σ2

2a
(1− e−2at).

10. Suppose the underlying asset Xt = x and an associated derivative Vt =
V (Xt, t) satisfy the sde’s, in the real-world measure,

dXt = µXdt+ σXdBt; dVt = µV dt+ σV dBt

Show that, in order to avoid arbitrage,

µX − rXt

σX
=

µV − rVt

σV
.

Hence derive the BS-pde when Xt follows gBm.
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11. Show that the transformation (Scheme-2)

y = log x+ (r − 1

2
σ2)τ ; τ = T − t; V (x, t) = e−rτU(y, τ)

reduces the BS-pde for V (x, t), with TV, V (x, T ) = f(x) to the IV heat
equation

Uτ = 1

2
σ2 Uyy; U(y, 0) = f(ey).

12. Derive the log-volution properties L1 to L8 by

(a) direct integration, and

(b) using Mellin Transforms.

13. Derive the BS solutions as given in Section 2.9, for time-varying param-
eters, by applying the Mellin Transform directly to the the BS-pde.

14. Show that if G(x, t) denotes the Green’s Function for the BS-pde, then

I(x>k) ⋆ G(x, t) = e−rτ N (d2)

xI(x>k) ⋆ G(x, t) = xe−qτ N (d1)

where

d1,2 =
log(x/k) + (r − q ± 1

2
σ2)τ

σ
√
τ

and q is the constant dividend yield.

—ooOoo—


