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Chapter	2	

2.1.  A plane wave has an electric field given by  o ˆE E sin kz t x  


 is incident on a material with a 

susceptibility given by   o1 3i / 2    . 

a)  What is the complex amplitude of the electric field? 

i
2

o ˆA E e x
  

   (S2.1) 

b) What is the phase shift between a polarization induced by the field and the incident field? 

The relationship between the polarization’s complex amplitude and the field’s complex 
amplitude is, 

oP A    (S2.2) 

Therefore the phase difference is the phase of the complex susceptibility, which is 
3


. 

c) What is the real polarization in this medium induced by the field? 

o o o ˆP E sin kz t x
3

        
 


 (S2.3) 

or equivalently, 

o o o ˆP E cos kz t x
6

        
 


 (S2.4) 

2.2.  A plane wave in a vacuum has an electric field given by, o ˆE E cos(kz t )x  


.   

a)  What is B


? 

We use Maxwell’s equation, 2.2, to relate the curl of the electric field to the time derivative of 

the magnetic field.   For a field of the form given here, ˆikz   and i
t


  


.  Therefore, 

 oE
ˆB cos kz t y

c
  


 (S2.5) 

b)  What is the complex amplitude of B


? 

ioE
ˆB e y

c



 (S2.6) 

c)  What are 
Sand S
 

? 

 
2

2o

o o

EE B
ˆS E H cos kz t z

c


     

 

   
 (S2.7) 

2
o

o

E
ˆS z

2 c





 (S2.8) 

2.3.   Consider two monochromatic quantities, i t1
F Fe c.c.

2
 

 
 and  i t1

G Ge c.c.
2

 
 

.  Prove that 

 *1
F G Re F G

2


  
  , where denotes a time average.  
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 i2 t *1
F G F Ge F G c.c.

4
  

    
    (S2.9) 

Note that any complex number, z, plus its complex conjugate, z*, is z+z*=2Re(z).  Therefore, 

    i2 t *1
F G Re F Ge Re F G

2
 

    
   . (S2.10) 

The first term on the right hand side is proportional to cos(2t) and it therefore time-averages to 
zero.  Hence, 

 *1
F G Re F G

2


  
  . (S2.11) 

2.4.  Use Poynting’s theorem and Equation 2.39 to determine the phase difference between an incident 
monochromatic plane-wave field and the induced polarization that leads to (a) maximum attenuation, and  
(b) maximum gain of the incident beam.  Use this result to comment on whether the polarization should lead 
or lag with respect to the incident field for 1) attenuation and 2) gain. 

   

Taking the time-average of Poynting’s theorem  gives 

closed
surface

P
S da E dV

t


  

 
   (S2.12) 

The left-hand side is the time-averaged power flow out of a closed surface.  Hence, when 

dP
E 0

dt
 


 (S2.13) 

more power flows out of the surface than flows in (gain).  When this expression is greater than 
zero net power flows into the surface (attenuation).  For monochromatic plane waves, 

 
*

*dP 1 dP 1
E Re A Re i A P

dt 2 dt 2

  
          

   
 (S2.14) 

(see Problem 2.3) where A


 and P


 are complex amplitudes.   Let’s simplify the expression by 
substituting  

Ei
oA E e 

 
 and  Pi

oP P e 
 

 so that  

      E Pi*
o o o o P E

1
Re i A P A P Re ie A P sin

2 2 2
  

       
    

 (S2.15) 

Maximum gain and attenuation occur when P and A are 90o out of phase.  a)  Maximum gain 

occurs when  P E 2


     and b) maximum attenuation occurs when   P E 2


   .  

Equation (S2.15)  also shows that when the polarization phase is greater than the field (ie leads 
in phase) then attenuation occurs, and gain occurs when the polarization lags with respect to the 
field.   

2.5.   Show that absorption is linear in the sense that when two inputs at different frequencies are present in a 
medium that  

 total 1 2
total 1 2

dP dP dP
E E E

dt dt dt
    
    

 . 2.140 

 Use monochromatic plane waves for  1 1E 


 and  2 2E 


.  The polarization’s complex amplitude is related 

to the field via oP A  


.   Assume that the susceptibility is the same for both frequencies.   

 
The total field is given by, 
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1 2i t i t
Tot 1 2

1
E A e A e c.c.

2
       

 
. (S2.16) 

The time derivative of the total polarization is, given our assumptions, 

1 2i t i tTot
o 1 1 o 2 2

dP 1
i A e i A e c.c.

dt 2
             

  
. (S2.17) 

We take the dot-product of Equations (S2.16) and (S2.17), 

1 2 1 2i t i t i t i tTot
Tot 1 2 o 1 1 o 2 2

dP 1
E A e A e c.c. i A e i A e c.c.

dt 4
                       

    
 . (S2.18) 

Taking the time average of Equation (S2.18) leaves us with  

   
2 2 2 2

*Tot
Tot o 1 1 2 2 o 1 1 2 2

dP 1 1
E i A A Im A A

dt 4 2
                   

    
 . (S2.19) 

To evaluate the right-hand side of 2.140, we use Equation (S2.11) for each term, for example, 
 

   
2 2

*1
1 o 1 1 o 1 1

dP 1 1
E Re i A Im A

dt 2 2
        
  

. (S2.20) 

Hence  

 
2 2

1 2
1 2 o 1 1 2 2

dP dP 1
E E Im A A

dt dt 2
          

    
, (S2.21) 

and this equation is equal to the left hand side of Equation 2.140 as shown in (S2.19). 
 

2.6. Show that, when the electric field is of the form  i(k r-ωt)
o

ˆRe E e E
      

  
  
  

i k r t

o

i k r t

o

2 i k r t2
o

E Re ik E e

E Re ik E e

E Re k E e







 

  

  

 

 

 

 
 

 

 

  

That is, for monochromatic plane waves  ik


 and i
t


  


. 

These relations may be directly written out.  Another approach is to consider that any 

combination of 


 operations results in a function of , ,and
x y z

  
  

, which we will call  

f , ,
x y z

   
    

.  To see the result of this function operating on a monochromatic field of the 

form, i(k r-ωt)
o

ˆE e E
  ,

 
we note that the only spatial dependence comes in the  k r

   term.  Hence, 

f , ,
x y z

   
    

 operating on i(k r-ωt)
o

ˆE e E
   is written as 

    o x y z
ˆE E f , , exp i k x k y k z t

x y z

   
      

. (S2.22) 

The action of , ,and
x y z

  
  

 on the exponential term is illustrated by considering 

   x y z x x y zexpi k x k y k z t ik expi k x k y k z t
x

             
.   
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Hence , ,and
x y z

  
  

 operating on i(k r-ωt)e
   give back i(k r-ωt)e

   multiplied by ikx, iky, and ikz 

respectively.  Since the operations return the i(k r-ωt)e
   multiplied by a constant,  successive 

operations of partial derivatives result in i(k r-ωt)e
   multiplied by the appropriate constants.  

Therefore  i(k r-ωt) i(k r-ωt)
x y zf , , e f ik , ik , ik e

x y z

   
    

     .  Similarly, 

    i(k r-ωt) i(k r-ωt) i(k r-ωt)
o o x y z of , , Re E e Re f , , E e Re f ik ,ik , ik E e

x y z x y z

         
              

      
  

.(S2.23) 

Hence, we may identify, 

x y zˆ ˆ ˆ ˆ ˆ ˆx y z ik x ik y ik z ik
x y z

  
       

  


 (S2.24) 

A similar argument yields,  i
t


  


. 

 

2.7. Use the Kronecker-delta properties to prove that i j ijR R        can be “inverted” to give ij i jR R     . 

Operate on both sides, 

i i i j ij j ijR R R R R                (S2.25) 

The Kronecker-delta gives =’, 

i j ijR R       (S2.26) 

Similarly, we operate on both sides again, 

j i j j ij ijR R R R               (S2.27) 

The Kronecker-delta gives =’, and we have the final result, 

j i ijR R      . (S2.28) 

 

2.8. Use the constitutive relationship, Equation 2.5, along with Equation 2.45 to prove that  ij o ij ij      . 

Substituting Equation 2.45 into Equation 2.5 (written in component form) gives 

i o i o ij jD A A      (S2.29) 

This is equivalent to  

 i o ij j o ij j o ij ij jD A A A           . (S2.30) 

Furthermore, i ij jD A   so that we may equate  

 ij o ij ij       (S2.31) 

2.9.   In Chapter 3, we show that the second order nonlinear polarization is given in component form as  

 (2) (2)
i o ijk j kP A A   , 2.145 

 where (2)
ijk  is the second order susceptibility and Aj is a component of the incident field’s complex amplitude.  

Use Equation2.145 to prove that (2)
ijk is a rank 3 tensor.   

We prove that  (2)
ijk is a rank 3 tensor  by showing that it transforms like a tensor.  We start by 

noting that the polarization and field are vectors and hence we can rewrite them according to 
tensor transformations.  Specifically, we may write them with respect to a different coordinate 
system.  For the purposes of this example, ijk refer to one coordinate system and  to the 
other.  A given polarization transforms like, 
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(2) (2)
i iP R P  . (S2.32) 

We transform the polarization and fields in Equation 2.145, 

  (2) (2) (2)
i o ijk j k o j k ijkR P R A R A R R A A              

 
(S2.33)

 
Next operate on both sides, 

(2) (2) (2)
i i i i o i j k ijkR R P P R R R A A                (S2.34) 

Hence, 

 (2) (2)
o i j k ijkP R R R A A         (S2.35) 

In the transformed coordinate system we identify, 
(2) (2)

i j k ijkR R R       (S2.36) 

Next we “invert” the relationship by operating on both sides (see also Problem 2.7), 
(2) (2)

i i j k ijk iR R R R R          (S2.37) 

Note that i iR R     so that (2) (2)
j k ijk iR R R      .  Similarly, we operate on both sides of this 

equation with jR   and kR  yielding 
(2) (2)
ijk i j kR R R      . (S2.38) 

Therefore the second order susceptibility transforms as a rank 3 tensor.  
  

2.10. Find the principal indices of refraction (eigenvalues) and the direction of the principal axes (eigenvectors) 
for the following relative dielectric tensor, r


, 

 

2.5 .5 0

.5 2.5 0

0 0 4

 
 
 
  

. 2.146 

The eigenvalues are found from  
2.5 .5 0

.5 2.5 0 0

0 0 4

 
  

 
 (S2.39) 

Solving for  gives =2, 2=3, and 3=4.   

The corresponding indices are 1 2 3n = 2, n 3,  and n 2  .  The eigenvector corresponding to 

1 is 

1
1

1
2

0

 
  
 
 

,  (S2.40) 

for 2 is 

1
1

1
2

0

 
 
 
 
 

 ,  (S2.41) 

and for 3 is 

0

0

1

 
 
 
 
 

. (S2.42)

2.11.   An electric field in a material that has a dielectric tensor as given in Problem 2.10 has a complex amplitude, 

  oE
ˆ ˆ ˆE x y z

3
  


.   What is the complex amplitude of the displacement vector, D


?  Show that D


 and E


 

are not parallel, and find the angle between them. 

We use Di=oijEj, which in matrix form is, 
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 o
o o o

2.5 .5 0 1
ˆ ˆ ˆ3x 3y 4zE

D .5 2.5 0 1 E
3 3

0 0 4 1

   
          

      


 (S2.43) 

Clearly D and E are not parallel.  We find the angle between the two vectors by taking the dot-
product of their unit-vectors: 

   ˆ ˆ ˆ ˆ ˆ ˆ3x 3y 4z x y z 10ˆ ˆcos D E 0.99
34 3 102

   
       

The angle is 0.14 rads or 8.0o.   

2.12.  A uniaxial crystal of indices no and nz is cut so that the optic axis is perpendicular to the surface.  Show that 
for a beam incident on the interface from air at an angle of incidence, i, that the angle of refraction of the e-
wave is 

z i
e 2 2

o z i

n sin
tan

n n sin


 

 
. 2.147 

 

 
Since the optic axis and the surface normal are parallel, e=t.  Snell’s law is 

 i i t t e en sin n sin n sin      

where ni=1 and we substitute in for the extraordinary index, 
1/22 2

e e
i e2 2

o z

cos sin
sin sin

n n


  

    
 

 (S2.44) 

Rearranging gives, 

2 2 2 2
e o z i

1 1 1

tan n n sin

 
    

 (S2.45) 

Solving for tane, 

z i
e 2 2

o z i

n sin
tan

n n sin


 

 
 (S2.46) 

2.13.  The law of reflection in crystals is not always intuitively obvious.  In a derivation similar to that for Snell’s 
law, reflections satisfy the equation i i r rn sin n sin   , where i and r are the incident angle and reflected 

angle with respect to the surface normal respectively;  ni and nr are the  indices for the incident and reflected 
beams.  As the following example shows, in crystals it is possible that i rn n  and therefore r i   .  A right 

prism, shown in Figure 2.13, is made out of a uniaxial birefringent crystal with the optic axis as shown in the 
figure.  The principal indices are no=2.2 and nz=2.1 and the prism angles are 45 o and 90o.  The incident 
beam of light is linearly polarized in the vertical direction (parallel to the optic axis).  Calculate the reflected 
angle with respect to the reflected surface normal (dotted line).  Note that it is not 45o!   

i 

t, e

optic axis 
direction
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Figure S2.1.  Geometry for Problem 2.13. 
 
Figure S2.1 shows the geometry with respect to the reflecting interface.  The incident angle is 
45o.  Let’s assume that the reflected angle is slightly larger than 45o as shown in Figure S2.1.  
We have 

 i i R R R e en sin n sin n sin
4

        
 

.   (S2.47) 

The incident beam is polarized along the crystal’s z-axis so ni=nz.  The incident angle is i=/4, 
and we use a standard trig identity to expand, 

 e e
e

sin cos
sin

4 2

      
 

 (S2.48) 

Making the above substitutions along with the extraordinary index of the reflected wave in 
Equation (S2.47) gives 

 
1/22 2

e e
z e e2 2

o z

cos sin
n sin cos

n n


  

     
 

 (S2.49) 

After some algebraic manipulation we obtain, 
2 2
z o

e 2
o

n n
tan

2n


   (S2.50) 

Substituting in no=2.2 and nz=2.1 gives e=-44 mrad (=-2.5o).  So the reflected angle is 
R=42.5o.  

2.14.  A linear-optical effect that plays a role in ultrashort-pulse nonlinear optics is the group velocity mismatch 
between different carrier frequencies.  For example, in second harmonic generation the fundamental and 
second harmonic will temporally separate due to group velocity mismatch.  The group velocity is given by

g

ω
v

k





, however, it is easier to calculate inverse group velocity -1
g

k
v

ω





.  Plot the group velocity as a 

function of wavelength for an o-wave traveling through BBO (see Appendix B for Sellmeier Equations.  
Based on the group velocity evaluated at 0.532 and 1.064μm, over what propagation distance in the BBO will 
a 100 fs pulse at 0.532 temporally separate from a 100 fs 1.064μm pulse? Define temporal separation when 
the pulses are separated by 100 fs.  

The inverse group velocity is given by  

1
g

k n dn
v 1

c n d
        

 (S2.51) 

Using the Sellmeier Equations in Appendix B allows us to obtain n(and dn/d.  A plot of the 
group velocity is given in Figure S2.2.  A direct calculation at 1.064 and 0.532 m gives for the 
group velocity,  

 
 

8
g

8
g

v 1.064 m 1.972 10 m / s

v 0.532 m 1.742 10 m / s

  

  
 

A 100 fsec pulse corresponds to approximately 30 m spatial extent (in vacuum).  Therefore the 
pulses are separated when their peaks are spaced roughly 30 m apart.  The separation between 
the two pulses is 

1 2x v v t    (S2.52) 

Optic Axis 
R e 
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where v1 and v2 are the group velocities and t=0 corresponds to when the two pulses are 
coincident in time.  Using x=30m and using the group velocities given above, we obtain 
t=6.05x10-12s as the period of time it takes the two pulses to separate.  In this time the 1.064 m 
pulse travels 1.08 mm and the 0.532 m pulse travels 1.05 mm.  Therefore after 1 mm the two 
pulses separate.  Note that a longer interaction length is possible by timing the pulses so that the 
0.532 m pulse arrives first (it travels slower).  In this way, a 2 mm interaction length is 
possible.   
c)  From the plot,  F=2.03 m and SHG=1.015 have the same group velocity.   

 
Figure S2.2.  Group velocity in BBO. 
 
 

2.15.   Derive the wave equation in an isotropic medium for the case where jf is not equal to zero. Assume 
monochromatic plane waves and use Ohm’s law to relate the complex amplitudes of the free current density 

and the field, ie. Fj A 
 

.   

a) Show that the resultant index of refraction is complex.  

b)  Show that the imaginary part of the index leads to attenuation as the field propagates through the 
medium. 

a)  The wave equation is 

  oE H
t


    



 
. (S2.53) 

Similar to the derivation for the lossless case, this equation becomes 

2
o f

D
E j

t t

  
      


. (S2.54) 

The complex amplitude of D


is related to that of the field, E


via o rD A  


.  For 

monochromatic plane waves of the form  i k r t
Ae


 

 we replace ik


 and i
t


  


.  After 

making these substitutions we arrive at, 
2 2

2
or r

o o 2 2
o r

k i 1 i
c c

      
             


. (S2.55) 
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We see that the plane wave solution requires a complex k-vector.  From the relationship, 
n

k
c



 , we obtain the complex index, 

1/2

r o

o r

n 1 i
c

  
     
 . (S2.56) 

b)  Rewriting n n i    gives  k n i
c


   .  Therefore the plane wave solution is of the form 

    n
A exp i n i z t A exp z exp i z t

c c

            
   

 
 (S2.57) 

where we have chosen the direction of propagation to be the z-direction.  This solution shows 
that the field exponentially decays with a decay constant given by the imaginary part of the 
index.   

2.16. A new transparent material has been discovered and before nonlinear optics experiments can be performed, 
we need to know it’s dispersion curve.  Measurements of the index of refraction are made at five wavelengths 
(using five different lasers). Table 2.1below gives the results of the measurements. 

Table2.1  Index as a function of wavelength  
Wavelength (m) Index of refraction 
0.330   2.47379 
0.532   2.23421 
0.6328   2.20271 
1.064   2.15601 
1.57    2.1375 
2.804   2.1029 

 

 Fit the above data using a two-pole Sellmeier equation, 

 
22

2 31
o 2 2

2 4

λ Aλ A
n (λ)=A +

λ -A λ -A
  

 where  is kept in units of microns.  The stability of the fitting routine requires reasonable guesses for the 
fitting parameters.  A2 and A4 correspond to the IR and UV poles, so set the starting guesses accordingly.  If 
we assume that the dispersion is relatively “slow” then the index should not be a strong function of 
wavelength.  From the data we see that it has a value centered on approximately 2.2.  Hence a good guess for 
Ao is ~2.22.   After performing the fitting routine, give the values for the fit parameters A0 through A4.  Plot 
the measured and fitted index of refraction as a function of wavelength on the same graph.  Check to be sure 
that A2 and A4 give poles in the IR and UV respectively. 

The fit and fitting parameters are shown in Figure S2.3. From the fit values we see a UV pole at 
0.211m and an IR pole at 114 m. 



11 
 

 
 

 
Figure S2.3.  Data and fit solution for Problem 2.16. 


2.17.  Use Equation2.100  to show that the two eigen-polarizations are orthogonal.  Hint, show that the D-vectors 
corresponding to the two eigen-indices are orthogonal. 

Fresnel’s equation states: 
22 2
yx z

2 2 2 2 2 2
x y z

ss s
0

1 1 1 1 1 1
- - -

n n n n n n

   , or  
2
i

i
2

i

s
0

1 1
-

n n

  (S2.58) 

This equation has two solutions, which we call  n1, and n2.  The D-vectors associated with these 
values of n are perpendicular by  showing that their dot-product is zero. 
Equation 2.100 is, 

  i

i
2

2 2
i

k̂ E s
D

1 1
c -

n n


 

  
 




 (S2.59) 

And hence  

  2
i

n1 n 2 2
i

2 2 2 2
o 1 i 2

k̂ E s1
D D

c 1 1 1 1
- -

n n n n


   

  
  



 

  (S2.60) 

Using the method of partial fractions, 
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   2 2 2 2 2 2
21 2 1 2 i i

n1 n2 i2 2 2 2 2 2
i i i2 1 2 1

2 2 2 2 2 2 2 2
i 1 i 2 i 1 i 2

ˆ ˆk E k En n n n s s1 1
D D s

μc n -n μc n -n1 1 1 1 1 1 1 1
- - - -

n n n n n n n n

   
   
                 
          
             

  
 
  

Notice that both sums in the square brackets are solutions to Fresnel’s equation (n1 and n2) and 

hence are both equal to zero.  Therefore n1 n2D D 0 
 

proving that  n1D


is perpedicular to n 2D


. 

 

2.18.  Calculate the angle where ne=no in the xz plane of a biaxial crystal.  This angle is the angle of the optic axis 
with respect to the z-axis.  Use the Sellmeier equations for KTP to plot the angle of the optic axis with respect 
to the z-axis as a function of wavelength from 0.5 to 4.0 m.   

The intersection is given by 
2 2

2 2 2
x z y

cos sin 1

n n n

 
   (S2.61) 

Solving for angle gives, 
 

2 22
x y2 z

2 2 2
y x z

n nn
sin

n n n

 
     

 (S2.62) 

The dispersion of the optic-axis angle is shown in Figure S2.4.   

 
Figure S2.4.  Dispersion of the optic axis angle.   
 

2.19. Give expressions for ne  in each of the principal planes of a biaxial crystal. In the xz- and yz- planes, assume 
that the k-vector propagates at an angle, , with respect to the z-axis. In the xy-plane, assume that the k-
vector propagates at an angle, , with respect to the x-axis. 

xy-plane: 

 
1/ 2

2 2

e 2 2
y x

cos sin
n

n n


  

   
  

 (S2.63) 

xz-plane: 

 
1/22 2

e 2 2
x z

cos sin
n

n n


  

   
 

 (S2.64) 



13 
 

 
 

 yz-plane: 

 
1/ 2

2 2

e 2 2
y z

cos sin
n

n n


  

   
  

 (S2.65) 

2.20.   Nonlinear optical interactions typically involve multiple beams at multiple wavelengths.  If the beams have 
different polarizations, then they may walk off each other as the following example demonstrates.  Two beams 
of light, one at 600 nm (o-polarized) and the other at 300 nm (e-polarized), are sent through a BBO crystal 
with their k-vectors at an angle of 40.5 degrees to the optic axis.  The BBO crystal is 2 cm long.  The beam 
diameters are the same and are given by “D”.  Determine the distance in the crystal where the two beams 
walk off each other.  Define beam separation when the centers of the beams are displaced by one beam 
diameter.  For what beam diameters is the full crystal length used?  Sellmeier equations for BBO are found in 
Appendix B. 

The beams walk off each other (using the definitions of walked-off as given in the problem 
statement) at a distance, 

D
L

tan



 (S2.66) 

where  is the walk-off angle of the e-wave.  The walk-off angle is given by Equation 2.106, 
2

-1 o
2
z

n
ρ=tan tanθ -θ

n

 
 
 

. (S2.67) 

The walk-off angle is evaluated for the e-wave at 300 nm (the o-wave at 600 nm has no walk-
off).  The walk-off angle is, 82mrad (4.73o).  So the effective crystal length is 12D. 
 

2.21.  In the following, use the Sellemeier Equations for BBO found in Appendix B.  

a)  Make a plot ne() from =0 to /2 for both =1.064 m and =0.532m.  Include on the same graph 
no() for both wavelengths. 

 
Figure S2.5.  Plot of ne and no for 1.064 and 0.532 m.  The horizontal lines correspond to the 
ordinary index.  

b)  Is BBO positive or negative uniaxial? 

Negative uniaxial 

c)  For what polarization states and for what angle does n(1.064) = n(0.532)?  Hint, this corresponds to the 
intersection of two of the curves in part (a).  This angle is the phase matching angle for second harmonic 
generation. 
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When the 0.532 m is an e-wave and the 1.064 m beam is an o-wave the indices are the same 
at 22.7o.  

 

2.22. For nonlinear interactions in birefringent crystals, walkoff is an important factor.  Plot the walk-off angle (in 
degrees) as a function of crystal orientation (from 0 to 90o) for the crystal, BBO (see Appendix B for 
Sellemeier equations).  Use a wavelength of 0.6m.  The orientation of the crystal is defined as the angle 
between the k-vector and the optic axis of the crystal. Where is walkoff zero?   

 
Figure S2.6.  Plot of walkoff in BBO. 
Walk-off is zero at 0 and 90o. 

 

2.23.   Assume a beam waist is incident on a lens of focal length, f.  The beam propagates a distance, d, where it is 
incident on a crystal that has an index n.  Provided that d is less than the focal length, prove that the focused 
spot size in the crystal is the same as the focused spot size without a crystal.  Also assume that the initial 
beam waist incident on the lens is large enough that the focused spot in air is a distance of approximately f 
away from the lens.   

The ABCD matrix for the beam transformation going from the initial beam waist to the focused 
beam location is, 

2 2

2

d dd
1 0 1 0 1 dA B 1 d 1 d f nf n

1 1
C D 0 1 0 1 1 10 1

n f
nf n

                                         

 (S2.68) 

The starting q is a beam waist, so it is purely imaginary and we write it as izR0, where 
2

R 0 oz w /    The q parameter after transformation is (see Equation 2.125), 

 

       

2 2
R 0

2 R0 2

R 0 R 0

2
2 2 R0 2 R0 2 R 0

2 2 2 2
R 0 R 0

d dd
i 1 z d

i nf nd d z dnf d ff nf n
q

iz 1 f iz
nf n

dnf d f f nf nd d z dnf d f z nf nd d z f
i

f z f z

           
 

       
 

 

 (S2.69) 
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   
   

       

R 0

2 2 R0

2 2
2 2 R 0 R0

2 2 2 22 2 2 2
2 2 R 0 2 2 R0

f iz1

q dnf d f i nf nd d z

f dnf d f nf nd d z nf z
i

dn d f nf nd d z dn d f nf nd d z




   

   
 

       

 (S2.70) 

At the focus, the radius of curvature is infinite and hence the real part of 1/q is zero.  Therefore,  

 
 

2 2
R0

2 2 2
R0

f d nz ndf
d

f z

 



 (S2.71) 

Substituting this expression back into Equation (S2.70) gives (we can ignore the real part since 
it is zero from the previous step) 

2 2
R 0

2
R0

f z1
i

q nf z


  . (S2.72) 

The beam size is found from Equation 2.122,  
2 2

R0
2
finR a0 l

2

f z1
i

q nf z
i

nw


 




   (S2.73) 

2
2 R 0
final 2 2

R 0

f z
w

f z



 

 (S2.74) 

Thus we see that the focused spot size has no dependence on the index of refraction.     
 

2.24.  Plot w(z) and 1/R(z) for a Gaussian beam.  Plotting the inverse of R(z) avoids problems near z=0 where the 
radius of curvature is infinite.  Assume that the wavelength is 500 nm, and that wo=100m.  Plot from z=-
10zR to z=+10zR where zR is the Rayleigh range. 
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Figure S2.7.  Top: w(z) and Bottom 1/R(z) for Problem 2.24. 

2.25.   Three Gaussian laser beams are focused to have the same beam waist, wo=200 m, at z=0 (radius of 
curvature=∞).  The wavelength of the three lasers are 1=250 nm, 2=500 nm, 3=1000 nm.    Find the ratio 

of the Rayleigh ranges for laser1/laser2, and laser1/laser3, ie R1 R1

R2 R3

z z
,

z z
.   Use the result to comment on 

beam overlap issues that arise for nonlinear interactions that require the overlap of beams with different 
wavelength. 

The ratio of Rayleigh ranges for beams with the same wo  but different wavelengths is 

3R1 2 R1

R2 1 R3 1

z z
,

z z


 
 

 (S2.75) 

In the specific cases considered here, 

3R1 2 R1

R2 1 R3 1

z z
2, 4

z z


   
 

 (S2.76) 

Exact beam overlap is possible for only small distances since the different beams at different 
wavelengths diffract at different rates.  Therefore this issue is important in nonlinear interactions 
where multiple beams at different wavelengths are interacting.   The optimum spot sizes for the 
different beams is usually determined numerically.   

2.26.  Consider the optical system shown in Figure 2.14.  A Gaussian beam waist (wo) is located a distance d1 from 
a lens of focal length, f.  A distance d2 on the other side of the lens is a second beam waist.  

a)  Use the Gaussian beam parameter, q, and the ABCD matrix approach to show that the distance, d2, is 
given by the expression 

 
 
 

2
1 1 R

2 2 2
1 R

d f d z f
d

f d z

   
 

  

 where zR is determined by the initial beam waist, wo and is given by 
2
o

R

w
z





.  Hint, at a beam waist what is 

the radius of curvature and therefore what should the real part of 1/q be? 

 b) Show that the beam waist located at d2 is given by the relationship, 

 

2
2 R
final 2 2

1 R

f z
w

f d z

  
  

     
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c)  Consider a laser operating at 1.064 m that has a beam waist of 200 m at a location of 1 cm after the 
laser exit port.  A certain nonlinear application requires us to focus this beam to w=130m.  At what 
location(s) can we put a 10 cm focal length lens to obtain the desired spot size?  

 
a)  The ABCD matrix for the focusing system is, 

2 1 2
1 2

2 1

1

d d d
1 0 1 d d

A B 1 d 1 d f f
1

C D 0 1 0 1 d11
1f

f f

                                  

 (S2.77) 

The Gaussian beam parameter is transformed according to 
   2 o 1 2 1 2o

final
o 1 o

f d q d d f d dAq B
q

Cq D f d q

   
 

  
 (S2.78) 

We note that because the beam starts at a beam-waist, qo=izR.  Taking 1/qfinal and setting the real 
part to zero gives (since the radius of  curvature is infinite at the beam waist), 

      2
1 1 2 1 2 2 Rf d d d f d d f d z 0         (S2.79) 

We solve this for d2  as a function of d1, 

 
 

2
1 1 R

2 2 2
1 R

d f d z f
d

f d z

   
 

 (S2.80) 

Note that the geometric limit is obtained by setting zR=0.   
b) The imaginary part of 1/qfinal is 

     
    

1 2 R 1 2 1 2 R

2 22 2
final final1 2 1 2 2 R

f d f d z d d f d d z1
Im

q wd d f d d f d z

       
        

 (S2.81) 

The following relationships help with the algebra required for Equation (S2.81) and using d2 
from Equation (S2.80): 

 
 

2
1

2 2 2
1 R

f f d
f d

f d z


 

 
 (S2.82)  

and 

 
 

2 2
R

1 2 1 2 2 2
1 R

f z
d d f d d

f d z
  

 
 (S2.83) 

Substituting these equations into (S2.81)gives, 

 2 2
1 R

2 2
final R final

f d z1
Im

q f z w

   
      

 (S2.84) 

Solving for wfinal, 

 

2
2 R
final 2 2

1 R

f z
w

f d z

  
  

   
 (S2.85) 

  c)  Equation (S2.85) is rearranged to solve for d1 as a function of the given parameters, 
2

2 2o
1 R2

final

w
d f f z

w
    

For the parameters given, d1= 19.9 cm or d1=1.4 mm.  The 19.9 cm solution is usually more 
practical to implement since it gives more working distance between the lens and the 130 m 
beam waist.  

2.27.   Table 2.1gives data for the beam radius (1/e field radius) of a laser beam as a function of position.  The 
wavelength of the laser is 1.064 m.   

 
Table2.1  Beam radius as a function of position 
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W(m)  z(cm) 
54.4  0.125 
44.5  0.135 
39.5  0.145 
32.5  0.155 
26.2  0.165 
21.9  0.175 
16.3  0.185 
12.0  0.195 
10.6  0.205 
11.3  0.215 
14.1  0.225 
19.1  0.235 
24.0  0.245 
31.1  0.255 
37.5  0.265 
41.7  0.275 
48.1  0.285 
53.0  0.295 
58.0  0.305 

 

a) Plot W vs. z and on the same plot include the curve  

 
1/22

o4
o 2

o

λ z-z
W(z)=W 1+M

πW

  
  
     

For this part of the problem set M=1.  For the values of Wo, and zo estimate them based on the data.  zo is the 
location of the minimum beam waist and Wo is the minimum radius.  Tweak the values of Wo and zo to get 
a best fit for all the data.  Include the best values of zo and Wo on the plot.   

 
Figure S2.8.  Plot for Problem 2.27 (a).  

b) Using the results of part (a) as a starting point, perform a fit of the function W(z) above to the data to 
determine best values for Wo, zo, and M2.   
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Figure S2.9.  Plot for Problem 2.28 (b).  The top part of the plot shows the residuals between the 
fit and the data. 

  


