
Solutions to Problems Chapter 2 
 
l. Assume a Gaussian beam in air with plane wavefronts and waist 0w  at a distance 0d  from a 

converging lens of focal length f .   
(a) Using the laws of q-transformation, find the distance behind the lens where the Gaussian 
beam focuses, i.e., again has plane wavefronts.  
(b) Using the beam propagation method, simulate the propagation of the beam through air and 
through a lens.   
(c) By setting fd 0 , determine the profile of the beam a distance f  behind the lens.   

(d) By setting fd 20  , determine the profile of the beam distances f  and f2 behind the lens.   

 
A1. (a) Using laws of q-transformation, the q after the lens and after a distance of propagation  z 
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When the Gaussian beam focuses, its q becomes purely imaginary again; hence its real part 

becomes equal to zero.  Using the above relations, this occurs at 
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imaginary part yields the new beam waist with a Raleigh range 
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(b) Assume initial Gaussian beam with mmw 1.00  , wavelength m 5.0 . 

 
Beam propagates by the Rayleigh range fmmzR  8.63 , the focal length of the lens. 

 
Immediately after lens, the phase should be equal in magnitude to the incident phase but opposite 
in sign. 



 
At back focal plane of lens, the initial Gaussian beam with plane is retrieved.  Some residual 
phase remains due to numerical errors. 
 

 
After further travel from back focal plane by distance f, the beam again diverges as shown.  

 
(c) If fd 0 , then it follows from the expression of )(zq  in part (a) that at fz  , the Gaussian 

beam again attains plane wavefronts and hence a waist at the back focal plane.  Here,  
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Also, for the final waist to be the same as the initial waist, fzR  , i.e., the Rayleigh range of the 
initial Gaussian beam should be the same as the focal length of the lens. 

(d)  Again, using the expression for )(zq  in part (a), 
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The expressions for the beam can be found by using the q parameters above and substituting in 
the general expression for the angular plane wave spectrum of a Gaussian, viz., 

0
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2. A Gaussian beam of width w  and having wavefront with a radius of curvature R  is normally 
incident on the interface between air and glass of refractive index n.  Find the width and radius of 
curvature  

(a) immediately after transmission through the interface, 
(b) immediately upon reflection at the interface. 

 
A2. The ABCD matrices for transmission and reflection at a plane interface are given by 
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comprising the position and the angle of the ray (see for instance, Yariv and Yeh, Photonics, 6th 
ed. Oxford, New York (2007).  Given a certain q of the incident Gaussian beam, the transmitted 

beam will have a new q given by 
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readily follows that wwnRR newnew  ; .  For reflection, the values of the radius of curvature 

and the width are unchanged. 
 
3. A Gaussian beam of waist 0w  of wavelength  is incident on a slice of dielectric material of 

thickness L with a refractive index Kxnnxn cos)( 0  with Kw /20  .  Calculate the far-

field diffraction pattern of the beam after transmission through the material  
(a) assuming a thin sample i.e., RzL   where Rz  is the Rayleigh range of the Gaussian 
beam, and normal incidence,  
(b) assuming a thick sample RzL  and with 12 LK , and incidence at Bragg angle given 

by )4/(sin 1  KB
 . 

 
A3. (a) Assume a Gaussian )/exp( 22 WxEe  incident on a “thin” phase grating with refractive 

index Kxnnxn cos)( 0  .  Upon exit from the grating, the Gaussian beam acquires phase 

modulation and the field is given by 
LKxnnjkWxLxnjkEe )cos(exp)/exp()(exp 00
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0  ,  /20 k .  The far-field 

pattern is therefore proportional to the convolution of the Fourier transforms of 
)/exp( 22 Wx and KxnLjk cosexp 0  and with the spatial frequency replaced as zxkkx /0   

The Fourier transform of )/exp( 22 Wx  is a Gaussian given as 4/exp 22WkW x .  The the 

Fourier transform of KxnLjk cosexp 0  is )()( 0 qKknLkJ x
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  where qJ is Bessel 

function of order  q and the  represents the delta function.  So this resembles a series of delta 
functions located at qKkx   and having amplitudes equal to the Bessel functions.  The 

convolution of the Gaussian and these delta functions will give a series of Gaussians centered at 
the locations of the delta functions, and with their peak amplitudes modulated according to the 



amplitudes of the Bessel functions.  A typical simulation of this case is in the solution to Problem 
4 below. 
(b)  Using Kogelnik’s coupled wave theory, it follows that any plane wave of light not incident at 
exactly the Bragg angle onto a thick grating suffers a loss of diffraction efficiency. Since a 
Gaussian beam is comprised of angular plane wave components, this means that different plane 
waves which are not incident at the Bragg angle will suffer a loss of diffraction efficiency.  In 
fact, the nature of the diffracted (and undiffracted) orders can be derived from the transfer 
functions of the respective orders, akin to what is done in acousto-optics (see, for instance, Refs. 
[4, 6]).  For instance, the transfer function for the diffracted order is given as: 
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Multiplying the spectrum of the incident Gaussian with )(1 xkH and the transfer function )( xkH  

for propagation as given in this Chapter gives the spectrum of the Gaussian in the diffracted 
order, which is also proportional to the shape of the diffracted Gaussian in the far-field. 

Typical plots of the Gaussian profiles for diffracted and undiffracted orders appear in 
Ref. [6]. 
 
4. Use the split step beam propagation technique to analyze propagation along z of a one-
dimensional Gaussian beam of 00 100w ( 0  is the free-space wavelength) incident onto a 

grating made using a material of quiescent refractive index 0n .  The grating has a thickness of 

0100L  with a refractive index profile )sgn(cos)( 0 Kxnnxn  , 05,/2  K and 

where sgn denotes the signum function.  Assume  00015.0,5.10  nn .  Calculate the profile at 

the exit plane of the grating and in the far field.  Repeat the problem for the case where the 
thickness of the grating is 01000L  and characterize the differences between the two cases. 

 
A4. Assume that the Gaussian beam is incident first on a sinusoidal grating given by 

][cos)( 0 Kxnnxn  , for which the solutions for plane wave illumination for a thin grating are 

given as Bessel functions.  The following sequence of figures show the far field diffraction 
pattern of the Gaussian diffracted by the sinusoidal grating.  The “far field” is taken as 10 times 
the Rayleigh range of the incident Gaussian. The wavelength is taken as m5.0 . 



 

 



 

 



 
The procedure is now repeated for the grating ]sgn[cos)( 0 Kxnnxn  .  The results are shown 

below.  Note the appearance of more orders due to the Fourier content of the signum function. 

 



 

 



 

 
 
 
 
 



5. Analyze the propagation of a Gaussian beam of waist 00 100w  through a material of 

thickness 0100L  having a refractive index profile 000 5),/()( wxwxnxn   .  Let 

015.0,5.10  n . Determine the far-field intensity profile.  You may use analytical techniques 

and/or the beam propagation method. 
 
A5. The wavelength is taken as m5.0 .  The far field is 100 times the Rayleigh range of the 
Gaussian beam.  The shift of the center in the far field arises from the linear phase applied to the 
Gaussian beam. 

 

 
 
 
6. A Gaussian beam of waist 00 100w symmetric about 0x  is incident from air onto a 

nonlinear material slab of thickness 0100L  and of refractive index 1),()( 020  nxInnxn  

where )(xI is the intensity of the Gaussian beam.  Assume that a knife edge is present at 0z .  

Use the split step method to determine the far field profile.  At  0z , assume 4
2 10)0( In . 

 
A6. The wavelength is taken as m5.0 .  The far field is taken as 10 times the Rayleigh range of 
the Gaussian beam.   



 

 

 
 

 



7. The paraxial nonlinear Schrodinger equation can be written as 
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 where D represents the dimension of the problem.  

For the case 2D (cylindrical symmetry) and 
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)( uuf   (a) use the Hankel transform 

technique to numerically plot representative beam on-axis amplitudes during propagation all the 

way to near the self-focusing point for an initial profile 2/
0

2

4 reu  ;  (b) repeat part (a) for the 

case when, as in the text, a fixed and adaptive nonparaxiality parameter has been included.  
 
A7. See the text for the figures (Fig. 2.13), and Ref. [22].  
 
8. (a) Plot the on-axis amplitudes as a function of propagation distance for the case of the 
paraxial nonlinear Schrodinger equation with cylindrical symmetry but for an initial profile 

2

40
reu  . (b) Repeat part (a) for the case when, as in the text, a fixed and adaptive 

nonparaxiality parameter has been included [22]. 
 
A8. See Ref. [22] and Fig. 4 therein.   
 

9. In the paraxial nonlinear Schrodinger equation 0)()/(
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setting 3D implies spherical symmetry.   Assume 2
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2/1;   lvru l  to change the radial operator from spherical to cylindrical coordinates.  
Thereafter, by using a suitable initial condition, sketch typical profiles of the spherically 
symmetric shapes that are stable during propagation.  For hints and details of the Hankel 
transform to be used, readers are referred to Nehmetallah and Banerjee [46]. 
 
A9. If use the spherical symmetry of the field distribution and introduce the radial variable 

  2/1222  yxr , the paraxial nonlinear Schrodinger equation can be written as 
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 b(z) is the wave front curvature, and )(z is the phase as unknown functions of the propagation 
distance z. 

The second term in Eq. (1) becomes  
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The Hankel transform or Fourier Bessel technique can not apply directly to this operator in the 
case when D=3, so we have to transform the operator from spherical coordinates to cylindrical 
ones by letting    zrvrzru l ,,  , where l is the order of the Fourier Bessel or Hankel transform. 

Relation (2) becomes  z,vv
r
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the cylindrical and spherical Fourier Bessel transform pair respectively where they are related to 
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 is the lth order spherical Bessel function.  The 

above transform pair is solved by the lth order finite Hankel Transform method.  The algorithm is 
shown in the flowchart below.  Simulation results using the ASFBSS method appear in Ref. [46]. 
  



 
 
 
10. Derive representative z-scan graphs for the case where the (thin) lens to be characterized is a 
linear lens with a fixed focal length f  which is independent of the intensity of the light (but may 
depend on other parameters such as applied voltage across the sample lens as in a electro-optic 
lens.  In this case, show that the z-derivative of the on-axis intensity is similar to the traditional z-
scan signature of a nonlinear induced lens. 
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A10. Assume a typical z-scan setup as shown in the figure below, where the output beam from a 
laser is first expanded by a lens of focal length 1f  and then focused to a waist 0w  with a second 

lens of focal length 2f .  The sample under test is scanned through a distance z  about the 
location of this waist.    
 
 
 
 
 
 
 
 
 
 
The Gaussian optical field distribution at this plane which is incident on the test lens of focal 
length f  can be expressed as 
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where 0q   22
0wjkjz oR   is the q-parameter of the beam at the focus of the second external 

lens and Rz  is the Rayleigh range.  Hence, the optical field distribution on the observation plane 

a distance RzzZ   from the waist location can be expressed as  
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where the Gaussian field distribution ),( yxE  given in Eq. (1), and the lens transmission function 
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The on-axis transmittance on the observation plane is given by  
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which can be reexpressed, after some algebra, as 
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 zqa Re ,  zqb Im .      (8) 
Simulated Z-scan plots for normalized on-axis z-scan intensity, obtained for test lens focal 

length values that varies between 2-20 mm in 2 mm increments, detected 1m away from the focus 
of the test lens, are shown in the figure below for a probing beam of waist size 50 m.  Also 

f1 f1+f2
fext≈f2

∆z zf1 f1+f2
fext≈f2

∆z z



shown is the derivative w.r.t. Z of the z-scan plots.  This graph is akin to the standard z-scan 
plots of a nonlinear Kerr-type material.   

For further detail on z-scans of linear lenses and their application to measurements of 
focal lengths of electrooptics PLZT lenses, the reader is referred to Y. Abdelaziez and P.P. 
Banerjee, “Modeling and characterization of PLZT adaptive microlenses”, Journal of 
Microlithography, Microfabrication, and Microsystems vol. 7, pp. 013011:1-10  (2008). 

 

 
 
11. Derive representative z-scan graphs for the case when the sample under test has a induced 
refractive index as in a diffusion dominated photorefractive material, and given by xIn  / , 
assuming one transverse dimension.  Assuming thin sample, for simplicity.  Show that the nature 
of the z-scan graph is an even function of the displacement from the back focal plane of the 
external lens.  For hints and details, readers are referred to Noginov et al. [47]. 
 
A11. Assume that the incoming beam is a Gaussian of the form Aexp(-r2/w0

2). The phase of the 
optical field immediately behind the sample is, in this case, proportional to the spatial derivative 
of the intensity profile: 
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where )(z
o

  depends on the peak beam amplitude A and photorefractive parameters.  At the 

focus (z  0 ), the complex optical field can be written as  
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As in the analysis of the z-scan for Kerr type nonlinearities, expanding the Gaussian components 
of these complex phase shift results in the series 
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where b r r w( ) / ( ) 4 02  is a function of radial variation. The optical field immediately behind 
the thin nonlinear sample placed a distance z from focus can be written as 
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where all z -dependent values are also measured with respect to the back focal plane of the 

external lens, w z2( ), R z( ) are respectively the width and radius of curvature of the radially 
symmetric Gaussian beam for arbitrary scan distance z , as mentioned above, 

wm z w z m2 2 2 1( ) ( ) / ( )  , and  o z o z zR( ) / ( ( / ) ) / 1 2 1 2, zR denotes the Rayleigh 

length corresponding to wo . 

 The far-field optical field pattern for any sample position z  is   

E ff (kr ,z )  r E(r,z) J0(krr)dr
0


 ,    (5) 

where kr has the connotation of a spatial transverse variable according to kr  k0r / z ff , where  z ff  

denotes the distance to the far-field after the sample.  Terms in the resulting series can be 
evaluated using  
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where    and  F1
1 are  the gamma function and confluent hypergeometric function respectively. 

Using the properties of a Gaussian beam, the normalized intensity at any point in the observation 
plane I(kr,z) is given  by 

I(kr ,z,o ) 
E(kr ,z,o(z)

2

E(kr  0,z,o(z  0)
2  .    (7) 

The z-scan plots, drawn based on the theory above can be found in Ref. [47].  These show that 
derivative nonlinearity gives rise to an “even” z-scan graph centered around the location of the 
back focal plane of the external lens (z=0), contrary to the Kerr-type nonlinearity case, where the 
z-scan graph is an odd function of the scan length. 
 
12. If the induced refractive index of a material is proportional to the gradient of the intensity, 
show how this effect may be used in image processing applications such as edge enhancement of 
an image.  For hints, readers are referred to Banerjee et al. [48]. 



 
A12. The key to this is to realize that if xICn  / , then for a thin sample and weak 
nonlinearity, the optical output for an incident optical field eE  is 

]/1[/expexp 000 xILCjkExILCjkEnLjkE eee  .  The last term is proportional to 

the derivative of the intensity, which amounts to a high pass filtering of the intensity pattern.  
This yields the edge enhancement of the image, since edges contain higher spatial frequencies.   

A way to realize this is using a two-wave coupling arrangement as in simultaneous 
holographic recording and readout such that in the material, the pump beam interacts with the 
signal beam which is proportional to the Fourier transform of the object, as shown in the figure.   

 
Suppose that the pump beam is denoted as epE  and the signal beam as esE  at the input face of the 

material, then xEECxICn esep  //
2

. When this phase grating is simultaneously read 

out by the pump beam, the optical field immediately behind the material is given by 

]/1[
2

0 xEELCkE esepep  , which gives rise to higher order (-1order) diffraction, in addition 

to the conventional 0th and 1st orders.  This higher order diffraction also contains the phase 
conjugate of the object, which is of interest to us here.  For instance, let the pump be denoted as 

xjkEep 0exp  where 1 represents the angle between the pump and the signal.  The 

signal beam incident on the material is proportional to the spatial Fourier transform of the object 
and given by )/(}2/]/1[exp{ 0

2
0 fxkTfxfdjkE oes  where )]([)( xtkT xx  , and where 

od  is the distance of the object )(xt  in front of the Fourier transforming lens of focal length f.  

Then the -1 order propagating at 2  contains a term proportional to 
2

000 ]/1[exp)/(*}/]/1[ xfdjkfxkTfxkfdj oo  .  Now using Fresnel propagation, it can be 

shown that at a distance ]/1/[ fdfz oi  behind the material, the optical field has a component 

proportional to xt  /* , which is the edge enhanced spatial conjugation of the object.  For 
pictures of edge enhanced objects, the reader is referred to Ref. [48]. 


