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Ⓐ The first messenger (e.g., NE, histamine) binds to its receptor binding site on the extracellular sur-
face of the membrane. Ⓑ This changes the 3-D configuration of the receptor and signals the G-protein 
to exchange GDP for guanosine triphosphate (GTP), which activates the G-protein. Ⓒ The G-protein 
dissociates freeing the α subunit, which then diffuses along the membrane. A GTP unit attaches to 
the vacant GDP site. Ⓓ The α subunit then interacts with an effector (e.g., adenylyl cyclase), activat-
ing the effector. After a few seconds, the α subunit converts GTP to GDP, thereby inactivating itself. 
The inactivated α subunit will then reassociate with a nearby β–γ complex. Ⓔ The effector adenylyl 
cyclase converts ATP to the second messenger, c-AMP. Ⓕ cAMP then initiates a cascade of enzymatic 
reactions. Ⓖ The details of these reactions have not, as yet, been worked out in cardiac muscle but may 
involve the second messengers IP3 and diacylglyceride (DAG), as well as protein kinases. Ⓗ The net 
result of the enzymatic cascade is to open Ca channels in the SR, which releases Ca into the cytoplasm 
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FIGURE 3.12

Typical patch clamp data. (a) Patch electrode recordings of currents recorded in rat muscle membranes in 
response to a 10 mV depolarization. (b) The average response to 300 individual recordings. The record-
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(a) Timing of events in the generation of a twitch force. Upper figure shows a single action potential. 
Middle two figures show cytosolic free calcium concentration and formation of Ca–troponin complex. 
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FIGURE 3.17

Relationship between load and velocity of shortening. At some load, P0, the muscle cannot develop 
enough force (fiber stress) to lift the load and cannot shorten. At zero load, the velocity of shortening is 
maximal for a given muscle and inotropic state. Vmax (the velocity of shortening at zero load) is a measure 
of the inherent ability of the muscle to develop force, called the contractility of the muscle.
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FIGURE 3.16

(a) When a muscle is stretched from some initial length, L0, without being stimulated to contract, it fol-
lows the passive length–tension (stress) curve and acts like any distensible material (e.g., a rubber band). 
When the muscle is stretched and also stimulated to contract, it develops force (tension) along the active 
tension curve (see mechanism in Figure 3.16b). The total force developed is the sum of these two forces. 
(b) Force development in skeletal muscle. Within the physiological range, force development depends 
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FIGURE 3.19

Relationship between force of contraction and stretch of the ventricle prior to contraction. When the 
ventricle is passively stretched (e.g., by an increase in venous return due to a transfusion or exercising 
skeletal muscle) over the physiological range, it responds with a larger force of contraction up to a cer-
tain point. This mechanism, called the Frank–Starling mechanism or heterometric autoregulation, is 
independent of neural control. It allows the heart to handle increases in venous return without invoking 
neural reflexes and is an important adaptive mechanism in the failing heart. The heart actually operates 
on one of a family of Frank–Starling curves, depending on its inotropic state (see Chapter 5).
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Actin–myosin crossbridge formation in smooth muscle, showing latch-bridge formation and formation 
of transient force. All larger blood vessels (arteries, arterioles, veins, venules) have smooth muscle cells, 
either embedded in their walls or nearby in the interstitial space. Latch-bridge formation allows these 
muscle cells to provide structural support for the blood vessel by providing a constant basal level of 
vasoconstriction, called tone. The myosin content is much lower and the actin content higher than in 
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