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Chapter 2.1 Solutions to Exercises

Exercise 2. (a) (i) {(1, 1), (2, 2), (3, 3), (4, 4)}.
(ii)

1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

(iii)

1
2
3
4

1
2
3
4

(b) (i) {(1, 2), (2, 4)}
(ii)

1 2 3 4

1 0 1 0 0
2 0 0 0 1
3 0 0 0 0
4 0 0 0 0

(iii)

1
2
3
4

1
2
3
4

(c) (i) {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)}
(ii)

1 2 3 4

1 1 1 1 1
2 0 1 0 1
3 0 0 1 0
4 0 0 0 1

(iii)

1
2
3
4

1
2
3
4

(d) See the answer to part (a).
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Exercise 4. (a)

-3 -2 -1 0 1 2 3
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3

(b)

-Π
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Π

2
0 Π

2
Π
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2

0

Π

2

Π

(c)

-2 -1 0 1 2
-2

-1

0

1

2

(d)

-1 0 1

-1

0

1
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Exercise 6. (a) R2

(b) {(a, b) ∈ R2 : a 6= b}
(c) {(a, b) ∈ R2 : a < |b| or a = b and b > 0}
(d) R2

(e) {(a, b) ∈ R2 : b < a < −b}
(f) {(a, b) ∈ R2 : a = b and b > 0}

Exercise 8. (a) D = R = range.

(b) D = Z and range = {even integers}.
(c) D = {x ∈ R : x 6= ±2}. y is in the range if and only if

x2 − 2

x2 − 4
= y

for some x ∈ R. Solving for x we find that

x2 =
2− 4y

1− y

so y is in the range if and only if (2 − 4y)/(1− y) ≥ 0. Hence

range =

{
y ∈ R : y ≤ 1

2
or 1 < y

}

(d) D = {(n,m) ∈ Z2 : n ≥ 2m}. range = {
√
k : k ≥ 0 and k ∈ Z.

Exercise 10. (a) If 0 ≤ x < 1 then ⌊x⌋ = 0 so f is not defined at x. Thus
D = (−∞, 0) ∪ [1,∞).

(b) If −1/3 < x ≤ 0 then ⌈3x⌉ = 0 so f is not defined at x. Thus D =
(−∞,−1/3]∪ (0,∞).

(c) If x 6= 0 then ⌈−x⌉ 6= ⌈x⌉ so ⌈±x⌉ has two values. A function has only one
value at each point x in its domain, so D = {0}.
(d) As in part (c), D = {0}.

Exercise 12. (a) f(x) = (x − 2)2 − 10. Its graph is a parabola so f is neither

one-to-one nor onto. f ((−∞, 0]) = [−6,∞). f−1 ((−∞, 0]) = [2−
√
10, 2+

√
10].

(b) The graph of g is the left half of the parabola from part (a). Thus g is
strictly decreasing on its domain (−∞, 2] so g is one-to-one, and g maps (−∞, 2]

to [−10,∞) so it is onto. g ((−∞, 0]) = [−6,∞). g−1 ((−1, 1]) = [2−
√
11,−1).

(c) F is strictly decreasing on its domain so F is one-to-one. F (x) ≤ 0 for all
x so F is not onto. F ([−2, 2]) = [−2, 0]. The range of F contains no positive

values so F−1 ((−3, 3]) = F−1 ((−3, 0]) = [−2,−
√
5].

(d) G is not one-to-one but it is onto since its range equals the codomain [−1, 1].
G ([0, π)) = (−1, 1]. G−1 ({1}) = {2nπ : n ∈ Z}.
(e) L is one-to-one and onto. L

(
[e, e3)

)
= [1, 3). L−1 ({1, 2, 3}) = {e, e2, e3}.

Exercise 14. (a) f is a bijection. f−1(y) = (y − 1)/2.

(b) g is not one-to-one so restricting the codomain cannot make it a bijection.

(c) h is not a bijection because its range contains only odd integers. If its
codomain is replaced with {odd integers} then h becomes a bijection and h−1(y) =
(y − 1)/2.
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(d) k is not a bijection because its range contains no negative numbers. If its
codomain is replaced with {y ∈ R : y ≥ 0} then k becomes a bijection and
k−1(y) = y2.

Exercise 16. (a) (g◦f)(x) =
(
x2 + x+ 1

)2
+(x2+x+1)+1 = x4+2x3+4x2+

3x+3. (g◦f)(3) = g(f(3)) = g(13) = 183. (g◦f)(−4) = g(f(−4)) = g(13) = 183.

(b) (g ◦ f)(x) = ⌊2x + 1⌋. (g ◦ f)(3) = ⌊7⌋ = 7. −5.3 < f(−π) < −5.2 so
(g ◦ f)(−π) = ⌊f(−pi)⌋ = −6.

Exercise 18. (a)

σ−1 =

(
1 2 3 4 5 6 7
7 3 4 1 5 2 6

)

(b)

τ−1 =

(
1 2 3 4 5 6 7
6 7 1 2 3 4 5

)

(c)

(σ ◦ τ)−1 =

(
1 2 3 4 5 6 7
5 1 2 6 3 7 4

)

(d) Same answer as part (c).

Exercise 20. (a) True.

Proof: Let c ∈ C be an arbitrary element. g : B → C is onto so there exists
b ∈ B such that g(b) = c. f : A → B is onto so there exists a ∈ A such that
f(a) = b. Thus (g ◦ f)(a) = g (f(a)) = g(b) = c so c is in the range of (g ◦ f).
Since c ∈ C was arbitrary this shows that (g ◦ f) is onto.
(b) False.

Counterexample: Let A = B = {0, 1}, C = {0}, and f(0) = f(1) = g(0) =
g(1) = 0. f : A→ B is not onto, but (g ◦ f) : A→ C is onto.

(c) True.

Proof: Let c ∈ C be an arbitrary element. (g ◦ f) is onto so there exists
a ∈ A such that (g ◦ f)(a) = c. Hence g (f(a)) = c so c is in the range of g.

Exercise 22. (a) True.

Proof: Let x ∈ R − Z. x is not an integer so there exists an integer n such
that n < x < n+ 1. Thus n+ 1 < x+ 1 < n+ 2, and n+ 1 = ⌈x⌉ = ⌊x+ 1⌋.
(b) False if x < 0 because

√
x and

√
⌊x⌋ are not even real numbers. (Extend-

ing the floor function to complex numbers won’t help because nonzero complex
numbers have two square roots.)

However the statement is true if x ≥ 0. For in that case
√
x is a nonnegative

real number so let

n = ⌊√x⌋.
Then n ≤ √x < n+1; squaring we obtain n2 ≤ x < (n+1)2. n2 is an integer so
it follows that n2 ≤ ⌊x⌋, hence n2 ≤ ⌊x⌋ ≤ x < (n+ 1)2. Taking square roots we

obtain n ≤
√
⌊x⌋ < (n+ 1), so

n = ⌊
√
⌊x⌋⌋.

Thus ⌊√x⌋ = ⌊
√
⌊x⌋⌋ if n ≥ 0.
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(c) True.

Proof: x ≤ ⌈x⌉ and y ≤ ⌈y⌉ hence
(1) x+ y ≤ ⌈x⌉+ ⌈y⌉
⌈x⌉ and ⌈y⌉ are integers so their sum is an integer, hence equation (1) says that
⌈x+ y⌉ ≤ ⌈x⌉+ ⌈y⌉.
(d) True.

Proof: If n is even then n = 2k where k ∈ Z. k = ⌈n/2⌉ and k − 1 =
⌊(n− 1)/2⌋ so ⌈n/2⌉ = ⌊(n− 1)/2⌋+ 1 when n is even.

If n is odd then n = 2k+ 1 where k ∈ Z. k+1 = ⌈n/2⌉ and k = ⌊(n− 1)/2⌋
so ⌈n/2⌉ = ⌊(n− 1)/2⌋+ 1 when n is odd.

Exercise 24. (a) True for all real numbers. For if n = ⌈x⌉ then n− 1 < x ≤ n
so n− 2 < x− 1 ≤ n− 1 hence ⌈x− 1⌉ = n− 1 = ⌈x⌉ − 1.

(b) True for all real numbers. For if x is any real number there exists an integer
n such that n ≤ x < n+ 1. There are two cases to check.

If

(2) n ≤ x < n+ 1/2

then n+ 1/2 ≤ x+ 1/2 < n+ 1 so

n = ⌊x⌋ = ⌊x+ 1/2⌋.
Multiply equation (2) by 2 to obtain 2n ≤ 2x < 2n+ 1, hence

2n = ⌊2x⌋ = ⌊x⌋+ ⌊x+ 1/2⌋
in this case.

Otherwise

(3) n+ 1/2 ≤ x < n+ 1

so n+ 1 ≤ x+ 1/2 < n+ 3/2 hence

n = ⌊x⌋ and n+ 1 = ⌊x+ 1/2⌋.
Multiply equation (3) through by 2 to obtain

2n+ 1 ≤ 2x < 2n+ 2.

Thus

2n+ 1 = ⌊x⌋+ ⌊x+ 1/2⌋ = ⌊2x⌋
so the formula works in this case too.

(c) The proposed formula is never true. The correct formula, which is true for
all real numbers, is

⌈x⌉+ ⌈x+ 1/2⌉ = ⌈2x⌉+ 1.

The proof is similar to the proof of part (b): if x is any real number then
there exists an integer n such that n < x ≤ n+ 1. Again there are two cases.

If n < x ≤ n + 1/2 then n + 1/2 < x ≤ n + 1 and 2n < 2x ≤ 2n + 1 so
n+ 1 = ⌈x⌉ = ⌈x+ 1/2⌉ but 2n+ 1 = ⌈2x⌉ so ⌈x⌉+ ⌈x+ 1/2⌉ = ⌈2x⌉+ 1.

Otherwise n+ 1/2 < x ≤ n+ 1, so n+ 1 < x+ 1/2 ≤ n+ 3/2 and 2n+ 1 <
2x ≤ 2n + 2, hence n + 1 = ⌈x⌉, n + 2 = ⌈x + 1/2⌉, and 2n + 2 = ⌈2x⌉. Thus
⌈x⌉+ ⌈x+ 1/2⌉ = ⌈2x⌉+ 1 in this case too.
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Exercise 26. (a)

x ∈ f−1 (B1 ∼ B2)

⇔ f(x) ∈ (B1 ∼ B2)

⇔ f(x) ∈ B1 and f(x) /∈ B2

⇔ x ∈ f−1 (B1) andx /∈ f−1 (B2)

⇔ x ∈
(
f−1 (B1) ∼ f−1 (B2)

)
.

(b) Any f that is not one-to-one spawns a counterexample. For example let
A = A1{0, 1}, A2 = B = {0}, and f(0) = f(1) = 0. f (A1) = f (A2) = B so
f (A1) ∼ f (A2) = ∅. But f (A1 ∼ A2) = f ({1}) = B is nonempty.

(c) Yes, in every case (f(A1) ∼ f(A2)) ⊆ f (A1 ∼ A2). For if y ∈ (f(A1) ∼ f(A2))
then y ∈ f (A1) but y /∈ f (A2) so there exists x ∈ A1 such that f(x) = y but
there is no x′ ∈ A2 such that f(x′) = y. In particular x /∈ A2 so x ∈ (A1 ∼ A2).
Hence f(x) = y ∈ f (A1 ∼ A2).

Exercise 28. For every x ∈ A, (h ◦ (g ◦ f)) (x) = h ((g ◦ f)(x)) = h (g (f(x))) =
(h ◦ g) (f(x)) = ((h ◦ g) ◦ f) (x).
Exercise 30. (a)

1 2 3

1
2

3

x

y

(b)

1 2 3

1
2

3

x

y

(c)

1

1 2 3

2

x

y

(d)

Exercise 32. (a) Assume that the k elements of the sequence S =
(
i, σ(i),

σ2(i), · · · , σk−1(i)
)
are all distinct. Since σ is a one-to-one function the sequence

σ(S) =
(
σ(i), σ(σ(i)), σ(σ2(i)), · · · , σ(σk−1(i))

)

=
(
σ(i), σ2(i), σ3(i), · · · , σk(i)

)
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1 2 3

3

x

y

must also contain k distinct elements. Thus σk(i) cannot equal any of the other
elements σ(i), σ2(i), · · · , σk−1(i) in σ(S), so if σk(i) ∈ S then σk(i) must be i.

(b) Let s1, s2, · · · , sk be k distinct elements in an n-element set S. The cycle
(s1, s2, · · · , sk) determines a permutation τ on S as follows. Set

τ (sj) = sj+1 if 1 ≤ j < k

τ (sk) = s1

τ(s) = s if s /∈ {s1, s2, · · · , sk}.

(c) Let τ = (a1, a2, · · · , ak) be a cycle of σ so σ(ai) = τ(ai) for each i = 1, · · · , k.
Let j ∈ {1, · · · , n}. Choose i ∈ {1, · · · , n} such that j ≡ i+ 1 (mod k). Then

σ(ai) = τ(ai) = aj

so

(σ ◦ τ−1)(aj) = σ
(
τ−1(aj)

)
= σ

(
τ−1

(
τ(ai)

))
= σ(ai) = aj

for every j = 1, · · · , n.
(d) Proof by induction. Let n be a positive integer, and assume that every
permutation on any set that has fewer than n elements is a composition of disjoint
cycles. (This is trivially true if n = 1 since there are no permutations on the
empty set.) Let S be a set with n elements, let σ : S → S be a permutation,
and let s ∈ S. If the n elements s, σ(s), σ2(s), · · · , σn−1(s) are distinct then
σ =

(
s, σ(s), σ2(s), · · · , σn−1(s)

)
is a cycle. Otherwise let k be the largest number

such that 1 ≤ k < n and s, σ(s), · · · , σk−1(s) are distinct. σ maps the k-element
set S′ = {s, σ(s), · · · , σk−1(s)} onto itself.

Let σ′ = σ|S′ be the restriction of σ to the set S′. Part (a) of this exercise
shows that σ′ : S′ → S′ is a cycle: σ′ =

(
s, σ(s), σ2(s), · · · , σn−1(s)

)
. Following

part (b) of this exercise, extend σ′ to a permutation on all of S by letting it act
as the identity on the complement S′′ = S ∼ S′.

Since σ : S → S is a one-to-one function and σ(S′) = S′ it follows that
σ(S′′) = S′′. S′′ has n − k < n elements so, by the inductive hypothesis, the
restriction σ′′ = σ|S′′ of σ to S′′ is a product of disjoint cycles. Again using part
(b) of this exercise we may extend σ′′ to all of S by letting it act on the identity
on the complement S′ of S′′.

Consider the composition σ′◦σ′′. By construction σ′ is a cycle that is disjoint
from the cycles in σ′′, so σ′ ◦ σ′′ is a composition of disjoint cycles, so the proof
by induction will be complete once we check the following

Claim. σ = (σ′ ◦ σ′′).

Proof. Let s ∈ S be an arbitrary element.
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Suppose s ∈ S′. σ′′ acts as the identity on S′ so σ′′(s) = s hence

(σ′ ◦ σ′′)(s) = σ′(σ′′(s)) = σ′(s) = σ(s)

since σ agrees with σ′ on S′.

Suppose s ∈ S′′. σ′′ maps S′′ onto S′′ and σ′ acts as the identity on S′′ so
σ′(σ′′(s)) = σ′′(s) hence

(σ′ ◦ σ′′)(s) = σ′(σ′′(s)) = σ′′(s) = σ(s)

since σ′′ agrees with σ on S′′.

Thus (σ′ ◦ σ′′)(s) = σ(s) for all s ∈ S. This proves the claim. �
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1. Chapter 2.2 Solutions to Exercises

Exercise 2. (a) Not an equivalence relation because reflexivity and transitivity
fail.

(b) Equivalence relation.

(c) Not an equivalence relation because transitivity fails.

(d) Equivalence relation.

Exercise 4. (a) Equivalence relation.

(b) Equivalence relation.

(c) Not an equivalence relation because transitivity fails.

(d) Not an equivalence relation because transitivity fails.

Exercise 6. (a) Equivalence relation by prop. 2.3. [π] = (3, 4].

(b) Equivalence relation. The equivalence classes are {1, 2}, {3} and {4}. aRb
if and only if f(a) = f(b) where f is the function that assigns each element to its
equivalence class so prop. 2.3 says this is an equivalence relation. [2] = {1, 2}.
(c) Equivalence relation by prop. 2.3 because S ∼ T if and only if g(S) =
g(T ) where g is the map on P defined by g(S) = S ∩ {1, 2, 3}. [{2, 3, 4}] =
{{2, 3}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 3, 4, 5}, {2, 3, 4, 6}, {2, 3, 5, 6}, {2, 3, 4, 5, 6}}.
(d) Equivalence relation by prop. 2.3 because aRb if and only if h(a) = h(b)
where h is the function that maps the name of each state to the first letter of the
name.

Exercise 8. (x, y) ∼ (x′, y′) if and only if f ((x, y)) = f ((x′, y′)) where f is the
projection function f ((a, b)) = a. Thus prop. 2.3 says ∼ is an equivalence relation.
The equivalence classes are vertical lines.

Exercise 10. (a) Symmetric, but not reflexive or transitive.

(b) Prop. 2.3 says this is an equivalence relation. The equivalence classes are
{a, b}, {c}, {d, f}, and {e}, and xRy if and only if f(x) = f(y) where f is the
function that assigns each element to its equivalence class.

(c) nRm if and only if r(n2) = r(m2) where, for each integer k, 0 ≤ r(k2) < 12
is the remainder obtained when one divides k2 by 12 using the method taught in
elementary school. Clearly the map k 7→ r(k2) is a function so prop. 2.3 says R
is an equivalence relation.

Exercise 12. (a) No. The only reflexive, symmetric relations are {(1, 1), (2, 2)}
and {(1, 1), (2, 2), (1, 2), (2, 1)}. Both of these are transitive.

(b) Yes. {(1, 1), (2, 2), (1, 2)} is reflexive and transitive but not symmetric.

(c) Yes. The empty relation {} is (trivially) symmetric and transitive but not
reflexive.

Exercise 14. Obviously it is reflexive and symmetric. But it is not transitive
because {1, 2}R{2, 3} and {2, 3}R{3, 4} but {1, 2} /R{3, 4}.
Exercise 16. (a) Two, because the two partitions {{1, 2}} and {{1}, {2}} are
the only ways to partition {1, 2}.
(b) Fifteen, because there are fifteen ways to partition a 4-element set: one way

to partition it into four classes of size 1,
(
4
2

)
= 6 ways to partition it into one

class of size 2 and two classes of size 1,
(
4
2

)
/2 = 3 ways to partition it into two
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classes of size 2, four ways to partition it into one class of size 3 and one class of
size 1, and one way to partition it into one class of size 4.

Exercise 18. Let ∼ be an equivalence relation. The argument in Theorem 2.1,
case 1, shows that if a ∼ b then [b] ⊆ [a]. But b ∼ a also follows from a ∼ b by
the symmetry property, so the same argument with the symbols a and b swapped
shows that [a] ⊆ [b]. Therefore, if a ∼ b then [a] = [b].

Exercise 20. (a) R is not reflexive.

(b) R is not antisymmetric because (1, 2)R(2, 1) and (2, 1)R(1, 2) but (1, 2) 6=
(2, 1).

(c) R is not reflexive (e.g. 2 /R2), nor antisymmetric (e.g. 2R3 and 3R2 but
2 6= 3), nor transitive (e.g. 2R3 and 3R4 but 2 /R4).

(d) R is reflexive and transitive but not antisymmetric (e.g. 1R10 and 10R1 but
1 6= 10).

Exercise 22. The Hasse diagrams show that these relations are partial orders.

(a)

a

d c

b

e

(b)

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3,4}

{}

(c)

1

2 3

6 9

12 18

36

(d)

3

6

129

4

8 7 10 11

Exercise 24. Let (a1, b1), (a2, b2), (a3, b3) ∈ A×B.

Reflexivity: a1 �A a1 and b1 �B b1 because �A and �B are partial orders.
Thus (a1, b1) � (a1, b1), so � is reflexive.
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Antisymmetry: Suppose (a1, b1) � (a2, b2) and (a1, b1) � (a2, b2). Then
a1 �A a2 and a2 �A a1, also b1 �B b2 and b2 �B b1. Therefore a1 = a2 and
b1 = b2 because �A and �B are partial orders. Thus (a1, b1) = (a2, b2) so � is
antisymmetric.

Transitivity: Suppose (a1, b1) � (a2, b2) and (a2, b2) � (a3, b3). Then a1 �A a2
and a2 �A a3, also b1 �B b2 and b2 �B b3. Therefore a1 �A a3 and b1 �B

b3 because �A and �B are partial orders. Therefore (a1, b1) � (a3, b3), so � is
transitive.

Thus � is reflexive, antisymmetric, and transitive, so it is a partial order.

However there are examples where � is not a linear order even though �A and
�B are linear orders. For example, let A = B = Z, the set of all integers, and let
�A=�B=≤ be the usual “less than or equal” relation. ≤ is a linear order on Z.
However the relation � on Z × Z defined by (a, b) � (a′, b′) iff a ≤ a′ and b ≤ b′

is not a linear order because, for example, (1, 0), (0, 1) ∈ Z × Z and (1, 0) � (0, 1)
and (0, 1) � (1, 0) so (1, 0) and (0, 1) are not comparable with the relation �.
Exercise 26. Suppose R is both an equivalence relation and a partial order on a
set A. If aRb then bRa because equivalence relations are symmetric hence so a = b
because partial orders have the antisymmetry property. Conversely, if a = b then
aRb because equivalence relations are reflexive.

Exercise 28. (a) There are three: the constant function f(1) = f(2) = 1, the
constant function f(1) = f(2) = 2, and the identity function f(1) = 1, f(2) = 2.

(b) There are six: the constant function f(1) = f(2) = 1, the constant function
f(1) = f(2) = 2, the constant function f(1) = f(2) = 3, the function f(1) =
1, f(2) = 2, the function f(1) = 2, f(2) = 3, and the function f(1) = 1, f(2) = 3.

(c) There are eight: the constant function f(1) = f(2) = 1, the constant function
f(1) = f(2) = 2, the constant function f(1) = f(2) = 3, the constant function
f(1) = f(2) = 4, the function f(1) = 1, f(2) = 2, the function f(1) = 1, f(2) = 3,
the function f(1) = 1, f(2) = 4, and the function f(1) = 2, f(2) = 4.

Exercise 30.

Exercise 32. (a) The antisymmetry property says if x � a and x 6= a then
x � a.

(b) Let x be a least element y a minimal element of a poset A. Then part (a)
says that x is a minimal element, and

x � y because x is a least element

x 6= y ⇒ x � y because y is a minimal element

∴ x = y
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(c) Z with the usual order is an example of a poset with no minimal element.

Suppose (A,�) is a finite poset. For each a ∈ A let

S(a) = {x ∈ A : x � a}.
The transitive property says

a � b⇒ S(a) ⊆ S(b).

A is finite so there are only finitely many of these subsets S(a) ⊆ A, so (at least)
one of them, say S(a′), has the smallest number of elements.

I claim S(a′) = {a′}, so a′ is a minimal element.

For let x ∈ S(a′). Then

(4) x � a′

so S(x) ⊆ S(a′), hence S(x) = S(a′) because S(a′) has the least number of
elements. Therefore a′ ∈ S(x), so

a′ � x.

Hence (4) and the antisymmetry property say that a′ = x.

Exercise 34. (a) a, d, b are minimal elements and a, e are maximal. There are
no least or greatest elements.

(b) ∅ is the minimal and least element, {1, 2, 3, 4} is the maximal and greatest
element.

(c) 1 is the minimal and least element, 36 is the maximal and greatest element.

(d) 3, 7, 10, 11 are minimal elements and 7, 8, 9, 10, 1112 are maximal. There are
no least or greatest elements.

Exercise 36. (a) ∅ is the minimal and least element, {1, 2, 3} is the maximal
and greatest element.

(b) (1, 1) is the minimal and least element, (2, 3) is the maximal and greatest
element.

Exercise 38. (a) True.

Proof. Let a ∈ A and b ∈ B be minimal elements, and let (a′, b′) � (a, b) be
an element of C. Then a � a′, so a = a′ because a is minimal. Thus b � b′ so
b = b′ because b is minimal.

(b) True.

Proof. Let a ∈ A and b ∈ B be least elements and let (a′, b′) ∈ C be an
arbitrary element. Then a � a′ and b � b′. Therefore (a, b) � (a′b′).

(c) False.

Counterexample: let A = {1} with the ordering 1 � 1 and B = Z with the
usual ≤ ordering. 1 is a minimal element of A but C is isomorphic to B by the
map (1, n) 7→ n so C has no minimal element.

(d) False.

Counterexample: let A = Z with the usual ≤ ordering and B = {1} with
the ordering 1 � 1. 1 is the least element of B but C is isomorphic to A by the
map (n, 1) 7→ n so C has no least element.
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Chapter 2.3 Solutions to Exercises

Exercise 2.

(a) 0 (b) 1 (c) 0 (d) 0

Exercise 4. (a)

x y x+ ȳ x̄+ y f(x, y) = (x+ ȳ)(x̄+ y)
0 0 1 1 1
0 1 0 1 0
1 0 1 0 0
1 1 1 1 1

(b)

x y x+ ȳ x̄+ y x+ ȳ x̄+ y g(x, y) = (x+ ȳ)(x̄+ y)
0 0 1 1 0 0 0
0 1 0 1 1 0 0
1 0 1 0 0 1 0
1 1 1 1 0 0 0

(c)

x y x+ ȳ x̄+ y (x+ ȳ)(x̄+ y) h(x, y) = (x+ ȳ)(x̄ + y)
0 0 1 1 1 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

(d)

x y x+ ȳ x+ ȳ x̄+ y k(x, y) = (x+ ȳ)(x̄+ y)
0 0 1 0 1 0
0 1 0 1 1 1
1 0 1 0 0 0
1 1 1 0 1 0

Exercise 6. (a) The value of z does not affect the result so it is the same as
the table in problem (4a).

x y x+ ȳ x̄+ y f(x, y, z) = (x+ ȳ)(x̄+ y)
0 0 1 1 1
0 1 0 1 0
1 0 1 0 0
1 1 1 1 1
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(b)

w x y z xyzw wyz̄ wyz̄ g(w, x, y, z) = xyzw + wyz̄
0 0 0 0 0 0 1 1
0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 1
0 1 0 0 0 0 1 1
0 1 0 1 0 0 1 1
0 1 1 0 0 0 1 1
0 1 1 1 0 0 1 1
1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 1
1 0 1 0 0 1 0 0
1 0 1 1 0 0 1 1
1 1 0 0 0 0 1 1
1 1 0 1 0 0 1 1
1 1 1 0 0 1 0 0
1 1 1 1 1 0 1 1

(c)

w x y z x+ y + z x+ y + z wz h(w, x, y, z) = (x+ y + z)(wz)
0 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 0
0 1 1 1 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 1 1 0 1 0
1 0 1 0 1 0 0 0
1 0 1 1 1 0 1 0
1 1 0 0 1 0 0 0
1 1 0 1 1 0 1 0
1 1 1 0 1 0 0 0
1 1 1 1 1 0 1 0
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(d)

w x y z k(w, x, y, z) = w + x+ y + z
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

Exercise 8. (a)

x y z x+ y y + z x+ z (x+ y)(y + z)(x+ z) xy yz xz xy + yz + xz
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0
0 1 1 1 1 1 1 0 1 0 1
1 0 0 1 0 1 0 0 0 0 0
1 0 1 1 1 1 1 0 0 1 1
1 1 0 1 1 1 1 1 0 0 1
1 1 1 1 1 1 1 1 1 1 1

(b)

(x+ y)(y + z)(x+ z) = 0

⇔x+ y = 0 or y + z = 0 or x+ z = 0

⇔x = y = 0 or y = z = 0 or x = z = 0.

So (x+y)(y+z)(x+z) = 0 iff at least two of the variables x, y, z equals 0. Hence
(x+ y)(y + z)(x+ z) = 1 iff at most one of the variables x, y, z equals 0.

On the other hand

xy + yz + xz = 1

⇔xy = 1 or yz = 1 or xz = 1

⇔x = y = 1 or y = z = 1 or x = z = 1.

So xy + yz + xz = 1 iff at most one of the variables x, y, z equals 0. Hence
xy + yz + xz = 0 if and only if at least two of the variables x, y, z equals 0.

Thus the Boolean functions (x+ y)(y+ z)(x+ z) and xy+ yz + xz have the
same value at each point (x, y, z) ∈ {0, 1} × {0, 1} × {0, 1}.
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(c) Expanding out, using the associative, distributive, and commutative law
several times,

(x + y)(y + z)(x+ z) = (x+ y)(y + z)x+ (x+ y)(y + z)z

= (x+ y)(yx+ zx) + (x+ y)(yz + zz)

= (x+ y)yx+ (x+ y)zx+ (x+ y)yz + (x+ y)zz

= xyx+ yyx+ xzx+ yzx+ xyz + yyz + xzz + yzz

= xxy + xyy + xxz + xyz + xyz + yyz + xzz + yzz

= xy + xy + xz + xyz + xyz + yz + xz + yz idempotence law

= x(y + y) + x(z + z) + y(z + z) + xy(z + z)

= xy + xz + yz + xy idempotence

= x(y + y) + yz + xz

= xy + xz + yz. idempotence

Exercise 10. (a) The right hand side of the equation is in disjunctive normal
form so it’s enough to make a table for the left hand side.

x̄ ȳ z̄ x x+ z̄ ȳ(x + z̄) x̄+ ȳ(x+ z̄)
0 0 0 1 1 0 0
0 0 1 1 1 0 0
0 1 0 1 1 1 1
0 1 1 1 1 1 1
1 0 0 0 0 0 1
1 0 1 0 1 0 1
1 1 0 0 0 0 1
1 1 1 0 1 1 1

Thus x̄ + ȳ(x + z̄ = 1 iff xȳ = 1 or x̄ = 1, which agrees with the disjunctive
normal form on the right side of the equation.

(b)

x̄+ ȳ(x+ z̄) = 0

⇔ x̄ = 0 and [ȳ = 0 or {x = 0 and z̄ = 0}]

But if x̄ = 0 then x = 1 so

x̄+ ȳ(x+ z̄) = 0

⇔ x̄ = 0 and ȳ = 0

⇔ x = 1 and y = 1.

Since x̄yz + x̄yz̄ + x̄ȳz + x̄ȳz̄ + xȳz + xȳz̄ is in disjunctive normal form it is
easy to check its value is 0 exactly when x = y = 1, so the right and left sides
agree.

Exercise 12. (a) (i)

(f · g)(w, x, y, z) = (x + ȳ)(x̄ + y)(xyzw + wyz̄)

Claim. (f · g)(w, x, y, z) simplifies to (xy + x̄ȳ)(w̄ + x̄+ z).
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Proof.

f(x, y, z) = (x + ȳ)(x̄ + y)

= xx̄ + xy + ȳx̄+ ȳy

= 0 + xy + ȳx̄+ 0 zero identity law

= xy + x̄ȳ identity law

Also

g(w, x, y, z) = xyzw + wxz̄

= xyzw + w̄ + x̄+ z De Morgan’s law

= w̄ + x̄+ (xywz + z)

= w̄ + x̄+ z absorption law

�

(ii) (f + h̄)(w, x, y, z) = (x+ ȳ)(x̄+ y) + (x+ y + z)(wz).

Claim. (f + h̄)(w, x, y, z) simplifies to 1.

Proof.

h(w, x, y, z) = (x+ y + z) + (wz) De Morgan’s law

= x+ y + z + w̄ + z̄ De Morgan’s law

= x+ y + w̄ + (z + z̄)

= x+ y + w̄ + 1 unit identity law

= 1 dominance law

Thus
(f + h̄)(w, x, y, z) = f(x, y, z) + 1 = 1.

�

(b) From the tables in exercise (6) it follows that

f(x, y, z) = xy + x̄ȳ

g(w, x, y, z) = w̄ + wx̄ȳ + wx̄yz + wxȳ + wxyz

h(w, x, y, z) = 0

k(w, x, y, z) = w + x+ y + z

(d)

fd(x, y, z) = (x+ y)(x̄+ ȳ)

gd(w, x, y, z) = w̄(w + x̄+ ȳ)(w + x̄+ y + z)(w + x+ ȳ)(w + x+ y + z)

hd(w, x, y, z) = 1

kd(w, x, y, z) = wxyz

Exercise 14. (a) The identity dual to the identity in exercise (8) is

xy + yz + xz = (x+ y)(y + z)(x+ z).

“Dualizing” does not change this particular identity.

(b,c,d) see the solutions to parts (a-c) of exercise (8).



34

Exercise 16. (x+ ȳ)(¯̄x + y)

Exercise 18. (x+ y)(x+ z)(y + z)

Exercise 20. (a)

x

y

(b)

y

x

z

In fact the function produces 0 for every input so a “circuit” with no com-
ponents at all would produce the same result.

(c)

w

x

y

z

Exercise 22. Call the five inputs u,w, x, y, z as in problem (24). The Boolean
function

f(u,w, x, y, z) = uwx+ uwy + uwz + uxy + uxz + uyz + wxy + wxz + wyz + xyz

computes the outcome. One might build a circuit for this using ten “and” elements
with three inputs each, then collect their outputs with a single “or” element with
ten inputs. Alternatively, one could use the distributive law to rewrite the formula
this way

f(u,w, x, y, z) = (u+ w)xy + (x + y)uw + [(u + w)(x + y) + uw + xy]z
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and regard f of it as the composition of two functions

f = g ◦ h
where

h(u,w, x, y, z) = (u+ w, x + y, uw, xy, z) = (a, b, c, d, z)

and
g(a, b, c, d, z) = ad+ bc+ (ab + cd)z

This enables one to break the circuit into two pieces, one for g and one for h. Plug
the output of h into the input of g to obtain f .

u

w

x

y

z

a

b

c

d

z

Exercise 24. See solution to exercise (22).

Exercise 26. (a)

y ȳ

x 1

x̄ 1

(b)

y ȳ

x

x̄

(c)

y ȳ

x 1

x̄ 1
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(d)

y ȳ

x

x̄ 1

Exercise 28. (a) See exercise (26a).

(b)

yz yz̄ ȳz̄ ȳz

wx 1 1 1

wx̄ 1 1 1

w̄x̄ 1 1 1 1

w̄x 1 1 1 1

�

�

�




�

�

�




�

�

�




So g(w, x, y, z) = yz + w̄ + ȳ.

(c)

yz yz̄ ȳz̄ ȳz

wx

wx̄

w̄x̄

w̄x

and h(w, x, y, z) = 0.
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(d)

yz yz̄ ȳz̄ ȳz

wx 1 1 1 1

wx̄ 1 1 1 1

w̄x̄ 1 1 1

w̄x 1 1 1 1

� 


� �

� �

� 


�

�

�




�




�

�

k(w, x, y, z) = w + x+ y + z.

Exercise 30. (a)

y ȳ

x 1 1

x̄

�
�

�



The simplified formula is x so the “circuit” is a single wire:

x -

(b) The circuit in fig. 2.25b produces 0 for every input so there are no 1s in the
Karnaugh map and the simplified circuit contains no components.

Exercise 32. (a) Adding the “don’t care” condition does not simplify the for-
mula g(w, x, y, z) = yz + w̄ + ȳ that we obtained in exercise 28b.

(b) The Boolean function in exercise 20b produces 0 for every input so it can’t
be simplified.

(c) The expression in exercise 20c simplifies to w+ xȳ. Adding the “don’t care”
condition does not simplify that expression.

Exercise 34. (a) (x̄+ y)(x+ ȳ).

(b) (w̄ + x+ ȳ + z)(w̄ + x̄+ ȳ + z)

(c) 0

(d) w + x+ y + z

Exercise 36. (a) Each cell corresponds to a minterm y1y2y3y4y5 where yi = xi

or yi = x̄i and xi are Boolean variables, i = 1, · · · , 5. Adjacent cells correspond
to minterms that differ in exactly one literal. There are five adjacent cells because
each minterm has five literals.
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(b) See part (c).

(c)

The figure below shows uwxȳz and its four adjacent cells (downward-sloping
crosshatch), also ūwx̄yz and its four adjacent cells (upward-sloping crosshatch).
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uw

uw̄

ūw̄

ūw

xyz xyz̄ xȳz̄ xȳz x̄ȳz x̄ȳz̄ x̄yz̄ x̄yz

ūwx̄yz

uwxȳz

Exercise 38. (a)

xȳ + yz̄ + x̄z

= xȳ(z + z̄) + (x+ z̄)yz̄ + x̄(y + ȳ)z

= xȳz + xȳz̄ + xyz̄ + x̄yz̄ + z̄yz + x̄ȳz

= (x+ x̄)ȳz + x(ȳ + y)z̄ + x̄y(z̄ + z)

= ȳz + xz̄ + x̄y

(b)

x̄yz + x̄yz̄ + x̄ȳz + x̄ȳz̄ + xȳz + xȳz̄

= x̄yz + x̄yz̄ + x̄ȳz + (x̄ȳz̄ + x̄ȳz̄) + xȳz + (xȳz̄ + xȳz̄)

= (x̄yz + x̄yz̄) + (x̄ȳz + x̄ȳz̄) + (xȳz + xȳz̄) + (xȳz̄ + x̄ȳz̄)

= x̄y(z + z̄) + x̄ȳ(z + z̄) + xȳ(z + z̄) + (x+ x̄)ȳz̄

= x̄y + x̄ȳ + xȳ + ȳz̄

= x̄(y + ȳ) + ȳ(x + z̄)

= x̄+ ȳ(x+ z̄)


