Chapter 2

EX 2.1. The errors are real valued and hence a continuous random variable would be more
appropriate.

EX 2.2. If all outcomes are equally likely, they have the same probability of occurring.
Defining Y to be the random variable taking the value shown on a die, we can state
the following:

PY =y)=r,

where r is a constant. From the definition of probabilities, we know that:

Y PY=y) =1

y=1

Substituting r into this gives us the following:

6
ZT:L 6r=1, r=1/6.

y=1

EX 2.3. (a) Y is a discrete random variable that can take any value from 0 to inf. The
probability that ¥ < 4 is equal to the sum of all of the probabilities that satisfy
Y<4Y=0Y=1Y=2Y=3Y=4

4

P(Y <4)=> P(Y =y).
y=0

When A = 5, we can compute these probabilities as:
P(Y <4)=0.0067379 + 0.0336897 + 0.0842243 + 0.1403739 + 0.1754674 = 044049.

(b) Because Y has to satisfy either P(Y| < 4) or P(Y > 4), we know that P(Y >
4)=1-P(Y <4):
P(Y > 4) = 0.5591.

EX 2.4. We require E,(,) {sin(y)} where p(y) = U(a,b). The uniform density is given by:

b= a<y<b
0  otherwise
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The required expectation is given by:

B, {sin(y)} = / sin(y)p(y) dy

b 1
= ) d
/y sin(y) b—a Yy

=a

= o [eosty)l
_ cos(a) — cos(b)
b—a )

When a =0, b =1, this is equal to

E, () {sin(y)} = M

Code to compute a sample-based approximation below (sampleexpect.m):

= 0.45970.

1 clear all;

2 close all;

3 % Compute a sample based approximation to the required expectation
4 u = rand(10000,1); % Take 10000 samples

5 su = sin(u);

6 % Plot how the approximation changes as more samples are used
7 ns = 10:100:10000;

8 stages = zeros(size(ns));

9 for i = 1l:length(ns)

10 stages (i) = mean(su(l:ns(i)));

11 end

-
S

plot (ns, stages)

% Plot the true value

hold on

plot ([0 ns( end)], [0.4597 0.4597], 'k—")
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EX 2.5. The multivariate Gaussian pdf is given by:

1 1 1
p(w) = (27r)D/221/2€Xp{_2(W —p)'E=H(w —H)}-

Setting ¥ = o1 gives:

p(w) = mexp {_%ig(w — )T (w — u)} )

Because it only has elements on the diagonal, the determinant of o?I is given

by the product of these diagonal elements. As they are all the same, |o2I|'/2 =
1/2
(HdD:1 a2> = (0?)P/2, ! = I and multiplying a vector/matrix by I leaves the

matrix/vector unchanged. Therefore, the argument within the expectation can be

written as —ﬁ(w — p)T(w — p) and recalling that b™b = Y, b2, we can rewrite
the pdf as:

p(w) ! p{ ! §Dj< N}
W)= ——F75—75XPy —— Wq — hd .
(2m)D/2(g2)D/2 202 £



EX 2.6.

EX 2.7.

Where wg and pg4 are the dth elements of w and p respectively. The exponential of
a sum is the same as a product of exponentials. Hence,

1 2 1
) = o Lo { gt}

=1

A 1 )
= HWeXp{_w(wd_“d) }

d=1

p(wd|,ufda 02)7
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where p(wa|pa, 0%) = N (pa,0%). Hence, the diagonal covariance is equivalent to as-

suming that the elements of w are distributed as independent, univariate Gaussians

with mean py and variance o2.

Using the same methods as in the previous exercise, we see that the determinant of
. . . . D 2 .
the covariance matrix is given by [],_, o7 and we have the following:

D 2
p(w) = ! )1/2exp{—éz(wda_gud)}

(2m)2/2 (12 o3 ast

Changing the sum to a product leaves us with

p(w) = L ﬁexp{-Q;m - it
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This is the product of D independent univariate Gaussian densities.

The Hessian for a general model of our form is given by:

1
-—=X'X
o
For the linear model, X is defined as:
1 T1
1 i)
X = .
1 N
Therefore —#XTX is:
N
XTX — N Zn:l Tn

N N
Zn:l Tn Zn:l SU%
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EX 2.8.

CHAPTER 2.

The diagonal elements are —N/o? and —(1/sigma®) Y~ _, 22 which are equiva-
lent (they differ only by multiplication with a negative constant) the expressions
obtained in Chapter 1.

We have N values, x1,...,2y. Assuming that these values came from a Gaussian,
we want to find the maximum likelihood estimate of the G and want to find the
maximum likelihood estimates of the mean and variance of the Gaussian. The
Gaussian pdf is:

1 . { 1 ( )2}
Xp{ ——— (2 —
Voro P 202 a

Assuming the IID assumption, the likelihood of all N points is given by a product

over the NV objects:
N 1
2
I | exp< — Ty — .
oy V2o P { 202( ") }

We'll work with the log of the likelihood:

N
log L = Z

n=1

1

1 1
~Zog(27) — = log(0?) — —
(-5 tost2r) - 3 low(0?) - 51

(o 1)

To find the maximum likelihood estimate for u, we differentiate with respect to p,
equate to zero and solve:

dlog L AR
Ton T Xl
1 N
0 = ?Z('xn_u)
n=1
N N
0 = an_ZM
n= n=1
Nl
= an—N,u
TLl:lN
no= == L
P>

Similarly, for o2,

dlog L ol 1 1
902 n; ( 257 a7 “)2> -
N
No® = Y (xn—p) (2.1)
2 1 Y 2
o = N Z(In - .UJ) (22)
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EX 2.9. The Bernoulli distribution is defined as:
P(X,=z|r)=r"(1 —r)'™®

where z is either 0 or 1. Using the IID assumption, we have:

N
L=]]rm@—rtn
n=1
and the log likelihood is:
N
logL = Z xnlogr 4+ (1 — x,)log(l —7)

n=1

Differentiating with respect to r gives us:

810gL N Tn lfxn
or N Z(r_ 1—r =0

n=1
N N
P
ro 1—1r
n=1 n=1
N N N
g xn—rg Ty, = rN—rE Ty
n=1 n=1 n=1
N
1
r o= — E T
N
n=1

EX 2.10. The Fisher information is defined as the expectation of the negative second deriva-
tive. From the above expression, we can see that the second derivative of the

Gaussian likelihood (assuming N observations, x1, ...,z is:
0%log L N
o2 o2

Hence the Fisher information is equal to N/o?.

EX 2.11. Starting from the second expression, we have

R N N
5_ 1 2 _ TS N2
ot =+ nz::ltn 2;tnxnw+;(xnw) .
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EX 2.12.

CHAPTER 2.

Concentrating on the final term,

N N
x'W)? = ) xww'x,
n=1 n=1
= Tr(Xww'X")
= Tr(X(X™X)"'XTtt"X(XTX)'XT)
= Tr(XTX(XTX)'XTtt"X(XTX)™ 1)
= Tr(XTtt"X(XTX)™h)
= Tr(tt"X(XTX)"!XT)
= Trt"X(XTX)"'XTt)
= t'X(XTX)"'XTt)
= t'Xw
N
= Ztnxl(fv
n=1

Therefore,
X N
ot = S-S txgw
n=1 n=1
Now, 3" #2 = tTt and we already know that >0, #,%x,% = tTXW. So,

0% = % [Tt — tTXw]

as required.

Code below (predvar.m):

clear all;close all;
Relevant code extraced from predictive_variance_example.m

o

1
2

3 x = rand(50,1)+10-5;

4 x = sort(x);

5 % Compute true function values
6 f = 5%x."3 — x.72 + x;

7 % Generate some test locations
8 testx = [min(x):0.2:max(x)]";
9

o

Add some noise

10 t = f+randn(50,1)*sqgrt (1000);

11 % Remove all training data between —1.5 and 1.5
12 pos = find(x>-1.5 & x<1.5);

13 x(pos) = [];

14 f(pos) = [];

15 t(pos) = [];

16

17 % Choose model order

18 K = 5;

[V
o ©

X = repmat (1,size(x));
testX = repmat (l,size(testx));

N
ft
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22 for k = 1:K

23 X = [X x."k];

24 testX = [testX testx.k];

25 end

26

27

28 w_hat = inv(X'xX)*X'=*t;

29 ss_hat = mean((t — X*w_hat)."2);

30 pred-va = ss_hatxdiag(testX*inv (X'x*X)*testX"');
31 % Make a plot

32 figure(l);hold off

33 plot(x,t,'b.");

34 hold on

35 errorbar (testx,testXxw_hat,pred.va, 'r');

EX 2.13. The Bernoulli distribution for a binary random variable z is:
p(x]0) = 67(1 - 0)'~*

The Fisher information is defined as the negative expected value of the second
derivative of the log density evaluated at some paramater value:

J

92 log p(l6)
F = _EP($|9) { 962

Differentiating log p(x|0) twice gives:

dlogp(zld) = 1-x
90 T 0 1-9¢
O*logp(xld) x 11—z
062 T2 (1-60)%

The Fisher information is therefore:
1 1
;o= Q?Ep(w\a) {z}+ mEp(xw) {1-2z}.

Substituing in the expectations (f and 1 — 6 respectively gives:

6  1-06 |
et azee T an—o)

EX 2.14. The multivariate Gaussian pdf is given by:
(el B) = e exp 4 g (- )T - )
Pl 3) = b P T X B) ¢
Logging and removing terms not including p:

1 1
ST T

log p(x|p, ) o pT 7% — o
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First and second derivatives are:

Jlog p(x|p, %)

N e
ou X "
Plogp(x|p, ) o
opouT '

Therefore, the Fisher information is:

F=x1



