
Chapter 2

EX 2.1. The errors are real valued and hence a continuous random variable would be more
appropriate.

EX 2.2. If all outcomes are equally likely, they have the same probability of occurring.
Defining Y to be the random variable taking the value shown on a die, we can state
the following:

P (Y = y) = r,

where r is a constant. From the definition of probabilities, we know that:

6∑
y=1

P (Y = y) = 1.

Substituting r into this gives us the following:

6∑
y=1

r = 1, 6r = 1, r = 1/6.

EX 2.3. (a) Y is a discrete random variable that can take any value from 0 to inf. The
probability that Y ≤ 4 is equal to the sum of all of the probabilities that satisfy
Y ≤ 4, Y = 0, Y = 1, Y = 2, Y = 3, Y = 4:

P (Y ≤ 4) =
4∑
y=0

P (Y = y).

When λ = 5, we can compute these probabilities as:

P (Y ≤ 4) = 0.0067379 + 0.0336897 + 0.0842243 + 0.1403739 + 0.1754674 = 044049.

(b) Because Y has to satisfy either P (Y | ≤ 4) or P (Y > 4), we know that P (Y >
4) = 1− P (Y ≤ 4):

P (Y > 4) = 0.5591.

EX 2.4. We require Ep(y) {sin(y)} where p(y) = U(a, b). The uniform density is given by:

p(y) =
{

1
b−a a ≤ y ≤ b
0 otherwise

7
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The required expectation is given by:

Ep(y) {sin(y)} =
∫
sin(y)p(y) dy

=
∫ b

y=a

sin(y)
1

b− a dy

=
1

b− a [− cos(y)]ba

=
cos(a)− cos(b)

b− a .

When a = 0, b = 1, this is equal to

Ep(y) {sin(y)} =
cos(0)− cos(1)

1
= 0.45970.

Code to compute a sample-based approximation below (sampleexpect.m):

1 clear all;
2 close all;
3 % Compute a sample based approximation to the required expectation
4 u = rand(10000,1); % Take 10000 samples
5 su = sin(u);
6 % Plot how the approximation changes as more samples are used
7 ns = 10:100:10000;
8 stages = zeros(size(ns));
9 for i = 1:length(ns)

10 stages(i) = mean(su(1:ns(i)));
11 end
12 plot(ns,stages)
13 % Plot the true value
14 hold on
15 plot([0 ns( end)],[0.4597 0.4597],'k−−')

EX 2.5. The multivariate Gaussian pdf is given by:

p(w) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(w − µ)TΣ−1(w − µ)

}
.

Setting Σ = σ2I gives:

p(w) =
1

(2π)D/2|σ2I|1/2 exp
{
− 1

2σ2
(w − µ)TI−1(w − µ)

}
.

Because it only has elements on the diagonal, the determinant of σ2I is given
by the product of these diagonal elements. As they are all the same, |σ2I|1/2 =(∏D

d=1 σ
2
)1/2

= (σ2)D/2. I−1 = I and multiplying a vector/matrix by I leaves the
matrix/vector unchanged. Therefore, the argument within the expectation can be
written as − 1

2σ2 (w − µ)T(w − µ) and recalling that bTb =
∑
i b

2
i , we can rewrite

the pdf as:

p(w) =
1

(2π)D/2(σ2)D/2
exp

{
− 1

2σ2

D∑
d=1

(wd − µd)2
}
.
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Where wd and µd are the dth elements of w and µ respectively. The exponential of
a sum is the same as a product of exponentials. Hence,

p(w) =
1

(2π)D/2(σ2)D/2

D∏
d=1

exp
{
− 1

2σ2
(wd − µd)2

}

=
D∏
d=1

1
(2π)1/2σ

exp
{
− 1

2σ2
(wd − µd)2

}

=
D∏
d=1

p(wd|µd, σ2),

where p(wd|µd, σ2) = N (µd, σ2). Hence, the diagonal covariance is equivalent to as-
suming that the elements of w are distributed as independent, univariate Gaussians
with mean µd and variance σ2.

EX 2.6. Using the same methods as in the previous exercise, we see that the determinant of
the covariance matrix is given by

∏D
d=1 σ

2
d and we have the following:

p(w) =
1

(2π)D/2
(∏D

d=1 σ
2
d

)1/2
exp

{
−1

2

D∑
d=1

(wd − µd)2
σ2
d

}

Changing the sum to a product leaves us with

p(w) =
1

(2π)D/2
(∏D

d=1 σ
2
d

)1/2

D∏
d=1

exp
{
− 1

2σ2
d

(wd − µd)2
}

=
D∏
d=1

1
(2π)1/2σd

exp
{
− 1

2σ2
d

(wd − µd)2
}
.

This is the product of D independent univariate Gaussian densities.

EX 2.7. The Hessian for a general model of our form is given by:

− 1
σ2

XTX

For the linear model, X is defined as:

X =


1 x1

1 x2

...
...

1 xN


Therefore − 1

σ2 XTX is:

XTX =

[
N

∑N
n=1 xn∑N

n=1 xn
∑N
n=1 x

2
n

]
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The diagonal elements are −N/σ2 and −(1/sigma2)
∑N
n=1 x

2
n which are equiva-

lent (they differ only by multiplication with a negative constant) the expressions
obtained in Chapter 1.

EX 2.8. We have N values, x1, . . . , xN . Assuming that these values came from a Gaussian,
we want to find the maximum likelihood estimate of the G and want to find the
maximum likelihood estimates of the mean and variance of the Gaussian. The
Gaussian pdf is:

1√
2πσ

exp
{
− 1

2σ2
(xn − µ)2

}
Assuming the IID assumption, the likelihood of all N points is given by a product
over the N objects:

N∏
n=1

1√
2πσ

exp
{
− 1

2σ2
(xn − µ)2

}
.

We’ll work with the log of the likelihood:

logL =
N∑
n=1

(
−1

2
log(2π)− 1

2
log(σ2)− 1

2σ2
(xn − µ)2

)
To find the maximum likelihood estimate for µ, we differentiate with respect to µ,
equate to zero and solve:

∂ logL
∂µ

=
N∑
n=1

1
σ2

(x− µ)

0 =
1
σ2

N∑
n=1

(xn − µ)

0 =
N∑
n=1

xn −
N∑
n=1

µ

=
N∑
n=1

xn −Nµ

µ =
1
N

N∑
n=1

xn

Similarly, for σ2,

∂ logL
∂σ2

=
N∑
n=1

(
− 1

2σ2
+

1
2(σ2)2

(xn − µ)2
)

= 0

Nσ2 =
N∑
n=1

(xn − µ)2 (2.1)

σ2 =
1
N

N∑
n=1

(xn − µ)2 (2.2)
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EX 2.9. The Bernoulli distribution is defined as:

P (Xn = x|r) = rx(1− r)1−x

where x is either 0 or 1. Using the IID assumption, we have:

L =
N∏
n=1

rxn(1− r)1−xn

and the log likelihood is:

logL =
N∑
n=1

xn log r + (1− xn) log(1− r)

Differentiating with respect to r gives us:

∂ logL
∂r

=
N∑
n=1

(
xn
r
− 1− xn

1− r

)
= 0

N∑
n=1

xn
r

=
N∑
n=1

1− xn
1− r

N∑
n=1

xn − r
N∑
n=1

xn = rN − r
N∑
n=1

xn

r =
1
N

N∑
n=1

xn.

EX 2.10. The Fisher information is defined as the expectation of the negative second deriva-
tive. From the above expression, we can see that the second derivative of the
Gaussian likelihood (assuming N observations, x1, . . . , xN is:

∂2 logL
∂µ2

= −N
σ2
.

Hence the Fisher information is equal to N/σ2.

EX 2.11. Starting from the second expression, we have

σ̂2 =
1
N

[
N∑
n=1

t2n − 2
N∑
n=1

tnxT
nŵ +

N∑
n=1

(xnŵ)2
]
.
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Concentrating on the final term,

N∑
n=1

(xTŵ)2 =
N∑
n=1

xT
nŵŵTxn

= Tr(XŵŵTXT)
= Tr(X(XTX)−1XTttTX(XTX)−1XT)
= Tr(XTX(XTX)−1XTttTX(XTX)−1)
= Tr(XTttTX(XTX)−1)
= Tr(ttTX(XTX)−1XT)
= Tr(tTX(XTX)−1XTt)
= tTX(XTX)−1XTt)
= tTXŵ

=
N∑
n=1

tnxT
nŵ.

Therefore,

σ̂2 =
1
N

[
N∑
n=1

t2n −
N∑
n=1

tnxT
nŵ

]
.

Now,
∑N
n=1 t

2
n = tTt and we already know that

∑N
n=1 tnxnŵ = tTXŵ. So,

σ̂2 =
1
N

[
tTt− tTXŵ

]
,

as required.

EX 2.12. Code below (predvar.m):

1 clear all;close all;
2 % Relevant code extraced from predictive variance example.m
3 x = rand(50,1)*10−5;
4 x = sort(x);
5 % Compute true function values
6 f = 5*x.ˆ3 − x.ˆ2 + x;
7 % Generate some test locations
8 testx = [min(x):0.2:max(x)]';
9 % Add some noise

10 t = f+randn(50,1)*sqrt(1000);
11 % Remove all training data between −1.5 and 1.5
12 pos = find(x>−1.5 & x<1.5);
13 x(pos) = [];
14 f(pos) = [];
15 t(pos) = [];
16

17 % Choose model order
18 K = 5;
19

20 X = repmat(1,size(x));
21 testX = repmat(1,size(testx));
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22 for k = 1:K
23 X = [X x.ˆk];
24 testX = [testX testx.ˆk];
25 end
26

27

28 w hat = inv(X'*X)*X'*t;
29 ss hat = mean((t − X*w hat).ˆ2);
30 pred va = ss hat*diag(testX*inv(X'*X)*testX');
31 % Make a plot
32 figure(1);hold off
33 plot(x,t,'b.');
34 hold on
35 errorbar(testx,testX*w hat,pred va,'r');

EX 2.13. The Bernoulli distribution for a binary random variable x is:

p(x|θ) = θx(1− θ)1−x

The Fisher information is defined as the negative expected value of the second
derivative of the log density evaluated at some paramater value:

F = −Ep(x|θ)

{
∂2 log p(x|θ)

∂θ2

∣∣∣∣
θ

}
Differentiating log p(x|θ) twice gives:

∂ log p(x|θ)
∂θ

=
x

θ
− 1− x

1− θ
∂2 log p(x|θ)

∂θ2
= − x

θ2
− 1− x

(1− θ)2 .

The Fisher information is therefore:

F =
1
θ2

Ep(x|θ) {x}+
1

(1− θ)2 Ep(x|θ) {1− x} .

Substituing in the expectations (θ and 1− θ respectively gives:

F =
θ

θ2
+

1− θ
(1− θ)2 =

1
θ(1− θ)

EX 2.14. The multivariate Gaussian pdf is given by:

p(x|µ,Σ) =
1

(2π)D/2|Σ|1/2 exp
{
−1

2
(x− µ)TΣ−1(x− µ)

}
.

Logging and removing terms not including µ:

log p(x|µ,Σ) ∝ µTΣ−1x− 1
2
µTΣ−1µ.
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First and second derivatives are:

∂ log p(x|µ,Σ)
∂µ

= Σ−1x−Σ−1µ

∂2 log p(x|µ,Σ)
∂µ∂µT

= −Σ−1.

Therefore, the Fisher information is:

F = Σ−1.


