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The Probability Model

• Algebra of events

• Probability and conditional probability.

• Applications

- Network reliability

- Binary communication

- Information and coding
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Sample Space and Events

A2

A1

● s

eventsS
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Events and Event Operations

S Certain event

0 Null event

A1, A2, A3,… User defined events

A1 + A2 Union operation   (A1 A2)

A1 A2 Intersection operation (A1 A2)

AC Complement operation

S Certain event

0 Null event

A1, A2, A3,… User defined events

A1 + A2 Union operation   (A1 A2)

A1 A2 Intersection operation (A1 A2)

AC Complement operation
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Example:

Consider a sample space represented by  S = {1,2,3,4,5,6}

Let A1 = {1,3,5},   A2 = {1,2},   and  A3 = {2,4,6} be user-defined events.

Find:

– A1
C

– A2 + A3

– A1 + A3

– A1 A2

– A1 A3

– A1 + 0 

– A1 0 A1=
{1, 3, 5} A1

C =
{2, 4, 6}

S = {1,2,3,4,5,6}

= ({1,3,5})C

= {1,2,4,6}

= {1,2,3,4,5,6} = S

= {1}

= 0

= {1,3,5} = A1

= {2,4,6} = A3
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Example:

Consider a sample space represented by  S = {1,2,3,4,5,6}

Let A1 = {1,3,5},   A2 = {1,2},   and  A3 = {2,4,6} be user-defined events.

Find:

– A1
C

– A2 + A3

– A1 + A3

– A1 A2

– A1 A3

– A1 + 0 

– A1 0 A1=
{1, 3, 5} A1

C =
{2, 4, 6}

S = {1,2,3,4,5,6}

= ({1,3,5})C

= {1,2,4,6}

= {1,2,3,4,5,6} = S

= {1}

= 0

= {1,3,5} = A1

= 0

= {2,4,6} = A3
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Axioms for the Algebra of Events

• A1A1
C = 0 Mutual exclusion

• A1S = A1 Inclusion

• (A1
C)C = A1 Double complement

• A1 + A2 = A2 + A1 Commutative law

• A1 + (A2 + A3) = (A1 + A2) + A3 Associative law

• A1(A2 + A3) =  A1A2 + A1A3 Distributive law

• (A1A2) 
C = A1

C + A2
C De Morgan’s law

A1A1
C = 0 Mutual exclusion

A1S = A1 Inclusion

(A1
C)C = A1 Double complement

A1 + A2 = A2 + A1 Commutative law

A1 + (A2 + A3) = (A1 + A2) + A3 Associative law

A1(A2 + A3) =  A1A2 + A1A3 Distributive law

(A1A2) 
C = A1

C + A2
C De Morgan’s law
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Additional Identities

• SC = 0 

• A1 + 0 = A1 Inclusion

• A1A2 = A2A1 Commutative law

• A1(A2A3) = (A1A2)A3 Associative law

• A1 + (A2A3) = (A1 + A2) (A1 + A3)   Distributive law

• (A1 + A2)
C = A1

CA2
C De Morgan’s law

SC = 0 

A1 + 0 = A1 Inclusion

A1A2 = A2A1 Commutative law

A1(A2A3) = (A1A2)A3 Associative law

A1 + (A2A3) = (A1 + A2) (A1 + A3)   Distributive law

(A1 + A2)
C = A1

CA2
C De Morgan’s law



M Tummala & C W Therrien 2012
8

Finite Unions and Intersections
These are included in the algebra.

Infinite Unions and Intersections
If they are included, the algebra of events is called a Sigma Algebra.

...

...

321

1

321

1

AAAA

AAAA

i

i

i

i













N

N

i

i

N

N

i

i

AAAAA

AAAAA

...

...

321

1

321

1













∞

∞



M Tummala & C W Therrien 2012
9

Mutually Exclusive and Collectively Exhaustive Events

Mutually exclusive:

Collectively exhaustive:

A set of events that is mutually exclusive and collectively exhaustive is 
called a partition.

Working Definition of the Sample Space

THE SAMPLE SPACE IS REPRESENTED BY THE FINEST

GRAIN, MUTUALLY EXCLUSIVE, COLLECTIVELY

EXHAUSTIVE SET OF OUTCOMES FOR AN EXPERIMENT.

jkAA jk  0

SA
j

j 
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Discrete Sample Space

Discrete sample space <=> Discrete valued signals 

• Output of an 8-bit ADC contains only  28 = 256 values

S = {-5, -4.9609375, …, -0.0390625,0,0.0390625, …, 4.9609375}

or S = {-128, -127, …, -1, 0, 1, …, 127}

(decimal equivalent of 2’s  complement representation)

• Discrete sample space has a finite or countably infinite number of outcomes.

– In this example we have 256 outcomes  (finite).

8-bit
ADC

s(t)

-5V to +5V

s[n]
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Continuous Sample Space

Continuous sample space <=> Continuous magnitude signals

• Output of the radio receiver is measured at t = t1. The dynamic 
range of the receiver output is -5V to +5V

S = {s: -5  s  +5}

• A continuous sample space has uncountably infinite values or outcomes

– s could take values like 4.9326784531432677…

• Examples of events and probability assignments:

Radio 
Receiver

-5V to +5V

s(t)

3 3
Δ 0

A {s: s  2.3 }, lim Pr[A ] 0


    
x

x

1 1A {s: 2.5 2.5}, Pr[A ] 0.50    s

2 2A {s: 1 1},       Pr[A ] 0.20    s
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2

21 3 4 5 6

1

3

4

5

6

Two Dimensional Sample Space

Roll two dice [discrete sample space] 

S = {(i,j): (1,1), (1,2), (1,3), …, (4,3), …, (6,4), (6,5), (6,6)}

Roll 4

Roll Doubles

Roll 10 or more



M Tummala & C W Therrien 2012
13

Axioms of Probability


























1
i

1i
iji

212121

i

]Pr[AAPrthen  j,ifor 0AAIfIII(b).

]Pr[A]Pr[A]APr[Athen  0,AAIfIII(a).

1Pr[S]II.

eventanyfor0]Pr[A.I

i


A1 A2
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1 2 1 2 1 26. Pr[A A ] Pr[A ] Pr[A ] Pr[A A ]   1 2 1 2 1 26. Pr[A A ] Pr[A ] Pr[A ] Pr[A A ]   

c1. Pr[A ] 1 Pr[A] (ii, iii) 

2. 0 Pr[A] 1 (i, ii, iii) 

1 2 1 25. If A A 0,   then Pr[A A ] 0 

4. Pr[0] 0 (ii, iii)
1 2 1 23. If A A , then  Pr[A ] Pr[A ] (i, iii) 

Some Corollaries

c1. Pr[A ] 1 Pr[A] (ii, iii) 

A1 A2
A2 A1

2. 0 Pr[A] 1 (i, ii, iii) 

1 2 1 25. If A A 0,   then Pr[A A ] 0 

4. Pr[0] 0 (ii, iii)
1 2 1 23. If A A , then  Pr[A ] Pr[A ] (i, iii) 
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Pr[B] = Pr[BA1] + Pr[BA2] +

… + Pr[BAn]

Pr[B] = Pr[BA1] + Pr[BA2] +

… + Pr[BAn]
A2

An

B

The Principle of Total Probability

Let A1, A2, …, An be a set of mutually exclusive and collectively

exhaustive events:

then

Now let B be any event in S. Then, 

1

Pr[A ] 1
n

j
j



A1

jkAA jk  0

SA
n

j

j 



1

Pr[BA1] + Pr[BA2]
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Independence of Events

Two events A1 and A2 are said to be statistically independent 

if and only if

Pr[A1A2] = Pr[A1] Pr[A2]

When the situation claims that events are “independent,”

this is the one and only test.
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System Reliability Calculations

Series connection of switches

Assume that switch failures are independent; and failure 

results in an open connection.

F = {no connection between x and y} =  A1+ A2 

The probability that the connection fails:

Pr[F] = Pr[A1+ A2] = Pr[A1] + Pr[A2] - Pr[A1A2] 

= Pr[A1] + Pr[A2] - Pr[A1] Pr[A2] (A1 and A2 are independent)

= p + p - p2 = 2p - p2

S1 S2 yx
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System Reliability Calculations

Parallel Connection of switches

Define: A1 = {S1 fails},    Pr[A1] = p,    Pr[A1
c] = 1 - p = q

A2 = {S2 fails},    Pr[A2] = p,    Pr[A2
c] = 1 - p = q

F = {no connection between x and y} =  A1A2 

The probability that the connection fails:

Pr[F] = Pr[A1A2] = Pr[A1] Pr[A2]  = p2 (A1 and A2 are independent)

S1

S2

yx
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Combination Example

Consider a simple switching network as follows:

Define: Ak = {switch Sk is open},  k = 1,2,3,4        Pr[Ak] = p

Let   F = {no connection between x and y} = (A1 + A2)A3 + A4

S1 S2

S3

S4

x y
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(a) Find the probability that the path between x and y is established.

The probability of path failure is given by

→ Pr[F] = Pr[(A1 + A2)A3 + A4] 

= Pr[A1A3 + A2A3] + Pr[A4] - Pr[A1A3A4 + A2A3A4]

= Pr[A4] + Pr[A1A3] + Pr[A2A3] - Pr[A1A2A3]

- Pr[A1A3A4] - Pr[A2A3A4] + Pr[A1A2A3A4]

= p + p2 + p2 - p3 - p3 - p3 + p4

= p + 2p2 - 3p3 + p4

= Pr[A1A3 + A2A3] + Pr[A4] - Pr[A1A3A4 + A2A3A4]

= Pr[A4] + Pr[A1A3] + Pr[A2A3] - Pr[A1A2A3]

- Pr[A1A3A4] - Pr[A2A3A4] + Pr[A1A2A3A4]

S1 S2

S3

S4

x y

= Pr[(A1A3 + A2A3) + A4]

= Pr[A1A3 + A2A3] + Pr[A4] - Pr[A1A3A4 + A2A3A4]

= Pr[A4] + Pr[A1A3] + Pr[A2A3] - Pr[A1A2A3]

Combination   Example          (cont’d)
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(a) Find the probability that the path between x and y is established.

The probability of path failure is given by

→ Pr[F] = Pr[(A1 + A2)A3 + A4] 

= Pr[A1A3 + A2A3] + Pr[A4] - Pr[A1A3A4 + A2A3A4]

= Pr[A4] + Pr[A1A3] + Pr[A2A3] - Pr[A1A2A3]

- Pr[A1A3A4] - Pr[A2A3A4] + Pr[A1A2A3A4]

= p + p2 + p2 - p3 - p3 - p3 + p4

= p + 2p2 - 3p3 + p4

The desired probability is then given by

Pr[path established] = 1 - Pr[F] = 1 - p - 2p2 + 3p3 - p4

S1 S2

S3

S4

x y

= Pr[(A1A3 + A2A3) + A4]

Combination   Example          (cont’d)



M Tummala & C W Therrien 2012
22

Probability as a function of parameter ‘p’

p 1 - Pr[F]

0.1 0.88290000

0.01 0.98980299

0.001 0.99899800

0.0001 0.99989998

Pr[path established] = 1 - Pr[F] = 1 - p - 2p2 + 3p3 - p4
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Repeated Independent Trials  (Bernoulli Trials)

A random experiment, E, consists of several sub-experiments 

or trials, Ei: 

• All sub-experiments have the same sample space, Si.

• Events from all sub-experiments are mutually independent:

Pr[A1A2A3...An] = Pr[A1]Pr[A2]Pr[A3]...Pr[An], 

where Ai is an event from Si.

• The sample space of E is:

S = S1  S2  S3  ...  Sn

• All sub-experiments have the same sample space, Si.

• Events from all sub-experiments are mutually independent:

Pr[A1A2A3...An] = Pr[A1]Pr[A2]Pr[A3]...Pr[An], 

where Ai is an event from Si.

• The sample space of E is:

S = S1  S2  S3  ...  Sn
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A sequence of 4 bits is transmitted over a channel.  Bit errors occur with 
probability 0.05.  What is the sample space and what are the probabilities 
of the outcomes?

For a single bit we have 2 sub-events:

Φ no error Pr[Φ] = 0.95

E error Pr[E] = 0.05

The sample space and probabilities are:

Example of Bernoulli Trials

ΦΦΦΦ ΦΦΦE ΦΦEΦ ΦΦEE … EEEE

(0.95)4 (0.95)3(0.05
)

(0.95)2(0.05)(0.95
)

(0.95)2(0.05)
2

… (0.05)4

0.8145 0.0429 0.0429 0.0023 … 6.25E-6
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Counting Methods and Probabillity

The assignment of probability is given by

The rule of products:
Consider an experiment with n outcomes; repeat it r times 

The total number of outcomes is given by

or in the general case

1
1

Number of outcomes in Event A
Pr[A ]

Number of outcomes of experiment


rn n n n   L

1 2
1

...
r

r i
i

n n n n



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Examples

• Roll a die 4 times sequentially. The total number of outcomes is

• Form 5-letter words using 26 English alphabet characters. Characters 
can be repeated, and the words so formed do not have to be meaningful. 

• Construct variable names of length 3 using a letter, a number, and a letter 
(e.g., A2C). 

376,881,11265 

261026 

129666666 4 
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Permutations

(products without replacement)

Select r objects from among a given set of n distinct objects 

where we pay attention to the order in which the r objects 

are selected.  

Important special case: 

For r = n:

nr
rn

n

rnnnnP n
r








for  ,
)!(

!

)1()2)(1( 

!nPn
n 
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Permutation Example

Form 5-letter words using the English alphabet. The characters 

cannot be repeated, and the words do not have to be meaningful. 

The total number of words that can be formed is:

600,893,72223242526
!21

!26

)!526(

!2626
5




P
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Combinations

Select r objects from among a given set of n distinct objects 

where we pay no attention to the order in which the r objects

are selected.

! ( 1) ( 1)

!( )! ( 1)( 2) (1)

    
   

   

L

L
n
r

n n n n n r
C

r r n r r r r

Binomial coefficient       “n choose r”
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Permutations and Combinations Example

Consider 5 workstations having equal capabilities: {a, b, c, d, e}

• Permutations: Select two workstations where one will be a server 
and the other a graphics workstation. The possible selections are:

ab ba  ac  ca  ad  da  ae  ea  bc  cb  bd  db  be  eb  cd  dc  ce ec  de  ed

• Combinations: Select two workstations where both will be used 
as graphics workstations. The possible selections are:

ab ac   ad   ae   bc   bd   be   cd   ce   de

2045
)!25(

!55
2 


P

10
2

45

)!25(!2

!5

2

5
















“ab  ba”

“ab = ba”
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Buying Computers

We plan to buy 5 personal computers. The computer store has a stock of 
10 foreign-made PCs and 15 US-made PCs that meet our specifications. 

(a) Assuming that the 5 computers are randomly chosen from this lot, what 
is the probability that exactly 3 US-made computers are selected? 

• The sample space is given by

S = {combinations of r = 5 chosen from n = 25}

• The desired event A = {exactly 3 of the 5 selected are US-made}

)!525(!5

!25

5

25











SN

)!210(!2)!315(!3

!10!15

2

10

3

15



















AN
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Buying Computers     (cont’d)

• The probability that we have 3 US-made computers is

15 10 15! 10!

3 2 3! (15 3)! 2! (10 2)!
Pr[A]

25!25

5! (25 5)!5

15! 10! 5! (25 5)!
0.3854

3! (15 3)! 2! (10 2)! 25!

     
     

        
 
   


 

 

A

S

N

N

[Hyper geometric distribution]
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Buying Computers     (cont’d)

(b)  Assuming that the 5 computers are randomly chosen from this lot, 
what is the probability that at least 1 is foreign made?

• The desired event B = {one or more of the 5 are foreign made}

• Let event C = {none of the 5 selected computers is foreign-made}

• Since B = CC, we can write Pr[B] = 1 - Pr[C]

15 10

5 0 15! 10! 5! (25 5)!
Pr[C] 0.0565

25 5! (15 5)! 0! (10 0)! 25!

5

Pr[B] 1 Pr[C] 1 0.0565 0.9435

B

S

N

N

  
  

     
  

 
 

    
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Another Example

Consider a box of 25 modem chips; 5 of them are known to be defective. 

Select 6 from the box at random and test them. What is the probability 
that exactly 2 are defective? 

• Sample Space: S = {combinations of r = 6 chosen from n = 25}

• Event:  A = {exactly 2 of the 6 selected chips are defective}

• The number of outcomes in S is given by:

• For the selected 6 chips, we are interested in the case, where 2 are 
defective (i.e., they are from the 5 defective chips in the box) and 
4 are non-defective (i.e., they are from the 20 non-defective chips 
in the box).

)!625(!6

!25

6

25











SN
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Example     (cont’d)
• The number of outcomes in A is given by:

• The probability that exactly 2 of the 6 selected chips are defective is

)!420(!4)!25(!2

!20!5

4

20

2

5



















AN

5 20

2 4 5! 20! 6! (25 6)!
Pr[A]

25 2! (5 2)! 4! (20 4)! 25!

6

0.2736

A

S

N

N

  
  

    
  

 
 


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Conditional Probability

Probability of occurrence of one event (say, A1) subject to the 

knowledge that another event (say, A2) has occurred. 

Pr[A1 | A2] is read as “probability of A1 given A2 ”

If A1 and A2 are independent, then

A1 A2

S
1 2

1 2

2

Pr[A A ]
Pr A A

Pr[A ]
   

1 2 1 2
1 2 1

2 2

Pr[A A ] Pr[A ]Pr[A ]
Pr A A Pr[A ]

Pr[A ] Pr[A ]
     
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Conditional Probability Example

Consider a sequence of 3 binary numbers (occurring randomly).

Sample space:    S = {000, 001, 010, 011, 100, 101, 110, 111}

Find the probability of more 1’s than 0’s given the first bit is a 1.

• Define two events:

A1 = {more 1’s than 0’s} = {011, 101, 110, 111}   (0.5)

A2 = {the first bit is a 1} = {100, 101, 110, 111}   (0.5)

• Their intersection:

A1A2 = {101, 110, 111}  (0.375)

 
 
 

1 2

1 2

2

Pr A A 0.375
Pr A |A 0.75

Pr A 0.5
  



M Tummala & C W Therrien 2012
38

Event Tree Used to Form a Sample Space

A

Ac

AB

ABc

Ac B

Ac Bc

Pr[ABc] = Pr[Bc|A] Pr[A]
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Computation of Probabilities

F

Fc

F R

F Rc

Fc R

Fc Rc

1/5
0.25

4/5

0.75

0.15

0.85

(1/5)(0.75)

(1/5)(0.25)

(4/5)(0.15)

(4/5)(0.85)

Sample 
Space Probability
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0
0

1

1

1

0.5

0.5

0

0

1

0
0

0.5

0.5
0.5

0.5

1

1

1

0

0
0

Sample

Space Probability
111 0.125
110 0.125
101 0.125
100 0.125
011 0.125
010 0.125
001 0.125
000 0.125

Event A1 = 

{more 1’s than 0’s} 
110
101
100
011

1

Event A2 = 

{the first bit is a 1}

All 8 events in the sample space have probability 1/8, therefore

The conditional probability is obtained as follows:

1 2
1 2

2

Pr[A A ] 3/ 8 3
Pr A A

Pr[A ] 4 / 8 4
     

2 1 2

4 3
Pr[A ] and Pr[A A ]

8 8
 

Tree diagram

Example   (cont’d)

100

111

A1A2

1

1
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Principle of Total Probability Revisited

Let A1, A2, …, An be mutually exclusive and collectively 

exhaustive events. Let B be an event in S. 

Then, 

1 2

1 1

1

Pr[B] Pr[BA ] Pr[BA ] Pr[BA ]

Pr B A Pr[A ] Pr B A Pr[A ]

Pr B A Pr[A ]

n

n n

n

i i
i

   

         

   

K

K

1 2Pr[B] Pr[BA ] Pr[BA ] Pr[BA ]n   K

A2

An

B

BA2

A1

1Pr[BA ] 2] Pr[BA ]

1 1Pr B A Pr[A ]  
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Binary Communication Channel

Channel

1S

Transmitter Receiver

Pr[0R|0S] = 0.95
0S 0R

1R

Pr[1R|1S] = 0.90

Pr[1R| 0S] = 0.05

Pr[0R|1S] = 0.10
Pr[0S] = 0.5

Pr[1S] = 0.5

00

11

We can compute the probability of joint events:

Pr[0S0R] = Pr[0R|0S]Pr[0S] = (0.95)(0.5) = 0.475

Pr[0S1R] = Pr[1R|0S]Pr[0S] = (0.05)(0.5) = 0.025 (error)
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Binary Communication Channel       (cont’d)

Computing the probability of error:

Probability

0.050

0.450

0.025

0.475

0.5

0.10
1S0R

(error)

0S0R

0S1R

(error)

1S1R

1R0.5

0S

0.95
0R

0.05

1S
0R

1R

conditional

a priori

0.900.5

0.10
0.050

0.5
0.05

0.025

Pr[error] = 0.050 + 0.025 = 0.075
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Pr[error |1 ] Pr[0 |1 ] 0.10

Pr[error | 0 ] Pr[1 | 0 ] 0.05
S R S

S R S

 

 

1S 0S

error

Pr[error] Pr[error |1 ]Pr[1 ] Pr[error | 0 ]Pr[0 ]

0.10 0.50 0.05 0.50 0.075

S S S S 

    

Use the Law of Total Probability:

Binary Communication Channel       (cont’d)

Compute the probability of error another way:
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More on Conditional Probability

From the definition of conditional probability, we can write 

This can be written as

1 2
1 2 1 2 1 2 2

2

1 2
2 1 1 2 2 1 1

1

1 2 2 2 1 1

Pr[A A ]
Pr A A or Pr[A A ] Pr A A Pr[A ]

Pr[A ]

Pr[A A ]
Pr A A or Pr[A A ] Pr A A P r[A ]

Pr[A ]

Pr A A Pr[A ] Pr A A Pr[A ]

        

        

        

1 2 2

2 1

1

Pr A A Pr[A ]
Pr A A

Pr[A ]

     
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Let A1, A2, …, An be a set of mutually exclusive, collective

exhaustive events (partition). Then,

Or, applying the Principle of Total Probability

This is called Bayes’ Rule.

Pr[B | A ]Pr[A ]
Pr A | B

Pr[B]

j j

j
   

1

Pr[B | A ]Pr[A ]
Pr A | B

Pr[B | A ]Pr[A ]

j j

j n

k k
k

   


Bayes’ Rule
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Binary Communication Channel Revisited

Transmitter Receiver

Pr[0R|0S] = 0.95
0 0

1
Pr[1R|1S] = 0.90

Pr[1R| 0S] = 0.05

Pr[0R|1S] = 0.10
Pr[0S] = 0.5

Pr[1S] = 0.5

Determine the inverse probability, P[1S |1R].
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Determine the inverse probability, P[1S |1R]: 

 

9474.0
025.045.0

45.0

]0Pr[]0|1Pr[]1Pr[]1|1Pr[

]1Pr[]11Pr[

]1Pr[

]1Pr[]11Pr[
11Pr











SSRSSR

SSR

R

SSR
RS

Binary Communication Channel   (cont’d)
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Integrated Circuit Example

Consider 3 boxes of integrated circuits (ICs).

Box 1 contains 1500 ICs and 10% of them are defective;  

Box 2 contains 2000 ICs and 20% of them are defective; and

Box 3 contains 3000 ICs and 16% of them are defective.

Select 1 of the 3 boxes at random and choose an  IC from 

that box at random.
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By the principle of total probability, we can write

Define: A = “selected IC is defective” ,  

Bi = “IC is from box i”

B1 B3

A

B2

1 1 2 2 3 3Pr[A] Pr A B Pr[B ] Pr A B Pr[B ] Pr A B Pr[B ]

1 1 1 0.46
0.10 0.20 0.16 0.1533

3 3 3 3

             

       

(a)  What is the probability that this IC is defective?

Integrated Circuit Example      (cont’d)
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(b) Suppose that the selected IC is found to be defective.  

What is the probability that this IC came from box #3?

By Bayes’ theorem, we can write

3 3
3

Pr[A | B ]Pr[B ]
Pr B A

Pr[A]

1
0.16

0.05333 0.3479
0.1533 0.1533

   


  

(c) Suppose all IC’s are mixed in one box and an IC is selected
at random. What is the probability that the IC is defective?

Integrated Circuit Example      (cont’d)



M Tummala & C W Therrien 2012
52

Basic Information Theory

Given an event A and its probability Pr[A], the “information” associated 
with A is defined by

where x is the base of the logarithm: 

if x = 2, the units of information are  bits; 

if x = 10, the units are hartleys; 

and if x = e, the units are nats. 

Note the identity: loga b = x means that ax = b. 

1
[A] log log Pr[A],

Pr[A]
x xI   
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Information Theory Example

Consider two events: A1 and A2 with corresponding probabilities 
of occurrence of 0.125 and 0.875, respectively. 

The information associated with these events:  

I[A1] = -log2 (0.125) = 3 bits 

I[A2] = -log2 (0.875) = 0.1925 bits



M Tummala & C W Therrien 2012
54

Entropy

Given a set of independent events that are mutually exclusive and 
collectively exhaustive,  the average information associated with                  
the random experiment is defined as

Pr[A ] [A ] Pr[A ] log Pr[A ]i i i x i
i i

H I     



M Tummala & C W Therrien 2012
55

Entropy Example

Consider a sequence 1 2 3 2 3 4 5 4 5 6 7 8 9 8 9 0. 

We estimate the probability of occurrence of each symbol as follows:

Pr[1] = Pr[6] = Pr[7] = Pr[0] = 1/16

Pr[2] = Pr[3] = Pr[4] = Pr[5] = Pr[8] = Pr[9] = 2/16

The entropy of this sequence is 

2 bitsPr[A ] log Pr[A ] 3.25 i i
i

H    
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Shannon-Fano Code

Messages are composed of an alphabet in which the frequency of 
occurrence of each letter is a probabilistic phenomenon. 

– For transmission purposes the messages are compressed such 
that the code length of a letter is inversely proportional to its 
frequency of occurrence (e.g., think of the Morse code).

– Since the letters are transmitted sequentially, no short 
codeword can be part of the start of a longer codeword for unique 
decodability. 

Shannon-Fano Algorithm:

– Arrange letters in a descending order of their probabilities by 
breaking any ties arbitrarily.

– Starting at the top, partition the letters into two equi-probable 
subgroups (as closely as possible): assign 0 to the first subgroup 
and 1 to the second.

– Continue partitioning the subgroups until all letters are exhausted: 
after each partition, assign a 0 to the first group and a 1 to the 
second and append the newly assigned bits to the previously assigned 
bits.
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Example
Given a text message “ELECTRICAL ENGINEERING,” determine the 

relative probabilities of the letters in the message and find the Shannon-
Fano code for each letter. Ignore the space character. 

• Since there are 21 letters in the message, we have the following 
probabilities:

Letters: {E, L, C, T, R, I, A, N, G}

Probabilities: {5/21, 2/21, 2/21, 1/21, 2/21, 3/21, 1/21, 3/21, 2/21}

• Code assignment:

E 5/21

I 3/21

N 3/21

L 2/21

C 2/21

R 2/21

G 2/21

T 1/21

A 1/21

2

2

3

3

3

1

0

0

0

1

1

1

1

1

1

0

1

1

0

0

0

1

1

1

0

1

0

1

1

0

1

1
4

4
0

1

0

1

Codeword      Length

00 2

010 3

011 3

100   3

1010 4

1011 4

110 3

1110 4

1111 4


