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Problem 3.1

The outgoing wave is written

using

ρ ∂u
∂t

= − 1
r
∂p
∂r

we find that 

u(r) = A
rρc

e− jkr 1− j
kr

⎡
⎣⎢

⎤
⎦⎥

Here 

ρc = 1.2 ⋅343 ≈ 412 Ns
m3

⎡
⎣⎢

⎤
⎦⎥

Since we were given that the acoustic pressure amplitude at 1 m from the point
source is 0.1 Pa, we have

p(1) = 0.1= A
1

Pa[ ]

so
A = 0.1 Pa ⋅m[ ]
The phase difference between sound pressure and particle velocity is

θ = arg
p
u

⎛
⎝⎜

⎞
⎠⎟
= arg

ρc 1− 1
jkr

⎡
⎣⎢

⎤
⎦⎥

1+ 1
kr

⎛
⎝⎜

⎞
⎠⎟
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= tan−1 Im
Re

⎛
⎝⎜

⎞
⎠⎟ = tan

−1 1
kr

⎛
⎝⎜

⎞
⎠⎟

In summary:

  
p(r) = A

r
Pa[ ]
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p(r) = A

r
e− jkr



u(r,k) = A
rρc

1+ 1
kr( )2

m
s

⎡
⎣⎢

⎤
⎦⎥

This gives us as functions of r:
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and as functions of kr:
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Problem 3.2

The sound pressure and particle velocity due to the sphere vibration is

  
p(r) = A

r
e− jkr

u(r) = A
rρc

e− jkr 1− j
kr

⎡
⎣⎢

⎤
⎦⎥

which gives us the sound field impedance

Z(r,k) = ρc

1+ 1
jkr

For a spherical wave the intensity is

 

I(r,k) = u2 Re Z(r,k)[ ] = u2 ρc

1+ 1
kr( )2
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We know the particle velocity at the sphere surface (r=r0) so the power there is

 

P = 4πr0
2I(r0 ,k) = u

2 (r0 )
4πr0

2ρc

1+ 1
kr0( )2

The velocity is related to the displacement as
u = jω x

so we find that

 
u2 = ω x( )2 = ω x̂

2
⎛
⎝⎜

⎞
⎠⎟
2

= 0.2 m
s

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢

⎤

⎦
⎥

The turnover point in frequency is determined by kr0=1

0.05k = 0.05 ⋅ 2π f
343

= 1
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Problem 3.3

The sound pressure in front of the rigid wall is determined by the incident and 
reflected waves. or the free wave we find

 

p(x) free = p̂e− jkx

p x( ) free =
p̂
2

The reflection coefficient is r=1 since the wall is rigid so the pressure as a func-
tion of position relative the wall at x=0 is

 

p(x)with = p̂ e− jkx + e jkx⎡⎣ ⎤⎦

p x( )with =
p̂
2
2cos kx( )⎡⎣ ⎤⎦
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The sound pressure ratio is 

 

p x( )with
p x( ) free

= 2cos kx( )

Using the level concept we find that

ΔL = 10 log 2cos 0.1⋅2π f
343

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dB[ ]
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Problem 3.4

Since the loudspeakers radiate in phase the total sound pressure at the meas-
urement is the sum of the partial pressures at this point
a)

 p = 0.63+ 0.11+ 0.20 = 0.94 Pa[ ]

Lp = 20 log
0.94

0.00002
⎛
⎝⎜

⎞
⎠⎟ = 93.4 dB[ ]

b)

 
p = 0.63

2
+ 0.11+ 0.20 = 0.625 Pa[ ]

Lp = 20 log
0.625
0.00002

⎛
⎝⎜

⎞
⎠⎟ = 89.9 dB[ ]

c)

 p = 2 ⋅0.63+ 0.11+ 0.20 = 1.57 Pa[ ]

Lp = 20 log
1.57
0.00002

⎛
⎝⎜

⎞
⎠⎟ = 97.9 dB[ ]
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Problem 3.5

The attenuation due to the sound absorption by air over a distance x is ΔL≈4.3 

mx. The attenuation coefficient is found from

Attenuation frequency response over 9 m
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Problem 3.6

The reflection coefficient of a wave hitting an impedance change is given by 
Equation 3.47.

  
r =

p̂r

p̂i

=
Z2 − Z1

Z2 + Z1

which applies also if the impedances are complex. Assume that the foil is very 
large and mounted so that it is perpendicular to the plane wave hitting the foil. 
If the mass per unit area of the foil is m” we have in this case

  

Z1 = ρc
Z2 = jω ′′m + ρc

The reflection coefficient is then

  
r =

jω ′′m
jω ′′m + 2ρc

and sound pressure in front of the foil is

 

p(x) = p̂ e− jkx + re jkx⎡⎣ ⎤⎦

p x( ) = p̂
2
e− jkx + re jkx

so|r| and m” can be determined from the sound pressure pattern. 
An alternative but slightly less exact method is to send a short “tone burst” of 
high frequency sound (say 100 cycles) towards the foil, measure the amplitude 
of the reflected burst, and calculate |r| and then m”. 

Problem 3.7
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Assume that we use the tone burst method suggested in the previous problem 
and that we use very high frequencies and that the distances l1 and l2 are suffi-
ciently large for the bursts not to interfere in their respective media.
The intensity transmission is
I1 = Iin 1−τ12( )
I3 = Iinτ12 1−τ 21( )τ 23
The intensity transmission coefficients are

τ12 = 1− r12
2
= 1− Z1 − Z2

Z1 + Z2

2

= τ

τ 21 = 1− r21
2
= 1− Z2 − Z1

Z2 + Z1

2

= τ

τ 23 = 1− r23
2
= 1− Z1 − Z2

Z1 + Z2

2

= τ

The impedances of the media are real since we are dealing with the gases di-
rectly and are not concerned with interference effects. The incident and trans-
mitted pulse amplitudes A1 and A3 will be
I1 = Iin 1−τ( )
I3 = Iin 1−τ( )τ 2

A3
A1

= I3
I1

= τ

This leads to the equation
A3
A1

= 4Z1Z2
Z1 + Z2( )2

Solving for Z2 we find

Z2 = − 1− 2 A1
A3

⎡

⎣
⎢

⎤

⎦
⎥Z1 ± 1− 2 A1

A3

⎡

⎣
⎢

⎤

⎦
⎥Z1

⎛

⎝⎜
⎞

⎠⎟

2

− Z1
2

Z2 = Z1 2
A1
A3

−1+ A1
A3

A1
A3

−1
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Now we use the time between bounces in medium 2 to determine the speed of 
sound there

c2 =
2l2
Δt
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and we can then finally find the density of medium 2

ρ2 =
Z2
c2

Problem 3.8

The sound pressure amplitude at 1 m distance is

 p̂1 = p1 2 = 0.89 Pa[ ]
The distance to the measurement point is found from 
r10 = 102 + 0.52 ≈10.01 m[ ]
The sum pressure is then at 50 Hz

k50 =
2π50
343

≈ 0.92 radians
m ⋅s

⎡
⎣⎢

⎤
⎦⎥

p̂sum,50 =
2 p̂1
r10

e− jk50r10 = 2 ⋅0.89
10.01

e− jk50r10 ≈ 0.18e− j9.2 Pa[ ]

and at 1 kHz

k1k =
2π1000
343

≈18.3 radians
m ⋅s

⎡
⎣⎢

⎤
⎦⎥

p̂sum,1k =
2 p̂1
r10

e− jk1kr10 = 2 ⋅0.89
10.01

e− jk1kr10 ≈ 0.18e− j183 Pa[ ]

The particle velocity will be the vector sum of the particle velocity contributions 
by the two sources. Assume the sources ±0.5 on the y-axis and the observation 
point 10 m away on the x-axis. The contribution in the y-direction will cancel 
out and for the x-direction we find 

ûsum,50 =
p̂sum,50
ρc

10
102 + 0.52

≈1.6 ⋅10−5e− j9.2 m
s

⎡
⎣⎢

⎤
⎦⎥

ûsum,1k =
p̂sum,1k
ρc

10
102 + 0.52

≈1.6 ⋅10−5e− j183 m
s

⎡
⎣⎢

⎤
⎦⎥

Problem 3.9

The sound pressures will now cancel out at the point of observation. Since the 
particle velocity is the vector sum of the particle velocity contributions the par-
ticle velocity in the x-direction is zero. The particle velocity in the y-direction is 
found from
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ûsum,50 =
p̂sum,50
ρc

0.5
102 + 0.52

≈ 6.3 ⋅10−7e− j9.2 m
s

⎡
⎣⎢

⎤
⎦⎥

ûsum,1k =
p̂sum,50
ρc

0.5
102 + 0.52

≈ 6.3 ⋅10−7e− j183 m
s

⎡
⎣⎢

⎤
⎦⎥

Note that there will be particle velocity but no sound pressure.

Problem 3.10

The rms sound pressure for one loudspeaker at 1 m distance is found from

 

90 = 20 log
p

2 ⋅10−5
⎛
⎝⎜

⎞
⎠⎟

p = 2 ⋅10−5 ⋅104.5 ≈ 0.63 Pa[ ]
.

The sound field impedance is

Z(r) = ρc jkr
1+ jkr

Re Z(r)[ ] = ρcRe jkr
1+ jkr
⎡
⎣
⎢

⎤
⎦
⎥

The sound power radiated by one of the loudspeakers in free field is

   

P0 = 4πr2I(r) = 4πr2 p2

ρc( )2 Re Z(r)[ ]

kr = 2π50
343

radians
m ⋅s

⎡
⎣⎢

⎤
⎦⎥

P0 = 4π
0.63( )2

412
kr

1+ kr( )2
≈ 8.2 ⋅10−3 W[ ]

When the loudspeakers are placed next to one another the sound pressure will 
increase to twice its previous value at the observation point so the radiated 
power will be four times as large.

  Pdouble ≈ 33 ⋅10−3 W[ ]
Problem 3.11

The loudspeakers at distance d now make a dipole source. The sound pressure 
from the dipole is given by equation 3.38.

 

pd
p0

= kd( )2 + d
r

⎛
⎝⎜

⎞
⎠⎟
2

cos θ( )
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At far distance and high frequency the sound pressure is

 

pd
p0

≈ kd cos θ( )

Integration over the full sphere then gives the power ratio

Pd
P0

≈
kd( )2
3

≈

2π50
343

⋅0.03⎛
⎝⎜

⎞
⎠⎟
2

3
≈ 2.5 ⋅10−4

Pd ≈ 2.1⋅10
−6 W[ ]
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