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Definitions

A statistic is a function of observations from a sample.

Sample average       , range R, standard deviation S, and the 
largest value Xmax, etc., are examples of a statistic.  

A statistic is a random variable because it is a function of 
random variables.

When we say we want to make inference about the quality of a 
population, it means we want to know its distribution.


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If we assume that the population we are dealing  with is normally 
distributed, we just need to know the two parameters m and s of 
the population.  

The exact values of the parameters are never known so we 
estimate them using the statistics from samples.

A statistic that is chosen to estimate a parameter is called an 
estimator for the parameter.

Certain criteria are used to select a "good" estimator from 
available candidates of estimators for a parameter.



4

Unbiasedness:  
An estimator that, on the average, equals the values of the 
parameter is called an unbiased estimator for that parameter.

E( ) = ,  E(M) =  , and E(S2) = . 
2

Minimum Variance:  
If there are several unbiased estimators available to estimate a 
parameter, then choose the one that has the least amount of 
variance among all the unbiased estimators.  

So, the sample average and the sample median M are 
unbiased estimators for       and the sample variance S2 is 
unbiased for .






2
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The MVUB
The UB estimator that has the least amount of variability among
All UB estimators for a parameter is called the Minimum Variance 
Unbiased estimator (MVUB) for that parameter.


2



S2

It is known that, for normal populations, the MVUBs for the two
Parameters are as follows:

Parameter MVUB

It is for this reason that we use and to estimate and
respectively in the methods we discuss below.    

 S2  2
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The value of an estimator observed in a single sample is called a 
point estimate. 

The point estimate, being one observation of a random variable, 
is not of much value, especially from small size samples.

So we resort to interval estimation where we create an interval 
(using the point estimate) such that the probability the parameter 
of interest lies in that interval is (1 – a).  

We call such an interval (1 – a)100% confidence interval (C.I.) 
for the parameter.
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Suppose we want to estimate the mean      of a normal 
population using sample average       as the estimator. 

Using the observed value of       an interval is created such 
that: 

The interval               is called a 100% confidence 
interval for    .

is called the confidence coefficient. 

The value of  k is determined from the distribution of the 
estimator    .



Χ

Χ

  αkxμkx  1P

 1

 kxk,x 


Χ
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If the population has , the average has  
where n is the sample size. 

Then  

Using this result, the   100% C.I. for m is obtained as:

N , 2  N , 2 / n 

  
 n

~ N 0.1 

Where is the known standard deviation and is  
such that .  (See figure in next slide)

1 



x  za 2  n,   x  za / 2 n 
z 2

P(Z  z / 2)   / 2
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FIGURE 2.15 Definition of zα/2
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Need a 99% C.I. for the mean turbidity in (all) the bottles of 
fabric softener filled in a line. s is known to be = 0.3.

A sample of 4 bottles gave: 12.6, 13.4, 12.8, 13.2 ppm.

  005.02/99.01   z 2  2.575

3.0,0.13452  x

    43.0575.20.13,43.0575.20.13 

 12.61,  13.39

What is the interpretation for this confidence interval?

99% C.I. for
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the C.I. is created from the fact that the statistic   

has the t-distribution with (n-1) degrees of freedom.

  
S n

A  100% C.I. for m of a  population that is normally 
distributed is given by: 

1 

 )(),( 2/2/ nstxnstx  

is such 2αt   2P 21 αtt αn 

Figure 2.16  Example of a t-distribution 

,where
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Example 2.37
Four measurements of turbidity in bottles of fabric softener from a 
filling line are: 12.6, 13.4, 12.8, 13.2.  Set up a 99% C.I. for average 
turbidity in the bottles of fabric softener.   Assume normal 
distribution. The s is not known.

 2  0.005 13.0

13.0  5.841 0.366 4  

n - 1 = 3                      t 0.005, 3 = 5.841

s = 0.366 (calculated from sample observations)

99% C.I. = = [11.93, 14.06]

Compare this interval with the one obtained for the s known case.
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 2

A (1- a )100% C.I. for the variance     of a normal population
is given by:

 2

n 1 S2

 / 2,n1

2 ,
n 1 S2


1 /2 ,n1

2











where S2 is the sample variance, n the sample size, and  is such that   / 2,n1

2

P 
n 1

2   /2 ,n 1

2   / 2

Figure 2.17  Example of a Chi-Square Distribution 

C.I. for    of a normal population
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 2

a/2= 0.005 s2 = 0.133 (calculated from the sample)

From the tables, 0.005,3 = 12.838 0.995,3 = 0.0717

99% C.I. for     = [ 0.031, 5.56]

99% C.I. for  s = 

 2

 2

 2 
3  .133 
12.838

,
3  .133 
0.0717








.031, 5.56  0.176,2.36 

Compare this with a 95% C.I. For s

Set up a 99% C.I. for the standard deviation s of turbidity in bottles 
of cloth softener, if a sample of 4 bottles gave measurements:  
12.6, 13.4, 12.8, and 13.2.  Assume normality.
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Two hypotheses are proposed: 
Null hypothesis denoted by H0.
Alternative hypothesis denoted by H1

The hypotheses are complementary to each other.  
If one is true, other is not true and vice versa.

Possible Errors
Type-I error occurs if H0 is declared false when in fact it is true.
Type-II error occurs if H0 is declared true when in fact it is false.

The statement to be affirmed is placed in the Alt. Hyp. H1
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The test declares H0

true not true

true OK Error-Type I

In reality H0 is 

not true Error-Type II OK 

Probability of Type I error is denoted by a and is also 
called the level of significance.
Probability of Type II error is denoted by b, and (1- b) is 
called the power of the test. 
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The test procedure is designed in such a way that the probability 
of the Type I error occurring is contained within a specified, small 
value a.

For every test, we choose a test statistic that provides the 
relationship between an estimator and the parameter about which 
hypotheses are proposed.  The distribution of the test statistic will 
be known.

Designing the test consists of identifying the Critical Region (CR),
the Critical Region being the set of observed values of the test 
statistic that will lead to rejection of the null hypothesis.
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The steps in hypothesis testing:

1.  Set up H0

2. Select an appropriate H1

3. Choose a level of significance

4. Choose an appropriate test statistic

5.   Design the test by specifying the critical region (C.R.)

6.   Select a sample from the population(s) and compute the 
value of the test statistic

7. If the observed value of the test statistic is in CR 
reject H0; otherwise do not reject

8.  Interpret the results 
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Test Concerning the Mean m of a normal population when s is 
known

H0:  m = m0 (Hypothesize that the mean equals a number m0)
H1: m > m0 (The alternate hypothesis is: if the mean is not 

equal to m0 it must be greater than m0)

Test-Statistic:      

This test-statistic relates the sample average to the 
population mean m, and its distribution is known to be the 
N(0, 1). distribution

)1,0(~
n

0 N




X
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Choosing the Critical Region: 

The alternate hypothesis determines where the C.R. is located. 

With the given H1, we will reject H0 in favor of H1 if Zobs is too 
large.

We need to draw a line to decide how large a value of Zobs is too 
large.

We draw the line at Za so that the probability of Type I error  is 
limited to a.  
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Za is called the critical value of the statistic. 

The values in the distribution of the test statistic beyond Za

constitute the Critical Region 

Figure 2.19 Critical region in the distribution of the test statistics

H0:  m = m0 H1: m > m0
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Case 1. Case 2. Case 3. 
H0: m = m0 H0: m = m0 H0: m = m0

H1: m < m0 H1: m > m0 H1: m ≠ m0

The test statistic will be the same for all three cases; however the 
location of C.R. will differ as shown in Figure 2.22.

Figure 2.22 : Alternate Hypotheses and corresponding Critical Regions
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H0:  m = 10  H1:  m > 10 Test Statistic:  

Critical region : Zobs > Za = Z.01 = 2.326. 

The observed value of the test statistics: 

~Ζ
nσ

Χ 10

61
1650

10210
.

.

.
Ζobs 




Example:
A supplier of nylon rope claims their new product has average strength greater 
than 10 kg.  A sample of 16 rope pieces gave an average of 10.2 kg.  If the 
standard deviation of the strength is known to be 0.5 kg, test the hypothesis m = 
10 vs. m > 10. Use a=0.01.

The Zobs is not in the C.R. and the null hypothesis is not rejected.  The mean 
strength of the population of nylon ropes is not greater than 10 kg.  The 
supplier’s claim is not valid.
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There are again three possible alternate hypotheses.
Case 1. Case 2. Case 3.
H0: m = m0 H0: m = m0 H0: m = m0

H1: m < m0 H1: m > m0 H1: m ≠ m0

Test Statistic:  1
0




n~t

ns

μΧ

Figure 2.23: Critical Regions for tests for m when s is not known 

The critical regions:
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= 1.868 s = 0.104 (computed from sample data)

Test Statistic:  C.R.: Observed t4 < -t 0.05,4 =  –2.132 

The observed value of t4: 



4
5

2
~t

S

Χ 

1 868 2
2.838

0 104 5
obs

.
t

.


  

Example:  The amount of ash in a box of sugar should be less than 2 grams 
according to a manufacturer's claim.  Lab analysis of 5 boxes gave  the 
following results: 1.80, 1.92, 1.84, 2.02, 1.76 grams. Is the ash content in the 
boxes is less than 2 gms as claimed? Use a = 0.05.
H0: m = 2
H1: m< 2 (Notice that the claim is in the alternative hypothesis.)

tobs is in C.R. => Reject H0

Mean ash content is than 2 grams. 
 The manufacturer's claim is valid.
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Critical Regions corresponding to the three cases of alternate 
hypotheses are shown in Figure 2.22.

Case 1: Case 2: Case 3:

 
~Ζ

nσnσ

ΧΧ

21

21

2

2

1

2




H0: m1- m2 = 0  (i.e., no difference between the two pop. means)
Case 1: Case 2: Case 3:
H1: m1- m2 < 0 m1- m2 > 0 m1- m2 ≠ 0

Test Statistic: 

Figure 2.25  Critical regions for hypotheses about difference of two means
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Test the hypothesis that male and female workers in this factory 
earn equal pay against the alternate that they don't, at a = 0.01.

Male workers Female workers

= 35,000 = 34,600

s1 = 1200 s2 =1800

n1 = 10 n2 = 8

H0:   m1- m2 = 0 

H1:   m1- m2 ≠ 0 

The two-sided alternate hypothesis is chosen because there is no 
reason to believe the difference in average will be positive or 
negative.

1 2
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Test Statistic: 

C.R.: Values of Zobs > za/2 or Zobs < –za/2

Za/2 = Z0.005 = 2.575 (from Normal tables)

1  2 


2

1
n1  

2

2
n2

1 22 2

400 400
0.541

7401200 1800

10 8

obsΖ   
 

 
 

Zobs is not in the critical region.  Hence do not reject H0.  
There is no significant difference between the salaries of male 
and female workers.  
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There are also testing procedures that do not require normality 
assumption.  These are known as distribution-free tests or non-
parametric tests. 

There are models that can be used to test hypotheses for:

Difference of two means when population standard deviations are
not known and sample sizes are small.  We then use a test statistic 
that has t distribution.

The model to test the hypothesis about population variance uses a 
test statistic that has c2 distribution.

The model to test the hypothesis about ratio of two variances 
uses a test statistic that has F distribution.
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The procedure is described below using an example.

Use of Normal Probability Plot

Normal probability plotting involves plotting the Cum. Distr. 
of the data on specially designed Normal Probability Paper (NPP).

The NPP has been designed in such a way that if the data had come
from a normal population, the Cum. Distr. will plot as a st. line.

Conversely, if the Cum. Distr. of a set of data plots as a straight
line on a NPP, then we conclude that the data comes from a normal
population.



31

Table 2.3 Frequency distribution, Cum. Freq. distribution

1
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Figure 2.27  Example of 
a  Normal Probability 
Plot using commercially 
available NPP From 

www.Weibull.com
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To calculate the mean rank, the data is first arranged in an 
ascending order.  Then the mean rank of the observation that has 
the ith rank in the data = . i

n  0.5
Another formula used to estimate the cum. probs. is the median 
rank, calculated using the formula i  0.3

n  0.4

Value Rank in data Mean rank(x100) Median rank (x100)
175 1 0.995 0.697
187 2 1.99 1.69
197 3 2.985 2.69
---- ---- ----- -----

A computer program calculates the cumulative probabilities for
individual values using what are called the mean rank of the value
in the data.
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Figure 2.28 Normal probability plot produced by Minitab software for data in Table 2.1 
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There are several goodness of fit tests such as the Chi-square 
g.f. test, Kolmogorov-Smirnov g.f. test and Anderson-Darling 
g.f. test, etc. 

A goodness of fit in general obtains a quantity to measure the total
deviation of the actual cumulative distribution of the data from the
hypothesized cumulative distribution.

This is done by computing the total of the distances between the 
actual and hypothesized distributions at several points within the 
range of data.

If the total deviation is “too large,” then the hypothesis about 
that particular distribution is rejected.
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This quantity is known to follow the Chi-squared distribution 
with (p - 1) degrees of freedom, where p is the number of cells 
into which the data have been tallied. 

(ai  ei )
2

eii



As an example, the Chi-squared goodness-of-fit test is done by 
grouping the data into cells, as for making a histogram, and 
calculating a quantity  to measure the total deviation.

In this, ai represents actual number of observations in each cell 
and ei represents the expected number of observations in each 
cell if the distribution were normal.  
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Figure 2.29  Meaning of the P-value


