Chapter 2

Solutions for Exercises in Chapter 2

Problem 2.1 Show that for time harmonic plane waves of the form
u(x, t) = aewExt 2.1

the governing equations for the dynamics of an isotropic and homogeneous linear elastic body decouple

into the equations
n N A+2u)
(p—02> (uxs)=0 and (p— 2 )(u-s):O. (2.2)

Solution 2.1: The elastodynamic wave equation for an isotropic, homogeneous body is

A+ V(V-u)+u V- (Vu)! =pi. (2.3)

Let us solve this problem in rectangular Cartesian coordinates and note that the results translate over to
other coordinate systems. For a plane wave solution

u; = e’ Emen =t (2.4)
we have _
Vu=u,;; = iwsmémjaww(s"ﬁm%) = {Ws;U; 2.5)
and
(vu)' = Uj; = lws;u; . (2.6)
Therefore,
V- (Vu)T =Uj = WSUj,; = (iw)Qsisiuj = —wgsisiuj = —wQ(s ‘s)u. 2.7)
Also,
V. u=u,; =iwsu; . (2.8)
Hence,
V(V -u) = w5 = iws;u; j = (Z.W)QSiSjUi = —wi(s®s) u. 2.9)
Finally .
a=1; = —iwt;eCmTm =t = iy, (2.10)
and
i =iy = —iwi; = (iw)u; = —wu. @2.11)
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Therefore, if we plug in the plane wave solution into the governing equations we get

A+p)(s®s)-u+pu(s-s)u

pu.
Now
[(s®s) U] Xs=egijsispps; = (s xs)(s-u)=0

and
(s@8) 0] -5 = s;5;0;5: = (s 5)(u-s).

Therefore, taking the cross product of the governing equation with s gives
A+t p)((s®s)-ulxs+pu(s-s)(Uxs)=pxs)

or,
[p—p(s-s)](uxs)=0.

Using the definition of s we have s - s = 1/c?, which leads to the first decoupled equation

w o~
[—CQ](uxs)zo. O
Similarly, taking the dot product of the governing equation with s, we have

A+ ) [(s@s) -] -5+ pu(s-s)(G-5) = p(@-s)

’ (A 12) (s8) (G- 8) + i (s5) (- 5) = p (- 5)

Replacing s - s with 1/c? gives us our second decoupled equation

(u-s)=0. O

[ A+ 2u
P73
c
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Problem 2.2 Derive the relations

4cta?p? — Z,74(1 — 2c2a?)? 4ctapZs(1 — 2c2a?)

Ryp = ; Rps = .
PP dcta?p? + Z,Z5(1 — 2c2a2)2” TP dcta?p? + Z,Z5(1 — 2c2a?)2

starting from
Ko sin(20;,)(1 — Ryp) = K2 cos(20,5) Rps

(k2 — 262 8in° 0;) (1 4 Ryp) = K2 sin(260,) Rys -
Solution 2.2: From the first equation we have
2

K
2;’2’sm 0ip cos 0ip(1 — Rpp) = (1 — 25in® 0,.5) Rps

S

or,
2
CS . .
2%&11 0ip cos 0 (1 — Rpyp) = (1 — 25in? 0,.5) Ry
or,
2c§a£(1 —R,p) = (1 —-2c2a*)R,, .
Zp
or,

2c¢2ap(1 — Ryp) = Zp(1 — 2c2a*) Ry -

From the second equation,

(2
(1 — 2/{—2 sin? Oip | (1+ Rpp) = 28in6,5cosbrsRps
or,
2 5 o 8in 6. cos ;.
1- 2¥sm Oip | 1+ Ryp) = 2¢; - - Ry
or,
(1—2c20%) (14 Ryy) = 2c§aZ£Rp5
S
or,

Zs (1—2c20®) (1+ Ryp) = 2c2apR,s .

2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

The required relations are obtained in a straightforward manner by solving equations (2.26) and (2.30) for

Ry, and Ry,.
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Problem 2.3 Verify the reflection coefficient relations given in the equations for a P-wave incident upond th
einterface between two solids using a symbolic computation tool if needed. Solve these equations numer-
ically and plot the magnitude and phase of the reflection and transmission coefficients as a function of the
angle of incidence for the interface between two materials with p; = 820, ¢, = 1320, ¢y = 1.0e — 4,
p2 =1000, cp2 =1500, cs2 = 1.0e — 4.

Solution 2.3: A Mathematica script that shows that the calculation is given below.

In[1]:= Phr := RpxPhi
Pht := TpxPhi
Psr := RsxPhi

Pst := TsPhi

pi = Phi+Exp[I* kpl *(xlssti — x2xcti)]
pr = Phr*Exp[I* kpl *(xl+str + x2«ctr)]
pt = Pht+Exp[I* kp2 (xlxstt — x2ctt)]
sr = Psr*Exp[Ix ksl (xlxstrs + x2+ctrs)]
st = Pst*Exp[I* ks2 »(xlsstts - x2«ctts)]

Disr,x2]
-D[sr,x1]
D[st,x2]
-D[st,x1]
2»mul«D[D[pi, x1],x2]
2#mul«D[D[pr,x1],x2]
[
[

2%mu2+D[D[pt,x1],x2]

mul(D[D[sr,x2],x2]-D[D[sr,x1],x1])

mu2+ (D[D[st,x2],x2]-D[D[st,x1],x1])

$22i := lambdals (D[D[pi,x1],x1]1+D[D[pi,x2],x2])+2*mulD[D[pi,x2],x2]

lambdals (D[D[pxr,x1],x1]+D[D[pxr,x2],x2])+2+mul+D[D[pr,x2],x2]

lambda2# (D[D[pt,x1],x1]+D[D[pt,x2],x2])+2+mu2+D[D[pt,x2],x2]

-2+mul+D[D[sr,x1],x2]

-2#mu2+D [D[st, x1],x2]

= FullSimplify[sl2i + sl2r + sl2rs/. x2->0]

= FullSimplify[sl2t + s12ts/. x2->0]

s12diff = Collect [FullSimplify[(sl2bot - sl2top)/(PhixExp[I kpl sti x11)],
{Rp, Rs, Tp, Ts}]

s22top := FullSimplify[s22i + s22r + s22rs/. x2->0]

s22bot := FullSimplify[s22t + s22ts/. x2->0]

$22diff = Collect[FullSimplify[(s22bot - s22top)/(Phi*Exp[I kpl sti x1])1,

{Rp, Rs, Tp, Ts}]

ultop := FullSimplify[uil + url + ursl/. x2->0]
ulbot FullSimplify[utl + utsl/. x2->0]
uldiff = Collect[FullSimplify[ (ulbot - ultop)/(PhixExp[I kpl sti x1])],

{Rp, Rs, Tp, Ts}]

u2top := FullSimplify[ui2 + ur2 + urs2/. x2->0]

uZbot FullSimplify[ut2 + uts2/. x2->0]

u2diff = Collect[FullSimplify[ (u2bot - u2top)/(Phi*Exp[I kpl sti x11)1,
{Rp, Rs, Tp, Ts}]

s12diffa = s12diff /. {ctr -> cti, str -> sti, stt -> kplwxsti/kp2,
strs -> kpl«sti/ksl, stts —> kpl«sti/ks2}

s22diffa = s22diff /. {ctr -> cti, str -> sti, stt -> kplxsti/kp2,
strs -> kplssti/ksl, stts —-> kplssti/ks2}

uldiffa = uldiff /. {ctr -> cti, str -> sti, stt —> kpl#sti/kp2,
strs -> kplssti/ksl, stts -> kplssti/ks2}

u2diffa = u2diff /. {ctr -> cti, str -> sti, stt -> kplssti/kp2,
strs -> kplxsti/ksl, stts -> kplxsti/ks2}

s12diffb := sl2diffa /. (kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl”2 rhol, mu2->cs2°2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

s22diffb := s22diffa /. {kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl”2 rhol, mu2->cs2°2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

uldiffb := uldiffa /. {kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl®2 rhol, mu2->cs2°2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

u2diffb := u2diffa /. (kpl ->omega/cpl, kp2 ->omega/cp2, ksl->omega/csl,
ks2->omega/cs2, mul->csl”2 rhol, mu2->cs2"2 rho2,
lambdal->rhol cpl”2 - 2 mul, lambda2->rho2 cp2°2 - 2 mu2}

s12diffc = s12diffb /. {sti -> alpha+cpl, strs -> alphascsl, stt -> alphaxcp2,
stts -> alpha*cs2, cti -> rholxcpl/Zpl, ctt -> rho2xcp2/Zp2,
ctrs -> rholxcsl/Zsl, ctts -> rho2xcs2/Zs2}

s22diffc = s22diffb /. { sti -> alpha+cpl, strs —-> alphaxcsl, stt -> alphaxcp2,
stts -> alphascs2, cti -> rholscpl/Zpl, ctt -> rho2+cp2/Zp2,
ctrs -> rhol*csl/Zsl, ctts -> rho2xcs2/Zs2}

uldiffc = uldiffb /. {sti -> alphascpl, strs -> alphascsl, stt -> alphascp2,
stts -> alpha*cs2, cti -> rhol«cpl/Zpl, ctt -> rho2+cp2/Zp2,
ctrs -> rholxcsl/Zsl, ctts -> rho2xcs2/Zs2}

u2diffc = u2diffb /. {sti -> alphascpl, strs -> alphascsl, stt -> alphascp2,
stts -> alphaxcs2, cti -> rhol«cpl/Zpl, ctt -> rho2+cp2/Zp2,
ctrs —-> rholxcsl/Zsl, ctts -> rho2xcs2/Zs2}

sl2diffd -sl2diffc /. {mul->cs1”2 rhol, mu2->cs2°2 rho2}
s22diffd := -s22diffc /. {mul->csl”2 rhol, mu2->cs2°2 rho2}
uldiffd := -uldiffc /. {mul->csl”2 rhol, mu2->cs2°2 rho2}

u2diffd := -u2diffc /. {mul->csl”2 rhol, mu2->cs2°2 rho2}

sl2diffe = Collect [FullSimplify[sl12diffd« (Zpl«Zp2+2sl”2+%s2°2/omega”2)],
{Rp, Rs, Tp, Ts}, Simplify]

s22diffe = Collect [FullSimplify[s22diffds (Zpl°2+Zp2°2+Zsl+Zs2/omega"2)],
{Rp, Rs, Tp, Ts}, Simplify]

uldiffe = Collect [FullSimplify[uldiffds(Zs1+2s2/(Ixomega))],
{Rp, Rs, Tp, Ts}, Simplify]

u2diffe = Collect[FullSimplify[u2diffdx (Zpl+Zp2/ (Ixomega))],
{Rp, Rs, Tp, Ts}, Simplify]

Out[5]= E* (I kpl (sti xl-cti x2)) Phi
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Out[6]= E" (I kpl (str xl+ctr x2)) Phi Rp
out[7]= E° (T kp2 (stt xl-ctt x2)) Phi Tp
Out [8]= E" (I ksl (strs xl+ctrs x2)) Phi Rs
Out[9]= E" (I ks2 (stts xl-ctts x2)) Phi Ts
Oout [32]= -2 cti kpl®2 mul sti+2 ctr E"(-I kpl sti x1+I kpl str x1) kpl“2 mul Rp str
+E7(-I kpl sti x1) Rs (ctrs”2 E" (I ksl strs x1) ksl”2 mul
-E" (I ksl strs x1) ksl1"2 mul strs”2)
+2 ctt E° (-1 kpl sti x1+I kp2 stt x1) kp2°2 mu2 stt Tp
+E” (-I kpl sti x1+4I ks2 stts x1) ks2°2 mu2 (-ctts"2+stts”2) Ts
out[35]= kpl®2 (cti®2 (lambdal+2 mul)+lambdal sti“2)+
E" (-1 kpl sti x1+4I kpl str x1) kpl"2 Rp (ctr 2 (lambdal+2 mul)+lambdal str2)
-2 ctrs E" (-I kpl sti x1+I ksl strs x1) ksl"2 mul Rs strs
-E" (-I kpl sti x1+I kp2 stt x1) kp2"2 (ctt"2 (lambda2+2 mu2)+lambda2 stt"2) Tp
-2 ctts E”(-I kpl sti x1+I ks2 stts x1) ks2°2 mu2 stts Ts
Out[38]= -I ctrs E"(-I kpl sti x1+I ksl strs x1) ksl Rs
~T kpl sti-T E* (-1 kpl sti x1+I kpl str x1) kpl Rp str
+I E° (-1 kpl sti x1+I kp2 stt x1) kp2 stt Tp
-I ctts E"(-I kpl sti x1+I ks2 stts x1) ks2 Ts
Oout [41]= I cti kpl-I ctr E"(-I kpl sti x1+I kpl str x1) kpl Rp
41 E°(-I kpl sti x1+I ksl strs x1) ksl Rs strs
-I ctt E”(-I kpl sti x1+I kp2 stt x1) kp2 Tp
-I E"(-T kpl sti x1+I ks2 stts x1) ks2 stts Ts
out[42]= -2 cti kpl"2 mul sti+2 cti kpl®2 mul Rp sti
+E° (-T kpl sti x1) Rs (ctrs"2 E° (I kpl sti x1) ksl°2 mul
-E" (I kpl sti x1) kpl“2 mul sti’2)
+2 ctt kpl kp2 mu2 sti Tp+ks2°2 mu2 (-ctts 2+ (kpl 2 sti’2)/ks2°2) Ts
Out [43]= -2 ctrs kpl ksl mul Rs sti+kpl”2 (cti”2 (lambdal+2 mul)+lambdal sti”2)
+kpl®2 Rp (cti®2 (lambdal+2 mul)+lambdal sti”2)
—kp2°2 (ctt"2 (lambda2+2 mu2)+(kpl 2 lambda2 sti“2)/kp2°2) Tp
-2 ctts kpl ks2 mu2 sti Ts

Out(44]= -1 ctrs ksl Rs-I kpl sti-I kpl Rp sti+I kpl sti Tp-I ctts ks2 Ts
Out[45]= I cti kpl-I cti kpl Rp+I kpl Rs sti-I ctt kp2 Tp-I kpl sti Ts
Out [50]= - ((2 alpha csl”2 omega“2 rhol“2)/Zpl)+(2 alpha csl®2 omega“2 rhol“2 Rp)/zpl

+(2 alpha cs2°2 omega"2 rho2°2 Tp)/Zp2
+E” (-I alpha omega x1) Rs (-alpha”2 csl”2 E"(I alpha omega x1) omega”2 rhol
+(cs1”2 E" (I alpha omega x1) omega”2 rhol”3)/zsl"2)
+omega”2 rho2 Ts (alpha”2 cs272-(cs272 rho272)/2s2°2)
Out [51]= (omega”2 (alpha”2 cpl®2 (-2 mul+cpl”2 rhol)
+(cpl”2 rhol"2 (-2 mul+cpl”2 rhol+2 csl”2 rhol))/Zpl~2))/cpl”2
+(1/(cpl”2))omega”2 Rp (alpha“2 cpl”2 (-2 mul+cpl”2 rhol)
+(cpl”2 rhol”2 (-2 mul+cpl”2 rhol+2 csl”2 rhol))/2Zpl~2)
~(1/(cp2°2))omega”2 Tp (alpha"2 cp2°2 (-2 mu2+cp2°2 rho2)
+(cp2”2 rho272 (-2 mu2+cp2”2 rho2+2 cs2"2 rho2))/2p2°2)
-(2 alpha csl1”2 omega”2 rhol”2 Rs)/Zsl-(2 alpha cs2"2 omega”2 rho2°2 Ts)/Zs2
out[52]= -1 alpha omega-I alpha omega Rp+I alpha omega Tp
- (I omega rhol Rs)/Zsl-(I omega rho2 Ts)/Zs2
Out [53]= I alpha omega Rs-I alpha omega Ts+ (I omega rhol)/Zpl
- (I omega rhol Rp)/Zpl-(I omega rho2 Tp)/Zp2
Out [58]= -2 alpha cs2°2 rho2°2 Tp Zpl Zsl”2 7Zs272
+2 alpha cs1°2 rhol”2 2Zp2 2s1°2 2s2°2-2 alpha csl1"2 rhol"2 Rp Zp2 2Zsl"2 2s2°2
+cs1°2 rhol Rs Zpl Zp2 (-rhol”2+alpha’2 2Zsl’2) 2s2°2
+cs2°2 rho2 Ts Zpl Zp2 Zs1°2 (rho2"2-alpha”2 Zs2°2)
Out [59]= 2 alpha cs2°2 rho2"2 Ts Zpl~2 Zp2"2 Zsl
+2 alpha csl"2 rhol”2 Rs Zpl°2 Zp2°2 Zs2
+rhol (2 alpha"2 csl1°2 Zpl°2-cpl”2 (rhol"2+alpha”2 zpl°2)) 2Zp2°2 Zsl Zs2
+rhol Rp (2 alpha"2 csl1°2 Zpl“2-cpl”2 (rhol"2+alpha”2 zpl°2)) Zp2°2 Zsl Zs2
+rho2 Tp Zpl°2 (cp2°2 rho2"2+alpha”2 (cp2°2-2 cs2°2) Zp2°2) Zsl Zs2
Out[60]= rho2 Ts Zsl+rhol Rs Zs2+alpha Zsl Zs2+alpha Rp Zsl Zs2-alpha Tp Zsl Zs2
Out [61]= rho2 Tp Zpl-rhol Zp2+rhol Rp Zp2-alpha Rs Zpl Zp2+alpha Ts Zpl Zp2

Plots of the magnitude and phase for the reflection and transmission coefficients are given below.
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Problem 2.4 Consider a plane acoustic wave propagating from kerosene into water (at room temperature).
Kerosene has a density of 820 kg/m? and a sound speed of 1320 m/s while water has a density of 1000
kg/m? and s sound speed of 1500 m/s. Plot the magnitude and phase of the reflection coefficient (R) as a
function of the angle of incidence. Is there any angle at which the entire energy of the wave is transmitted
through the interface? At what angle does total internal reflection occur (i.e., the transmission coefficient
becomes zero)? What happens as the angle of incidence is increased beyond the angle at which total
internal reflection first occurs?

Now consider the case where the materials absorb a small fraction of the energy of the acoustic wave. In
that case we can add a damping factor () to the refractive index n, i.e, n — n(1+ia). Plot the magnitude
and phase and a function of incidence angle for o = 0.01. Is there total internal reflection in this situation?

Solution 2.4: See the plot below (the phases have been multiplied by -1).

Kerosene to water

1 200
(]
e]
2 %
‘€ 0.5 100
g T
=

0) 0

0

40
Angle of incidence

There is no angle at which there is no reflection. Total internal reflection occurs at approximately 62°. At
incidence angles greater than 62° R = 1 but the phase of the reflected wave changes. There is no total
internal reflection for absorbing media and there is a phase lag between incident and reflected waves.
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Problem 2.5 We have defined the refractive index for acoustic waves propagating from a medium with phase
velocity ¢; into a medium with phase velocity co as n = ¢1/co. If we choose a reference medium, e.g.,
air with a sound speed of cg, the we can have an alternative definition of the refractive indexes n; and ng
of the two media given by n; = ¢o/cy and ng = ¢/c2 in which case n = ny/n;. We have mentioned
earlier that waves cannot propagate in the medium if the phase velocity is imaginary. How then can waves
propagate in a medium with a complex refractive index?

Solution 2.5: The phase velocity is related to the wave number (k¥ = ||k||) by k = w/c. Therefore, for a medium
with phase velocity ¢1, we have k = w/c; = wny/cy. So we can write a plane wave solution in the form

p= poez(wnlaz/cofwt) ) (2.31)

If ny = n1(1 4 ia) we have

ilwny (1+ia)z/co—wt] _ poei[wnlm/co—wt]—wnl azx/co (2.32)

D = Po€

or ‘
p= poefwnlam/coez(wnlm/mfwt) ) (2.33)

Hence the phase speed remains real and only the amplitude decreases because of the imaginary part of the
refractive index.
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Problem 2.6 Maxwell’s equations for an isotropic material at fixed frequency may be expressed as
VxE=iwuH; V-H=0; V-E=0. (2.34)

Show that for a plane wave electric field E(x) = Eg exp(ik - x) the wavenumber vector is perpendicular to
the fields, i.e., k - Eg = 0. Then show that this implies that the magnetic field is also a plane wave of the
form H(x) = Hy exp(ik - x) where

H, = _wlu(k x Ep) and k-Hog=0. (2.35)
Recall also that for fixed frequency
V°H + %QH =0. (2.36)
Show that the above equation implies that for a plane wave

2
(el = = @37

Solution 2.6: It is convenient to work out this exercise in rectangular Cartesian coordinates.

First, from the relation V - E = 0 we have

0 . ) )
V-E= o (EBore™®m) = iBorkmbmre™™ = iEo kye™™ (2.38)
or, ,
V -E=i(k-Ey)ekotx =0, (2.39)
Therefore,
k-Ey=0. O (2.40)
Recall that for a vector field v(x)
V XV = €pgrtr q€p - (2.41)
So we have
V xE= epqrEr,qep = equ‘EOTai (eikmxm) €, = iequEOTkm(queik'xep = 'L'(epquinorep)eik'X
Lq
(2.42)
or ‘
V x E = (k x Eg)e™®™ = jwuH . (2.43)
Hence,
H = ——(k x Eg)e'® = Hoe'*™ (2.44)
wpt
where
1
Hy:= —(k x Eg) . (2.45)
Wi

Hence the magnetic field also has the form of a plane wave. This field has to satisfy the relation V-H = 0,
ie,

0 , , .
VH = o (Hope™ ") = iHorkdpre™™ = iHo ke = i(k - Ho)e*™ = 0. (2.46)
s

Therefore,
k-Hy=0. O (2.47)
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The Laplacian of the magnetic field is

VH=H, o= 010
- 2,77 e = Wez
o | o : d : 9 .. i
= a—x] |f9xa (HOi elkmzm)] e, = 8—% [ZH()ikm(sijkamm] e, = 37% [ZHoikje km m] e;
= —Hol'kjkm(;mjeikmwmei = —Hoikjkjeikmmmei == _(k : k)HOeik.x .
(2.48)
Therefore
w2 . w2 .
VPH+ — H = — (k- k)Hoe™™ + —Hpe™** =0 (2.49)
c c
which implies that
2
w
k-k= (||k||)2 = = O (2.50)
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Problem 2.7 Express Fresnel’s equations for perpendicular incidence in terms of electromagnetic impedances
and then calculate the reflection and transmission coefficients for a medium that is impedance matched
with a silicone rubber dielectric material.

Solution 2.7: Fresnel’s equations, for a E wave polarized perpendicular to the plane of incidence, are

2 cosf; — 22 cos b,
1 H2

R=1% 251
%cos@i + %cos@t ( )
and ,
22 cos6;
T=— b (2.52)

ni . na :
oy oS 0; + 2 cos 0,

For the situation where the incident E wave is polarized perpendicular to the plane of incidence, the elec-
trical impedance is defined as

1 . I .
Z; = Hi _ _CoHi (2.53)
cosf; \ ; n; cos 0;
Since the polarization does not change when we move from medium 1 to medium 2 or vice versa, we can
write ‘ ‘
Zy = g oz, = S0F2 2.54)
nq cos b; Ny cos by

Plugging these into the expressions for R and 7" gives us
R=——— and T=—-——7 ] (2.55)
Let us assume that medium 2 is a silicone rubber. We want to find a medium 1 that is impedance matched

with medium 2, i.e., Z1 = Zs, R = 0, and T' = 1. Then we must find a medium that satisfies

e __H2 (2.56)
nipcosf;  nocosb,

From Snell’s law,

1
sin 6, = % sinf; = cosfy = —y/n2 —n?sin?0; . (2.57)

2 n2
Plugging the first form of Snell’s law into (2.56) gives us

tan6, M1

= ) 2.58
tan®;  po ( )
Since 6; = 6; in impedance-matched media, we must have p1; = uo. If we plug the second form of Snell’s
law into (2.56) and rearrange, we have
2

2 2
n—; = 7”% sin? 6, + n—; cos? 0, . (2.59)
My 251

Since impedance matching requires that p1 = o, we must have n; = no (for ordinary materials) and
therefore £; = 5. Therefore, we will have to find a material that has exactly the same electrical properties
as silicone rubber for impedance matching.
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Problem 2.8 Consider a slab of material in an impedance tube. The bulk modulus and density of air on both
sides of the slab are 1.42x10° Pa and 1.20 kg/m?, respectively. The Young’s modulus (E), Poisson’s ratio
(v), and density (p) of aluminum are 70 GPa, 0.33, and 2700 kg/m3, respectively. Assume that the phase
velocity in aluminum can be obtained from the relation ¢ = /k/p where k = E/(3(1 — 2v)) is the bulk
modulus.

1. The transmission loss due to the slab is calculated using the relation

1
TL (dB) = 10log,, (T2> (2.60)

where T is the transmission coefficient. Plot the transmission loss for a 10 cm thick aluminum
slab. Compare the transmission loss due to the solid slab with that for a similar slab made of alu-
minum foam with an aluminum volume fraction (f) of 10%. Assume that the effective foam den-
sity is given by pesr = fp1 + (1 — f)p2 and that the effective foam Young’s modulus is given by
Eeir = E(pefr/ rho)2. The Poisson’s ratio of the foam is 0.33. What does the imaginary part of the
transmission coefficient indicate? What is the effect of slab density on the transmission loss?

2. Next plot the transmission losses for aluminum and aluminum slabs for a fixed frequency as a function
of slab thickness. Assume a frequency of 100 Hz and keep in mind that w has units of radians/s and
not cycles/s. Such a plot is called a mass law plot in acoustics. What would the mass law effect be if
petf Were a function of frequency and the system had a resonance frequency of 100 Hz?

Solution 2.8: 1) Assume normal incidence. The quantities that we need to calculate the transmission coefficient
for the foam are E = 0.7 GPa, p = 271 kg/m3. The transmission loss plots is below.
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A plot of the phase of the transmission loss is shown below.

36



An Introduction to Metamaterials and Waves in Composites: Solutions Manual
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2) For a frequency of w = (27)(100) radians/s the transmission loss plot is as shown in the plot below.
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Problem 2.9 Show that the transmission coefficient for an slab with incident TE-waves can be expressed as

T15 Tz e'k=2(d2=d1)

T3 = TR, Ry c¥ha(@ad) (2.61)
Also verify that the series expansion of the above equation is
Tis = T1oTos €' + T1oTo3Roy Ros € + T1oTos R Ry ™% + .. (2.62)

Solution 2.9: The process of finding the transmission coefficient is identical to that used to find the generalized
reflection coefficient.

As before, we superpose solutions of the form
E,(Z) = Eyexp(+ik,Z) (2.63)

where Z = 0 at the interface. To make sure that the above form can be used in all the layers, we will
express all equations in a single coordinate system with z = —d; at interface 1 — 2 and z = —ds at
interface 2 — 3.

In medium 1, the electric field consists of a incident part and a reflected part,

Ey(Z) = E; + E, = Eyexp(—ik.1Z) + Ri2Eo exp(ikz1 Z)
~ (2.64)
= Eyexp(—ik.1 2) [1 + Ris exp(2ik‘21Z)}

where Ry is the generalized reflection coefficient at the interface 1 — 2. Let us now change the variable
so that interface 1 — 2 with Z = Ois at z = —dy, i.e, we set Z = z + d;. Then we can write the above
equation as

By1(2) = Eyexp[—ikz (2 + di)] |1+ Rz exp[2ikay (= + d )]
= Eyexp(—ik,1d;) [exp(—ikzlz) + Rygexplik.1(z + 2d1)]} (2.65)
=A; [exp(fikzlz) + }?12 explik.1(z + 2d1)]}
where Ay := Egyexp(—ik,1d;). Similarly, in medium 2, we have
Ey(Z) = E; + B, = Aexp(—ik.2Z) + RosAexp(ik.22) (2.66)

where A is the amplitude of the incident wave in medium 2 and Egg is the generalized reflection coefficient
at interface 2 — 3. A change of variables, Z = z + ds, gives us

Eys(z) = Aexp[—ik.o(z + d2)] + RosAexplik.z(z + ds)]
= Aexp(—ik,ads) [exp(fikzgz) + Rogexplik.o(z + 2d2)]} (2.67)
= A [GXP(—“%QZ) + Rog explik.a(z + 20{2)]}
where Ay := Aexp(—ik,2ds). There is no reflected wave in medium 3 and we have
E,3(Z) = E; = Bexp(—ik,32) (2.68)

where B is the amplitude of the transmitted wave in medium 3. With a change of variables Z = z + d; we
have
Ey3(z) = Bexp[—ik,3(z + d2)] = Az exp(—ik,32) (2.69)

where As := Bexp(—ik.3ds).
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The electric field in the three layers, expressed in a single coordinate system with z = —d; at interface
1 — 2 and z = —d> at interface 2 — 3, are therefore

Eyi(z) = A [exp(fikzlz) + Rugexplika (2 + 2d1)]]

E(z) = As [exp(—ikzgz) + Egg explik.2(z + 2d2)]} (2.70)
Ey3(z) = Az exp(—ik,3z2).

Let us now examine the fields above and below interface 1 — 2 at z = —d;. From the above equations we
have _
Eyl(—dl) = A [exp(ikzldl) + Ris exp[ikzldl]}
_ 2.71)
Eyg(—dl) = Ay [exp(ikzgdl) + Rog eXp[ikzg(—dl + 2d2)]:| .
Similarly, at interface 2 — 3, we have
Eyg(—dg) = Ay [eXp(ikzde) + Rgg eXp[Z'kZQdQ]:| 2.72)
Ey3(—d2) = A3 exp(iszgdg) .
Consider medium 2 below interface 1 — 2. Then the transmitted wave from medium 1 has the form
Et = T12A1 exp(ik:zldl) (273)

where 775 is the transmission coefficient going from medium 1 to medium 2. The reflected wave from
interface 2 — 3 is also reflected at interface 1 — 2 and adds to the transmitted wave from medium 1 to
medium 2. This reflected wave has the form

E, = R21A2é23 exp[ikzg(—dl + 2d2)] (2.74)

where Ro is the reflection coefficient going from medium 2 to medium 1. These two waves sum to the
downgoing wave in medium 2,

Et + ET = Ez = A2 exp(ikzgdl) . (275)

Plugging in the expressions for E; and E,,

Az exp(ikzady) = Ti2 Ay exp(ikz1dy) + Roy As Ros explikzo(—dy + 2d)] (2.76)
or 5
Ay = Tyo Ay expli(kar — kao)di] + Ror Ao Ros exp|2ik.s(—dy + do)] (2.77)
or ;
Ay _ Tio eXp[Z(kzl - kz2)d1] (2.78)

Il B 1-— R21§23 eXp[Qikzg(dQ — dl)} -

Now consider the transmitted wave going from medium 1 to medium 3. In medium 1, the downgoing wave
at interface 1 — 2 is,
Ei = A1 exp(ikzldl) . (279)

In medium 3, the downgoing wave at interface 2 — 3 is
Et = Ag exp(ikzgdg) . (280)
If T15 is the transmission coefficient for waves going from medium 1 to medium 3, we have

Et = T13Ei — A3 eXp(ikZ3d2) = T13A1 exp(ik‘zldl) . (281)
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Therefore,
As ) .
—— = Tigexp(ik.1dy — ik.3ds) .
Ay

Similarly, if we consider only the downgoing wave is from medium 2 to medium 3, we have
Ei = AQ eXp(’ikzzdg) .
If T3 is the transmission coefficient for waves going from medium 2 to medium 3, we have
Et = T23Ei — A3 eXp(ikZ3d2) = T23A2 eXp(ikzgdg) .
Therefore, n
Tos =2 = exp(—ik,ody + ik.sds) .
As
Multiply (2.82) and (2.85) to get

A . :
T23A73 = T13 eXp('Lkzldl - Zkz2d2) .

Substitute (2.78) to get

To3Tig expli(ks1 — kz2)di]

Tz exp(ik,1dy — ikzods) = = -
1-— R21R23 exp[2zkzg(d2 — dl)]

or,
To3T12 explik.o(da — d1)]

Ty = = -
1-— R21R23 EXp[2Zkz2(d2 — dl)]

O

If we consider only one reflection at interface 2 — 3, we have Egg = Ros.

To expand in series, we observe that 0 < 1 — Roj Roz exp|2ik,2(da — di)] < 1 and recall that

1 1l [ f-a\"
1—f’f—a_1—az<l—a) ’

n=0

If we expand around f = 0, we have

1 _ 2 3
ﬁ’f:O_Herf +

If f = Ro1Ros3 exp[2ikzg (dg — dl)] = Rs1Ra3 exp(2i9), we can write (2.88) as
T3 = To3Th2 exp(if) [1 + RoiRos exp(2i0) + B3, R3; exp(4i0) +...] .
Expanded out,

Tis = T53T42 exp(i@) + T53T12Ro1 Ros exp(3i9) + T23T12R§1R%3 exp(5i9) +... O
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