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Chapter 2 

Exercise 2.1 

Consider the constraint 

                    -2x1 + x2 ≤ 2 

(a) Express this constraint as a closed-half space of the form H≤ = {x∈Rn | αTx ≤ β} i.e. determine α 

and β. 

(b) Sketch the closed half-space in (a) showing any vector that is normal to the hyperplane that is 

contained in H≤. 

(c) Show that the closed half-space in (a) is a convex set. 

 

Solution: 

(a)  α = [-2  1]T, β= 2. 

(b)  It is easy to see that any vector a that is a normal to the hyperplane -2x1 +x2 = 2 is contained 

in H≤. 

 
(c) For any two points z = [z1 z2]T and y = [y1 y2]T in H≤, need to show [-2 1](λz + (1 - λ)y) ≤ 2 for all 

λ∈[0,1]. Now note that [-2 1](λz + (1 - λ)y) = [-2 1](λ[z1 z2]T + (1 - λ)[y1 y2]T) =λ[-2 1][z1 z2]T + (1 

- λ) [-2 1][y1 y2]T ≤ λ2 + (1 - λ)2 = 2, thus the half space H≤ = { x∈R2| -2x1 +x2 ≤ 2} is convex. 

 

 

Exercise 2.2 

Consider a linear program in standard form 

minimize cT x 

subject to Ax = b 

x ≥ 0 

(a) Prove that the feasible set P = { x∈Rn| Ax = b, x ≥ 0} of the linear program is a convex set 
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directly using the definition of convex set. 

(b) Prove that the set of optimal solutions for the linear program in standard form P* = { x∈Rn| x 

is an optimal solution for LP} is a convex set. 

 

Solution: 

(a) For any two points z∈Rn and y∈Rn in feasible set P, need to show (1) A(λz + (1 - λ)y) = b and 

(2) λz + (1 - λ)y ≥ 0 for all λ∈[0,1]. For (1), A(λz + (1 - λ)y) =λAz + (1 - λ)Ay = λb + (1 - λ)b = b, 

for (2) λz + (1 - λ)y ≥ 0 since z ≥ 0, y ≥ 0, λ ≥ 0 and (1 - λ) ≥ 0. Thus the feasible set P = { x∈Rn| 

Ax = b, x ≥ 0 } is a convex set. 

 

(b) Since P is a convex set, and P*   P, by Theorem 2.8, P* also is a convex set. 

 

 

Exercise 2.3 

Solve the following linear programs graphically by using the sketch of the feasible set and 

illustrate the hyperplane characterization of optimality when a finite optimal solution(s) exists 

else illustrate the unboundedness of the linear program using hyperplanes. 

(a)  minimize -x1 - 2x2 

subject to -2x1 + x2 ≤ 2 

-x1 + x2 ≤ 3 

x1    ≤ 2 

x1 ≥ 0, x2 ≥ 0 

 

(b)  minimize -x1 - 2x2 

subject to x1 - 2x2 ≥ 2 

x1 + x2 ≤ 4 

x1 ≥ 0, x2 ≥ 0 

 

(b)  maximize x1 + x2 

subject to x1 - x2 ≥ 1 

x1 - 2x2 ≥ 2 

x1 ≥ 0, x2 ≥ 0 

 

 

Solution: 

(a) The optimal solution is the point [2,5]T in the graph. Observe that at the optimal point the 

feasible set P is completely contained in the closed half space H≤ . 
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(b) The optimal solution is [10/3,  2/3]T. Observe that at the optimal point the feasible set P is 

completely contained in the closed half space H≤ . 

 
 

(c) Unbound LP 
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Exercise 2.4 

(a) For the linear program (a) in Exercise 2.3 find all basic feasible solutions by converting the 

constraints into standard form. 

(b) For each linear program in Exercise 2.3 find two linearly independent directions d1 and d2 of 

unboundedness if they exists. 

 

Solution: 

(a) First convert into standard form 

     minimize  -x1 - 2x2 

subject to -2x1 + x2 + x3      = 2 

-x1 + x2    + x4   = 3 

x1           + x5 = 2 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0, x5 ≥0 

 with 

      
  
  
    

  
 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
     

 
 
 
 . There are  

 
 
     possible extreme points. The following 

table lists all basic feasible solutions only. Other partitions not listed lead to infeasibility or basis B 

is not invertible. 

Partition x =  
  

  
  Basis matrix B         x extreme point? 

    

  

  

  

      
  

  
   

  
  
    

  
 
 
 
  
 
 
 
   

 
 
 
  yes 
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  yes 

    

  

  

  

      
  

  
   

  
  
    

   
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

 

(b) LP (c) is unboundness case. One ray is 

        ∈        
 
 
    

 
 
               which starts from the point     

 
 
  in the 

direction of    

       
 
 
 , and another ray is      ∈        

 
   

    
 

   
               which starts 

from the point   

       
 

   
  in the direction of     

 
   

 , one can easily verify that       are linearly 

independent directions. 

 

 

Exercise 2.5 

Consider the constraints 

2x1 + x2 ≤ 5 

x1 + x2 ≤ 4 

x1    ≤ 2 

x1 ≥ 0, x2 ≥ 0 

(a) Sketch the feasible region. 

(b) Convert the constraints to standard form and find all basic feasible solutions. 

(c) Identify the extreme points in the original constraints. 

 

Solution: 

(a) the feasible region show as follows: 
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(b) Converting into the standard form 

2x1 + x2 + x3       = 5 

x1 + x2    + x4    = 4 

x1           + x5 = 2 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0, x5 ≥0 

 with 

      
 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
     

 
 
 
 . There are  

 
 
     possible extreme points. The following 

table lists all basic feasible solutions. 

Partition x =  
  

  
  Basis matrix B         x extreme point? 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 
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  yes 

 

(c) The extreme points in terms of the original constraint variables 

 
  

  
    

 
 
   

 
 
   

 
 
   

 
 
   

 
 
   . 

 

 

Exercise 2.6 

Consider the linear program 

maximize x1 + x2 

subject to x1 - x2 ≥ 1 

x1 - 2x2 ≥ 2 

x1 ≥ 0, x2 ≥ 0 

(a) Sketch the feasible region. 

(b) Convert the constraints to standard form and find all basic feasible solutions and find two 

extreme directions d1 and d2 (i.e. two linearly independent directions of unboundedness). 

(c) Show that the extreme directions d1 and d2 from (b) satisfy Ad = 0 and d ≥ 0. 

 

Solution: 

(a) the feasible region show as follows: 

 

 

(b) Converting into standard form 

     minimize  -x1 - x2 
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subject to  x1 - x2 - x3      = 1 

x1 - 2x2  - x4   = 3 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0 

 with 

      
 
 
  
  
  

  
  
 

  
 

  
     

 
 
 . Th following table lists all basic feasible solutions. 

Partition x =  
  

  
  Basis matrix B         x extreme point? 

    
  

  
      

  

  
   

 
 
  
  
 

   
 
 
  yes 

Since the feasible region is unbounded, the ray  

        ∈        

 
 
 
 

    

 
 
 
 

               from the point     

 
 
 
 

  in the direction of    

       

 
 
 
 

 , and the ray       ∈        

 
 
 
 

    

 
   
   
 

               from the point   

       

 
 
 
 

  in the direction of     

 
   
   
 

 , we can verify that       are linearly independent 

directions. 

 

(c)      
 
 
  
  
  

  
  
 

  
 

  
  

 
 
 
 

   
 
 
 ,      

 
 
  
  
  

  
  
 

  
 

  
  

 
   
   
 

   
 
 
  

       

 
 
 
 

        

 
   
   
 

   . 

 

 

Exercise 2.7 

Solution: 

Let x(0) be a feasible solution for LP, i.e. Ax(0) = b. Consider points of the form x(0) + αd for all α ≥ 

0, then A(x(0) + αd) = Ax(0) +αAd = Ax(0) = b and clearly x(0) + αd ≥ 0, since x(0) ≥ 0, and α ≥ 0. So 

x(0) + αd is feasible for any α ≥ 0. (■) 

 

 

Exercise 2.8 

Consider the following system of constraints 

x1 + x2 ≤ 6 

x1 - x2 ≤ 0 

x1    ≤ 3 

x1 ≥ 0, x2 ≥ 0 

(a) Sketch the feasible region. 
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(b) Convert to standard form and find all basic feasible solutions. 

(c) Is there a one-to-one correspondence between basic feasible solutions and extreme points? If 

not, which extreme points can be represented by multiple basic feasible solutions? 

 

Solution: 

(a) the feasible region show as follows: 

 
 

(b) Converting into the standard form 

x1 + x2 + x3       = 6 

x1 - x2    + x4    = 0 

x1           + x5 = 3 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0, x5 ≥0 

 with 

      
 
 
 
  

 
  
 

  
 
 
 
  
 
 
 
  
 
 
 
     

 
 
 
 . There are  

 
 
     possible extreme points. The following 

table lists all basic feasible solutions. 

Partition x =  
  

  
  Basis matrix B         x extreme point? 

    

  

  

  

      
  

  
   

 
 
 
  

 
  
 

  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  

 
  
 

  
 
 
 
   

 
 
 
  yes 
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  yes 

    

  

  

  

      
  

  
   

 
 
 
   

 
 
 
    

 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
  
 

  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
  
 

  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

 

(c) The extreme points in terms of the variables of the original constraints are  
  

  
  

  
 
 
   

 
 
   

 
 
   

 
 
   

 
 
   

 
 
   

 
 
   . The basic feasible solution     

  

  

  

   
 
 
 
  corresponds 

uniquely to the extreme point  
  

  
   

 
 
 , the extreme point  

  

  
   

 
 
  corresponds to the 

basic feasible solutions     

  

  

  

   
 
 
 
      

  

  

  

   
 
 
 
  and     

  

  

  

   
 
 
 
 , and the 

extreme point  
  

  
   

 
 
  corresponds to the basic feasible solutions     

  

  

  

   
 
 
 
     

 

  

  

  

   
 
 
 
  and     

  

  

  

   
 
 
 
 . 

 

 

Exercise 2.9 

(a) Solve the linear program in Exercise 2.3 (a) by generating all basic feasible solutions. 

(b) Solve the linear program in Exercise 2.3 (b) by generating all basic feasible solutions. Also, 

illustrate Exercise 2.2 (b). i.e. show the set of optimal solutions is convex. 

 

Solution: 

(a) Convert into standard form 

     minimize  -x1 - 2x2 

subject to -2x1 + x2 + x3      = 2 

-x1 + x2    + x4   = 3 
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x1           + x5 = 2 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0, x5 ≥0 

 with 

      
  
  
    

  
 
 
 
  
 
 
 
  
 
 
 
  
 
 
 
     

 
 
 
 . There are  

 
 
     possible extreme points. The following 

table lists all basic feasible solutions. 

Partition x =  
  

  
  Basis matrix B         x extreme point? 

    

  

  

  

      
  

  
   

  
  
    

  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

  
  
    

  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

  
  
    

   
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

     

  

  

  

      
  

  
   

 
 
 
  
 
 
 
  
 
 
 
   

 
 
 
  yes 

 

                   , then computing the objective value   
   , for each basic feasible solution 

we get the values i.e. 

            
 
 
 
             

 
 
 
             

 
 
 
             

 
 
 
            

 
 
 
              

        , thus the optimal objective is     corresponding to the optimal basic feasible solution 

    

  

  

  

   
 
 
 
 . 

 

(b) Convert into standard form 

     minimize  -x1 - 2x2 

subject to  x1 - 2x2 - x3      = 2 

x1 + x2    + x4   = 4 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0 

 with 

      
 
 
  
  
 

 
  
 

  
 
 
     

 
 
 . There are  

 
 
    possible extreme points. The following table 

lists all basic feasible solutions. 
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Partition x =  
  

  
  Basis matrix B         x extreme point? 

    
  

  
      

  

  
   

 
 
  
  
 

    
    
   

  yes 

    
  

  
      

  

  
   

 
 
  
  
 

    
 
 
  yes 

    
  

  
      

  

  
   

 
 
  
 
 
    

 
 
  yes 

 

                , then computing the objective value   
   , for each basic feasible solution 

we get           
    
   

          
 
 
          

 
 
     

  

 
        , thus the optimal 

objective value is  
  

 
 corresponding to the optimal basic feasible solution     

  

  
   

    
   

 . 

 

 

Exercise 2.10 

Consider the following polyhedron 

P = { (x1, x2, x3, x4)∈R4| x1- x2 - 2x3 ≤ 1, -3x1- x3 + 2x4 ≤ 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0} 

Find all extreme points and extreme directions of P and represent the point 

x = [2  1  1  1]T as a convex combination of the extreme points plus a non-negative 

combination of extreme directions. 

 

Solution: 

(a) Converting into the standard form 

x1 - x2 - 2x3     +x5   = 1 

-3x1    - x3 + 2x4   +x6 = 1 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥0, x5 ≥0, x6 ≥0 

 with 

      
 

  
  
  
 

  
  
  

  
 
 
  
 
 
  
 
 
     

 
 
 . There are  

 
 
     possible extreme points. The 

following table lists all basic feasible solutions. 

Partition x =  
  

  
  Basis matrix B         x extreme point? 

    
  

  
      

  

  

  

  

   
 

  
  
 
 
    

 
 
  yes 

    
  

  
      

  

  

  

  

   
 

  
  
 
 
    

 
 
  yes 

    
  

  
      

  

  

  

  

   
 
 
  
 
 
    

   
 

  yes 
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  yes 

 

Then we have 4 extreme points to P i.e.     

  

  

  

  

   

 
 
 
 

 ,     

  

  

  

  

   

 
 
 
 

 ,      

  

  

  

  

  

 

 
 
 

   

 ,     

  

  

  

  

   

 
 
 
 

 .  

Construct direction set D = {d∈Rn | Ad ≤ 0, d ≥ 0, eTd = 1}. A direction of D is an extreme direction 

of P if and only if d is an extreme point of D when D is a polyhedral set. Then 

d1 – d2 – 2d3     ≤ 0 

–3d1     – d3 + 2d4 ≤ 0 

d1 + d2 + d3 + d4   = 1 

d1 ≥ 0, d2 ≥ 0, d3 ≥ 0, d4 ≥0 

 

Converting into standard form 

d1 – d2 –2d3     +d5   = 0 

–3d1     –d3 + 2d4   +d6 = 0 

d1 + d2 + d3 + d4        = 1 

d1 ≥ 0, d2 ≥ 0, d3 ≥ 0, d4 ≥0, d5 ≥0, d6 ≥0 

 with 

      
 

  
 

  
  
 
 

  
  
  
 

   
 
 
 
   

 
 
 
   

 
 
 
     

 
 
 
 . There are  

 
 
     possible extreme points. 

 The following table lists all basic feasible solutions. 

Partition d =  
  

  
  Basis matrix B         d extreme point? 

    

  

  

  

      

  

  

  

   
 

  
 

  
  
 
 

  
 
 
 
   

          
          
          

  yes 

    

  

  

  

      

  

  

  

   
 

  
 

  
  
 
 

  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      

  

  

  

   
 

  
 

  
  
 
 

  
 
 
 
   

   
   
   

  yes 

    

  

  

  

      

  

  

  

   
 

  
 

  
  
  
 

   
 
 
 
   

          
          
          

  yes 

    

  

  

  

      

  

  

  

   
 

  
 

  
  
  
 

  
 
 
 
   

          
          
          

  yes 
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  yes 

    

  

  

  

      

  

  

  

   
  
 
 

  
 
 
 
  
 
 
 
   

 
 
 
  yes 

    

  

  

  

      

  

  

  

   
  
 
 

  
 
 
 
   

 
 
 
   

 
 
 
  yes 

    

  

  

  

      

  

  

  

   
  
  
 

   
 
 
 
   

 
 
 
   

          
          
          

  yes 

    

  

  

  

      

  

  

  

   
  
  
 

   
 
 
 
   

 
 
 
   

 
 
 
  yes 

Then we have 7 extreme directions to P i.e.     

  

  

  

  

   

          
          

 
          

 ,     

  

  

  

  

   

 
 
 
 

 , 

     

  

  

  

  

   

   
   
 
 

 ,      

  

  

  

  

   

          
 

          
          

 ,      

  

  

  

  

   

          
 

          
 

 ,      

  

  

  

  

  

 

 
 

          
          

 ,     

  

  

  

  

   

 
 
 
 

 . 

Now for    

  

  

  

  

   

 
 
 
 

  by the Resolution Theorem, 

 

 
 
 
 

     

 
 
 
 

     

 
 
 
 

     

 
 
 

   

     

 
 
 
 

     

          
          

 
          

     

 
 
 
 

     

   
   
 
 

 

    

          
 

          
          

     

          
 

          
 

     

 
 

          
          

     

 
 
 
 

  

              

             

             

Then, solve the system of equations to get  
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 ,   

 
 
 
 
 
 
 
  

  

  

  

  

  

   
 
 
 
 
 
 

 

 
 
 
 
 
 
 
          
          
          
          
          
          
           

 
 
 
 
 
 

. 

 

 

Exercise 2.11 

Solution: 

  Suppose that x* is an optimal solution. Select ε > 0 such that the set B(x*, ε) = {x | ||x-x*|| < ε} 

is completely contained in P i.e. B(x*, ε)   P. Let       
 

   

 

 
∈          . then  

                 
 

 
      since    . 

  So x* is not an optimal solution, a contradiction. (□). 

 

 

Exercise 2.12 

Solution: 

  A constraint is deleted means the feasible set is larger. 

  If the problem is a maximization, then the optimal objective value may increase, if the problem 

is a minimization then the objective may decrease.  

 

 

Exercise 2.13 

Solution: 

  (=>) 

Suppose P is bounded and that it has an extreme direction, then for any  ∈   and      

 ∈   for all    . In particular we can make        arbitrarily large by choosing   

arbitrarily large. Contradiction so there is no extreme direction if P is bounded. 

(<=) 

Now suppose P has no extreme direction, then by Resolution theorem any  ∈   can be 

represented as        
 
    where      and    

 
      and    is an extreme point. So 

          
 
            

 
    which is bounded.  

 

 

Exercise 2.14 

Solution: 

  (a) Suppose   ∈   is a vertex, then there is a vector c such that cTx* < cTx for all  ∈  ,   

and     . Now let          ∈  , and       and      . Then for any      , 

cTx* < cT(λx1 + (1 -λ)x2) since cTx* < cTx1 and cTx* < cTx2, thus                and so 

x* can’t be represented as a convex combination of two other elements in P, therefore x* is 

an extreme point. (■) 
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  (b) Let x* be a basic feasible solution and let I = { i | αi
Tx1 = bi } be the index set of constraints of 

P at equality. Now let       ∈ , then         
   

 ∈      ∈ , now for any feasible 

 ∈   we have   
     , so        

   ∈      ∈ , so x* is a unique minimize of cTx 

over P and thus a vertex. (■) 

 

 

Exercise 2.15 

Write MATLAB code that takes a linear program in standard form and solves for the optimal 

solution by generating all possible basic feasible solutions. Assume that the linear program has a 

finite optimal solution. 

 

Solution: the MATLAB code written as follows: 

function [non_sigular, sigular, non_singu_infeasi] = 

enumerate_extre_ps(A, b) 

% enumerate_extre_ps returns classify the different set  

%   for a given matric A and RHS b of a linear system 

% 

% Inputs: 

%   A is the matrix from of coefficients of the linear system 

%   b is a vector of the linear system 

% 

% Outputs: 

%   non_sigular is a struct includes the non-singular basis and the 

%     corresponding extreme point and subscript set of variables. 

%   sigular is a struct includes the singular basis and  

%     the subscript set of variables. 

%   non_singu_infeasi is a struct includes the non-singular basis, and 

subscript  

%     set of variables, however the extreme point is infeasible.  

 

Non_singuSet=[]; SinguSet=[]; InfeasiSet=[]; 

non_sigular=[]; sigular=[]; 

non_singu_infeasi=[]; 

[m, n] = size(A); %number of basic variables and number of total variables 

Combi = combntns(1:n, m); % the total possible combinations 

epsi=1/10^22; 

for a = 1:size(Combi,1) 

    B = A(:, Combi(a,:)); 

    sigu(a) = det(B); % decide B if it is nonsingular 

    if abs(sigu(a)) >= epsi 

        if min(B\b) < 0 % if any infeasible solution 

            InfeasiSet = cat(1, InfeasiSet, Combi(a,:)); 

        else 
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            Non_singuSet = cat(1, Non_singuSet, Combi(a,:)); 

        end 

    else 

        SinguSet =cat(1, SinguSet, Combi(a,:)); 

    end 

end 

for a = 1:size(Non_singuSet,1) 

    non_sigular{a}.set = Non_singuSet(a,:); 

    non_sigular{a}.B = A(:, Non_singuSet(a,:)); 

    non_sigular{a}.extremPoint = non_sigular{a}.B\b; 

end 

for a = 1:size(SinguSet,1) 

    sigular{a}.set = SinguSet(a,:); 

    sigular{a}.B = A(:, SinguSet(a,:)); 

end 

for a = 1:size(InfeasiSet,1) 

    non_singu_infeasi{a}.set = InfeasiSet(a,:); 

    non_singu_infeasi{a}.B = A(:, InfeasiSet(a,:)); 

    non_singu_infeasi{a}.extremPoint = non_singu_infeasi{a}.B\b; 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


