


Geometry of the Feasible Set

Consider following

primal LP (2.1):

minimize -x, - 2X,

subject to x, + x, <20
2X, + X, < 30

X,Z0,X,=0
Geometrically,
the feasible set P is:

Figure 1: Graph of feasible set of LP (2.1)



Geometry of the Feasible Set

Definition 2.1:
A closed halfspace is a set of form H_ = {x € R" |a’x < 3}

or H. = {x € R" |aTx = B}.

E.g., The constraint X, + x, < 20is a closed halfspace
H_where « = [11]!, and 8 = 20.

The constraint x, = o is a closed halfspace

H_where a = [10]!,and 8 = o.



Example: Closed Halfspace

Figure 2: Closed Halfspace x, + x, < 20 Figure 3: Closed Halfspace x, = 0



Geometry of the Feasible Set

Definition 2.2:

A hyperplane is a set of the form H = {x € R" |a’x = 3}
where is a a non-zero vectori.e. a # o and 8 € R' is a scalar.

Geometrically, a hyperplance H splits R" into two halves.
E.g. In R? a hyperplance H is a line that splits the plane into
two halves, In R3 a hyperplance H is a plane that splits the
space into two halves...



Example: Hyperplane

Figure 4: Hyperplane in R?



Geometry of the Feasible Set

The vector a in the definition of hyperplane H is
perpendicular to H. a is called the norm vector of H.

Proof: Let z, y be in the H, then a’(z - y) = a'z - aly =
o, then the vector z - y is parallel to H, thus a is
perpendicular to H.

The -a vector is also perpendicular to H, but in the
opposite direction to a.



Example: Perpendicular to H

Figure 5: -a and a are perpenducular to H



Geometry of the Feasible Set

Definition 2.3:
The intersection of a finite number of closed

halfspaces is called a polyhedron (or polyhedral set).
A bounded polyhedron is called polytope.

Then the feasible set P of any linear programming
is a ployhedral set. The set P of (2.1) is a polytope.

Take any two points x, y from a closed halfspace H._ (or

H_), the line segment between x and y in C € R" can be
expressed as Ax + (1-A)yforo<A=1.



Geometry of the Feasible Set

Figure 6: Convexity of the half space x, = o



Geometry of the Feasible Set

Definition 2.4:

A set C € R" is said to be convex if for any x and y in C then
Ax + (1 - A)yeC forall A€]o, 1].

Figure 7: Convexity and non-convexity



Geometry of the Feasible Set

Theorem 2.1:
the closed halfspaces H_and H. are convex sets.

Proof: Let z = [z, z,]" and y = |y, y,]' be any pair of points
in H_ = {x € R" |a’x < B}. Then consider any point on the
line segment between zand yi.e. Az+ (1-A)yforo< A<
1. Now a’(Az + (1-A)y) =Aa’z + (1- D)aly <A+ (1-A)p
= fp which is in H_. Thus H_ is convex. Similar
argument can be showed to H. is convex.



Geometry of the Feasible Set

Theorem 2.2:
The intersection of convex sets are convex.

Proof: suppose there is an arbitrary collection of convex
sets S; indexed by the set I. Consider the intersection

N.4S; and let x any y in this intersection. For any A€]o, 1],
z=Ax+ (1- A)yisin every set S; since x and y are in S,
for every i€] and S, is a convex set. Thus N, ;S;is a convex set.

Corollary 2.1:
The feasible set of a linear programming is a convex set.



Geometry of Optimal Solutions

Consider the linear programming (2.1).

The contours of the objective function H = {x € R? | -x, -
2x, = 3} is a hyperplans.

The negative of the gradient of the objective function
i.e. —c = [12]' is perpendicular to all such contours.

To decrease the objective function in the direction of
most rapid descent, the contours of the objective
should be moved in the direction of —c while
remaining perpendicular to —c.

The optimality appear at the corner point x* = [0 20]™.



Geometry of Optimal Solutions

Figure 8: Hyperplane characterization of optimality of LP (2.1)



Geometric Characterization of Optimality

Let P + @ be the feasible set of a linear program and H =
(XxXER"|-cIx=B}.If P cH_={x € R" |-c'x < B} for some 3
€ R’ then any x in the intersection of Pand H is an
optimal solution for the linear program.

Case 1: Unique Intersection

In the LP (2.1), for 8 = 40 the feasible set P is contained in
the the half space H. = {x € R* | x, + 2x, < 40} and x* = [0
20]" is bothin Pand H = {x € R? | x, + 2x, = 40}, and is the
only such point.

The optimal is one of 4 “corner points” of feasible set P.



Geometric Characterization of Optimality

Figure 9: Corner points of feasible set of LP (2.1)



Geometric Characterization of Optimality

Case 2: Infinite Intersection
Consider the following LP (2.2):
minimize -X,
subject to x, <1

X, <1

X,20,X,20
The corner points for Pare v, = (0 0)%, v, = (10)T,
v,=(01)%v, =)l
The line between v, and v, intersects with H* = {x € R* | x,
= 1}, and thus all points on this line segment are optimal
solutions, which is infinite.



Geometric Characterization of Optimality

Figure 10: Hyperplane characterization infinite optimal solutions for LP (2.2)



Geometric Characterization of Optimality

Case 3: Unbounded
Consider the following LP (2.3):
minimize -X, - X,
subjectto x, + x, =1

X,=0,X,=0
We can see that for any positive value of 3 the
hyperplane H = {x € R? | x, + x, = 8} will always
intersect the feasibleset P={x € R? | x, + x, 21, X, = 0,
X, = 0}.



Geometric Characterization of Optimality

Figure 11: Unbounded LP (2.3)



Extreme Points

Definition 2.5:

A convex combination of vectors x,, x,, ..., X, is a
linear combination Y 4x of these vectors such that
Yoq-1 andA.zofori=1y, .., k.

Definition 2.6:

Let C< R" be a convex set and x€C. A point x is an
extreme point of C if it cannot be expressed a convex
combination of other points in C.



Example: Extreme Points

Figure 12: Extreme points of feasible set of LP (2.1)



Example: Extreme Points

Convert LP (2.1) to standard form:
minimize -x, - 2X,
subjectto x, + x, + X, =20
2X,+X,  +X, = 30
X200, X =20, =20, X =0

) 2 3 k.

where corresponding matrix entities are:

1110 20
A= b= ' c[1 9 o of
> 1 0 1 30

Consider the corner point v, = (x, x,)' = (11)" in (2.1) and

z=(x,x,x,x,)" = (110 0)" in standard form, we can see

that the sub-matrix B=[A,A,] = B ﬂ is non-singular.



Example: Extreme Points

Table 2.1 gives the correspondence between all extreme
points and its associated sub-matrix B.

corner point stapdard f01jm _
feasible solution sub-matrix B
X, X, X | % | % | X,
e
0 0 o| o |20]30 [A3A4]=[O ; ]
:1 1:
15 0 15 0 5 0 [A-1 A—}] 7 [ 2 0 ]
S =
0 20 o|20| 0 10| [AA]=[; 1]]
vl
10 10 10 1o o b o A A L= o ]




Extreme Points

Theorem 2.3:

Consider a linear program in standard form where the
feasible set P = {x € R" | Ax = b, X = 0} is non-empty. A
vector x€P is an extreme point if and only if the column of

A corresponding to positive components of x are linearly
independent.

Proof: Suppose that there are k positive components in
x€P and are positioned as the first k components of x
i.e. x = [x, 0]" where x, = [x, x, x, o]'>o.Let B the
columns of A associated with the components of x,,
then Ax =B =b.



Extreme Points

Proof of forward direction =>

Assume that x€P is an extreme point. Now suppose B is
singular (i.e. columns of B are linear dependent), then
there exists a non-zero vector w such that Bw = o.

For sufficiently small £€> o, x, + ew > 0, and x,, - ew > o.
B(x, + ew) = Bx, + eBw = b and

B(x - fW) = Bx - éBw = b. Thus the following two vectors:

- {(Xp +8w)} e {(Xp —gw)}

0 0

are in the set P since Az* = b and Az = b. However, .5z*
+ .5z" = x which means x is a convex combination z* of and
z" contradicting that it is an extreme point.



Extreme Points

Proof of reverse direction <=

Suppose that the columns of B are linearly independent and
that x is not an extreme point. Then x can be written as the
convex combination of two distinct points v, and v, both in P
(and different from x) i.e. x = [x, o]' = Av, + (1 - A)v, for some o
< A <1. Now v, and v, both non-negative since they are in P and
A is positive, so the last n - k components of v, and v, must be
zeros i.e. v, and v, can be written as

v V2

vlz{ "land v, ={ p}

0 0
where v, and v,? are the first components of v, and v,. Thus
B(x - v) Bx - Bvl—b b=o,butx,-v'#0asx=v,.Sothe

p
column of B is hnearly dependent is a contradiction




Basic Feasible Solutions

Definition 2.7:

A vector xeP = {x € R" | Ax = b, x = 0} is a basic feasible
solution (BFS) is there is a partition of the matrix A into
an non-singular m X m square submatrix B and an m X (n
- m) submatrix N such that x = [x; x\]! with x; > 0 and
Xy = 0 and Axg = Bxy = b. B is called the basis matrix, N
is called non-basis (or non-basic) matrix, xj is the set of
basis variables, and x, is the set of non-basis variables.

Corollary 2.2:

A vector xeP = {x € R" | Ax = b, x = 0} is an extreme
points if and only if there is some matrix B so that x is a
basic feasible solution with B as the basis matrix.



Example: Basic Feasible Solution

Consider LP (2.1) in standard from:
-

el e e
X, 20 X, 30 X, 0 0 1 2 1
X, | [ 30]

B is non-singular and so xz = B'b and x, = o then x is a
basic feasible solution.



Generating Basic Feasible Solution

Corollary 2.3:
The feasible set P = {x € R" | Ax = b, x = o} has at most

n!
—in_m; extreme points.

A particular choice of m columns will generate an
extreme points if (1) B is non-singular (2) x; = o.

E.g. Consider the feasible set by constraints (2.4)

C(n,m)=

XX, =1 X, + X, + X, =1
X, <1 & X, +x4 =1
X, =1 X, + X, =1

X,20,X,=20 X,20,X,20,X;,20,X,20,X,20

) DA ) Ao



Generating Basic Feasible Solution

Figure 13: Graph of feasible set (2.4)



Generating Basic Feasible Solution:

- 31(5-3)1

Table 2.2 lists those partitions that do no result in BFS
either due to infeasibility or non-negativity of basic
variables. Table 2.3 lists the BFS partitions.

There are c(3) 10 possible extreme points.

Partition Basis matrix Bb X 1S extreme
B points?
Xp XN
1 0 1]
011 W
i il
(O, x, x)T | (x,x,) S B is singular No
Rl o R
T T 000 T
(e, x, x)T | (x, x,) S B is singular No
E :
Xp IS
(x, x, X3)T (X4 X5)T 100 B No
e infeasible




BFS: Table 2.3

Partition Basis matrix _ pi X is extreme
o xg=B7b
B points?
Xp XN
P
P x b D) o (111)! e
PR
Cox, ) | Goxam | (e (o | Yes
PP
(x| e | (o i) | Yes
PR
Cox)t | Gt | o (o) | Yes
R
Goxx)® | ot | o 1" | Yes
PR
Ex )t | ex)t - 011 .
PR
) | gt | [0 o | Ve




Degeneracy

Definition 2.8:

A basic feasible solution xeP = {x € R" | Ax = b, X = 0} is
degenerate if at least one of the variables in the basic set
Xp is zero. xeP is said to be non-degenerate if all m of the
basic variables are positive.

E.g. Consider (2.4) and BFS in Table 2.2 and 2.3.

The BFS in row 1 of Table 2.3 is only corresponds to the
extreme point v, in Figure 13.

The BFS in row 2 , 3 of Table 2.3 and row 3 of Table 2.2
are all corresponds to the extreme point v, in Figure 13.
However, the BFS are degeneracy as v, is over determined
by the intersection of 3 constraints.



Resolution (Representation) Theorem

For a feasible set xeP = {x E R" | Ax=b,x = 0}, a
representation of any x€P is sought in terms of the
extreme points of P and recession directions.

Case 1: P is bounded e.g. a polytope in Figure 14.

P has 5 extreme points v,, v,, v,, v, V..

In general, any x€P in a polytope can be represented
as a combination of extreme points in P.



Resolution (Representation) Theorem

Figure 14: A polytope with 5 extreme points



Resolution (Representation) Theorem

Case 2: P is unbounded
Consider the following set of inequalities (2.5)
R Dl @ =3
X,Z20,X,=0
Definition 2.9:
A ray is a set of form {x € R" | x = x, + Ad, for A = 0}, where
X, is a given point and d is a non-zero vector called the
direction vector.
Definition 2.10:

Let P be a non-empty feasible set of a LP. A non-zeros
direction d is called a recession direction if for any x eP

theray {x ER" | x = x, + Ad, for A = 0} P.



Resolution (Representation) Theorem

Figure 15: Some rays of feasible set (2.5)



Resolution (Representation) Theorem

Theorem 2.4 (Resolution Theorem):

Let P={x € R" | Ax=b, x = 0} be a non-emptyset P. Let
V,V, ..., vV, be the extreme points of P.

(Case1) If Pis bounded, then any xeP can be
represented as the convex combination of extreme points

. k
i.e. x=> .4 forsomeA, A, ..,A4, >0and ¥ ;-1

Picien 2

(Case 2) If P is unbounded, then there exists at least one
extreme direction. Letd, d,, ..., d, be the extreme

3 0 530eande

direction of P. Then any x€P can be represented as
x=y Avi+>. md where A, A, .., A, =0and Y, =1

and y;=ofori=u,.., L



Fundamental Theorem of LP

Theorem 2.5:

For a feasible set P = {x € R" | Ax = b, X = 0} a non-zero

vector d is a recession vector if and only if Ad = o and d = o.
Corollary 2.4:

A non-negative linear combination of recession directions
of a feasible set P is a recession direction of P.

Proof: Letd, d,, ..., d; be the recession directions of P and

let =Y ud, fory;=ofori=1,.., L Since d; is a recession
direction by Definition 2.10. we have that Ad; = A} ud,
= 4> Ad =0,alsod;=0.So0 d =" ud zo.

Therefore , by Definition 2.10, d is a recession direction.



Fundamental Theorem of LP

Theorem 2.6 (Fundamental Theorem of Linear
Programming):
Consider an LP in standard form and suppose that P is
not-empty.
Then, either

the LP is unbounded over P
or

an optimal solution for the LP can be attainted at an

extreme point of P.



Fundamental Theorem of LP

Proof: Letv, v, ..., v, be the extreme points of P and let
d,d, .., d bethe extreme direction of P. Then by the

Resolution Theorem every point xeP can be expressed
asx=y av+>. nmd where A, A, ..., A, =0and 3 4=1

1 7ty
and p; = o fori =1, ..., . Without loss generally, let
which is a recession direction by Corollary 2.4. There
are two cases:

Case (1) d is such that c'd < o. In this case, for any x eP

theray {x € R" | x, + Ad for A€[0, 1]} P, willde such

that c”x = ¢’x, + Ac’d and this can be made to diverge
towards -o0 as A 2 oo since c'd < oand A = o.



Fundamental Theorem of LP

Case (2) d is such that ¢'d = 0. So x=Y" Av,+d where A,
A, ..., =0and X, 4=1, Nowlet v_. be that extreme

min

point that result in the minimum value of c'v_. over
fori=1, .., k. Then for any x€P, cTx = cT( X A% +9 =

ci > )+CTd>CT(ZI1 - e - S
= ¢y, (24, 4) = €'V Thus the minimum value for the

LP is attainted at v, .. that is an extreme point.






