
Chapter 2

Geometry of Linear Programming



Geometry of the Feasible Set
 Consider following 

primal LP (2.1):

minimize  -x1 - 2x2

subject to  x1 + x2 ≤ 20

2x1 + x2 ≤ 30 

x1 ≥ 0, x2 ≥ 0

 Geometrically, 

the feasible set P is:
Figure 1: Graph of feasible set of LP (2.1)



Geometry of the Feasible Set
 Definition 2.1:

A closed halfspace is a set of form H≤ = {x Rn |aTx ≤ β} 

or H≥ = {x Rn |αTx ≥ β}.

 E.g., The constraint x1 + x2 ≤ 20is a closed halfspace
H≤ where α = [1 1]T, and β = 20. 

 The constraint x1 ≥ 0 is a closed halfspace

H≥ where α = [1 0]T, and β = 0.



Example: Closed Halfspace

Figure 2: Closed Halfspace x1 + x2 ≤ 20 Figure 3: Closed Halfspace x1 ≥ 0



Geometry of the Feasible Set
 Definition 2.2:

A hyperplane is a set of the form H = {x Rn |aTx = β} 
where is a a non-zero vector i.e. a ≠ 0 and β R1 is a scalar. 

 Geometrically, a hyperplance H splits Rn into two halves. 
E.g. In R2 a hyperplance H is a line that splits the plane into 
two halves, In R3 a hyperplance H is a plane that splits the 
space into two halves… 



Example: Hyperplane

Figure 4: Hyperplane in R2



Geometry of the Feasible Set
 The vector a in the definition of hyperplane H is 

perpendicular to H. a is called the norm vector of H.

 Proof: Let z, y be in the H, then aT(z - y) = aTz - aTy = 
0, then the vector z - y is parallel to H, thus a is 
perpendicular to H.

 The -a vector is also perpendicular to H, but in the 
opposite direction to a.



Example: Perpendicular to H

Figure 5: -a and a are perpenducular to H



Geometry of the Feasible Set
 Definition 2.3:

The intersection of a finite number of closed 
halfspaces is called a polyhedron (or polyhedral set).  
A bounded polyhedron is called polytope. 

 Then the feasible set P of any linear programming 
is a ployhedral set. The set P of (2.1) is a polytope.

 Take any two points x, y from a closed halfspace H≥ (or 

H≤), the line segment between x and y in C Rn can be 
expressed as λx + (1 - λ)y for 0 ≤ λ ≤ 1.



Geometry of the Feasible Set

Figure 6: Convexity of the half space x2 ≥ 0



Geometry of the Feasible Set
 Definition 2.4:

A set C Rn is said to be convex if for any x and y in C then 
λx + (1 - λ)y C for all λ [0, 1].

Figure 7: Convexity and non-convexity



Geometry of the Feasible Set
 Theorem 2.1:

the closed halfspaces H≤ and H≥ are convex sets.

 Proof: Let z = [z1 z2]
T and y = [y1 y2]

T be any pair of points 
in H≤ = {x Rn |aTx ≤ β}. Then consider any point on the 
line segment between z and y i.e. λz + (1 - λ)y for 0 ≤ λ ≤

1. Now aT(λz + (1 - λ)y) = λaTz + (1 - λ)aTy ≤ λβ + (1 - λ)β
= β which is in H≤. Thus H≤ is convex. Similar 
argument can be showed to H≥ is convex. 



Geometry of the Feasible Set
 Theorem 2.2:

The intersection of convex sets are convex.

 Proof: suppose there is an arbitrary collection of convex 
sets Si indexed by the set I. Consider the intersection     
∩i ISi and let x any y in this intersection. For any λ [0, 1], 
z = λx + (1 - λ)y is in every set Si since x and y are in Si

for every i I and Si is a convex set. Thus ∩i ISi is a convex set. 

 Corollary 2.1:

The feasible set of a linear programming is a convex set. 



Geometry of Optimal Solutions
 Consider the linear programming (2.1). 

 The contours of the objective function H = {x R2 | -x1 -
2x2 = β} is a hyperplans.

 The negative of the gradient of the objective function 
i.e. –c = [1 2]T is perpendicular to all such contours. 

 To decrease the objective function in the direction of 
most rapid descent, the contours of the objective 
should be moved in the direction of –c while 
remaining perpendicular to –c.  

 The optimality appear at the corner point x* = [0 20]T.



Geometry of Optimal Solutions

Figure 8: Hyperplane characterization of optimality of LP (2.1)



Geometric Characterization of Optimality
 Let P ≠ be the feasible set of a linear program and H = 

{x Rn | -cTx = β}. If P    H≤ = {x Rn |-cTx ≤ β} for some β
R1, then any x in the intersection of P and H is an 

optimal solution for the linear program.

 Case 1: Unique Intersection

In the LP (2.1), for β = 40 the feasible set P is contained in 

the  the half space H≤ = {x R2 | x1 + 2x2 ≤ 40} and x* = [0 
20]T is both in P and H = {x R2 | x1 + 2x2 = 40}, and is the 
only such point.

 The optimal is one of 4 “corner points” of feasible set P. 





Geometric Characterization of Optimality

Figure 9: Corner points of feasible set of LP (2.1)



Geometric Characterization of Optimality
 Case 2: Infinite Intersection

Consider the following LP (2.2):

minimize  -x1

subject to  x1 ≤ 1

x2 ≤ 1 

x1 ≥ 0, x2 ≥ 0

 The corner points for P are v1 = (0 0)T, v2 = (1 0)T,
v3 = (0 1)T, v4 = (1 1)T.

 The line between v3 and v4 intersects with H* = {x R2 | x1

= 1}, and thus all points on this line segment are optimal 
solutions, which is infinite.



Geometric Characterization of Optimality

Figure 10: Hyperplane characterization infinite optimal solutions for LP (2.2)



Geometric Characterization of Optimality
 Case 3: Unbounded

Consider the following LP (2.3):

minimize  -x1 - x2

subject to  x1 + x2 ≥ 1

x1 ≥ 0, x2 ≥ 0

 We can see that for any positive value of β the 
hyperplane H = {x R2 | x1 + x2 = β} will always 

intersect the feasible set P = {x R2 | x1 + x2 ≥ 1, x1 ≥ 0,
x2 ≥ 0}.



Geometric Characterization of Optimality

Figure 11: Unbounded LP (2.3)



Extreme Points
 Definition 2.5:

A convex combination of vectors x1, x2, …, xk is a 
linear combination             of these vectors such that 

and λi ≥ 0 for i = 1, …, k.

 Definition 2.6:

Let C Rn be a convex set and x C. A point x is an 
extreme point of C if it cannot be expressed a convex 
combination of other points in C.
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Example: Extreme Points 

Figure 12: Extreme points of  feasible set of LP (2.1)



Example: Extreme Points 
 Convert LP (2.1) to standard form:

minimize  -x1 - 2x2

subject to  x1 + x2 + x3 = 20

2x1 + x2 + x4 =  30 

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0

where corresponding matrix entities are:

 Consider the corner point v4 = (x1 x2)
T = (1 1)T in (2.1) and 

z = (x1 x2 x3 x4)
T = (1 1 0 0)T in standard form, we can see 

that the sub-matrix B = [A1 A2] =           is non-singular. 

 
1 1 1 0 20

, , 1 2 0 0
2 1 0 1 30

T
A b c

   
       
   

1 1

2 1

 
 
 



Example: Extreme Points 
 Table 2.1 gives the correspondence between all extreme 

points and its associated sub-matrix B.

corner point standard form 
feasible solution sub-matrix B

x1 x2 x1 x2 x3 x4

0 0 0 0 20 30 [A3 A4] = [           ]

15 0 15 0 5 0 [A1 A3] = [           ]

0 20 0 20 0 10 [A1 A3] = [           ]

10 10 10 10 0 0 [A1 A3] = [           ]

1 0

0 1

 
 
 

1 1

2 0

 
 
 

1 0

1 1

 
 
 

1 1

2 1

 
 
 



Extreme Points
 Theorem 2.3:

Consider a linear program in standard form where the 

feasible set P = {x Rn | Ax = b, x ≥ 0} is non-empty. A 
vector x P is an extreme point if and only if the column of 
A corresponding to positive components of x are linearly 
independent. 

 Proof: Suppose that there are k positive components in 

x P and are positioned as the first k components of x
i.e. x = [xp 0]T where xp = [x1 x2 … xk 0]T > 0. Let B the 
columns of A associated with the components of xp, 
then Ax = B = b. 



Extreme Points
 Proof of forward direction =>

Assume that x P is an extreme point. Now suppose B is 
singular (i.e. columns of B are linear dependent), then 
there exists a non-zero vector  ω such that Bω = 0.           
For sufficiently small  ε > 0, xp + εω > 0, and xp - εω > 0. 
B(xp + εω) = Bxp + εBω = b and                                            
B(xp - εω) = Bxp - εBω = b. Thus the following two vectors: 

are in the set P since Az+ = b and Az- = b. However, .5z+

+ .5z- = x which means x is a convex combination z+ of and 
z- contradicting that it is an extreme point.

   
 and 

0 0

p px x
z z

 
 

    
    
      



Extreme Points
 Proof of reverse direction <=

Suppose that the columns of B are linearly independent and 
that x is not an extreme point. Then x can be written as the 
convex combination of two distinct points v1 and v2 both in P 
(and different from x) i.e. x = [xp 0]T = λv1 + (1 - λ)v2 for some 0 
< λ < 1. Now v1 and v2 both non-negative since they are in P and 
λ is positive, so the last n - k components of v1 and v2 must be 
zeros i.e. v1 and v2 can be written as

where vp
1 and vp

2 are the first components of v1 and v2.  Thus 
B(x - v1) = Bx - Bvp

1 = b – b = 0, but xp - vp
1 ≠ 0 as x ≠ v1. So the 

column of B is linearly dependent is a contradiction

1 2

1 2 and 
0 0

p pv v
v v
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      



Basic Feasible Solutions
 Definition 2.7:

A vector x P = {x Rn | Ax = b, x ≥ 0} is a basic feasible 
solution (BFS) is there is a partition of the matrix A into 
an non-singular m×m square submatrix B and an m×(n 
- m) submatrix N such that x = [xB xN]T with xB ≥ 0 and 
xN = 0 and AxB = BxN = b. B is called the basis matrix, N
is called non-basis (or non-basic) matrix, xB is the set of 
basis variables, and xN is the set of non-basis variables. 

 Corollary 2.2:

A vector x P = {x Rn | Ax = b, x ≥ 0} is an extreme 
points if and only if there is some matrix B so that x is a 
basic feasible solution with B as the basis matrix.  



Example: Basic Feasible Solution
 Consider LP (2.1) in standard from:

 B is non-singular and so xB = B-1b and xN = 0 then x is a 
basic feasible solution.
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Generating Basic Feasible Solution
 Corollary 2.3:

The feasible set P = {x Rn | Ax = b, x ≥ 0} has at most

extreme points. 

 A particular choice of m columns will generate an 
extreme points if (1) B is non-singular (2) xB ≥ 0. 

 E.g. Consider the feasible set by constraints (2.4)

x1 + x2  ≤ 1

x1 ≤ 1        

x2 ≤ 1 

x1 ≥ 0, x2 ≥ 0

 
!

,
!( )!

n
C n m

m n m




x1 + x2  + x3 = 1

x1 + x4 = 1

x2 + x5 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0



Generating Basic Feasible Solution

Figure 13: Graph of  feasible set (2.4)



Generating Basic Feasible Solution: 
 There are                       possible extreme points. 

 Table 2.2 lists those partitions that do no result in BFS 
either due to infeasibility or non-negativity of basic 
variables. Table 2.3 lists the BFS partitions.

 
5!

5,3 10
3!(5 3)!

C  


Partition 
[xB xN]T

Basis matrix 

B

xB = B-1b x is extreme

points?
xB xN

(x3 x4 x1)
T (x5 x2)

T B is singular No

(x3 x2 x5)
T (x1 x4)

T B is singular No

(x1 x2 x3)
T (x4 x5)

T xB is 
infeasible

No

1 0 1

0 1 1

0 0 0

 
 
 
  

1 1 0

0 0 0

0 1 1

 
 
 
  

1 1 1

1 0 0

0 1 0

 
 
 
  



BFS: Table 2.3


Partition 
[xB xN]T

Basis matrix

B

xB = B-1b x is extreme

points?
xB xN

(x3 x4 x5)
T (x1 x2)

T

1 0 0
0 1 0
0 0 1 (1 1 1)T Yes

(x1 x4 x5)
T (x3 x2)

T

1 0 0
1 1 0
0 0 1 (1 0 1)T Yes

(x3 x1 x5)
T (x4 x2)

T

1 1 0
0 1 0
0 0 1 (0 1 1)T Yes

(x2 x4 x5)
T (x1 x3)

T

1 0 0
0 1 0
1 0 1 (1 1 0)T Yes

(x3 x4 x2)
T (x1 x5)

T

1 0 1
0 1 0
0 0 1 (0 1 1)T Yes

(x1 x2 x4)
T (x3 x5)

T

1 1 0
1 0 1
0 1 0 (0 1 1)T Yes

(x1 x2 x5)
T (x3 x4)

T

1 1 0
1 0 0
0 1 1 (1 0 1)T Yes



Degeneracy
 Definition 2.8:

A basic feasible solution x P = {x Rn | Ax = b, x ≥ 0} is 
degenerate if at least one of the variables in the basic set 
xB is zero. x P is said to be non-degenerate if all m of the 
basic variables are positive.

 E.g. Consider (2.4) and BFS in Table 2.2 and 2.3. 

 The BFS in row 1 of Table 2.3 is only corresponds to the 
extreme point v1 in Figure 13.

 The BFS in row 2 , 3 of Table 2.3  and row 3 of Table 2.2 
are all corresponds to the extreme point v2 in Figure 13. 
However, the BFS are degeneracy as v2 is over determined 
by the intersection of 3 constraints.



Resolution (Representation) Theorem
 For a feasible set x P = {x Rn | Ax = b, x ≥ 0}, a 

representation of any x P is sought in terms of the 
extreme points of P and recession directions.

 Case 1: P is bounded e.g. a polytope in Figure 14. 

P has 5 extreme points v1, v2, v3, v4, v5.

In general,  any x P in a polytope can be represented 
as a combination of extreme points in P.



Resolution (Representation) Theorem

Figure 14: A polytope with 5 extreme points



Resolution (Representation) Theorem
 Case 2: P is unbounded

Consider the following set of inequalities (2.5)
x2 – x1  ≤ 3

x1 ≥ 0, x2 ≥ 0

 Definition 2.9:

A ray is a set of form {x Rn | x = x0 + λd, for λ ≥ 0}, where
x0 is a given point and d is a non-zero vector called the 
direction vector. 

 Definition 2.10:

Let P be a non-empty feasible set of a LP. A non-zeros 
direction d is called a recession direction if for any x0 P

the ray {x Rn | x = x0 + λd, for λ ≥ 0}     P.



Resolution (Representation) Theorem

Figure 15: Some rays of feasible set (2.5)



Resolution (Representation) Theorem
 Theorem 2.4 (Resolution Theorem):

Let P = {x Rn | Ax = b, x ≥ 0} be a non-empty set P.   Let 
v1, v2, …, vk be the extreme points of P.

 (Case 1) If P is bounded, then any x P can be 
represented as the convex combination of extreme points 

i.e.                 for some λ1, λ2, …, λk ≥ 0 and            .

 (Case 2) If P is unbounded, then there exists at least one 
extreme direction. Let d1, d2, …, dl be the extreme 
direction of P. Then any x P can be represented as

where λ1, λ2, …, λk ≥ 0 and                   

and μi ≥ 0 for i = 1, …, l.
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Fundamental Theorem of LP
 Theorem 2.5:

For a feasible set P = {x Rn | Ax = b, x ≥ 0} a non-zero 

vector d is a recession vector if and only if Ad = 0 and d ≥ 0. 

 Corollary 2.4:

A non-negative linear combination of recession directions 
of a feasible set P is a recession direction of P.

 Proof: Let d1, d2, …, dl be the recession directions of P and 

let                    for μi ≥ 0 for i = 1, …, l. Since di is a recession

direction by Definition 2.10.  we have that Adi =                   

=                = 0, also di ≥ 0. So            ≥ 0.

Therefore , by Definition 2.10, d is a recession direction.
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Fundamental Theorem of LP
 Theorem 2.6 (Fundamental Theorem of Linear 

Programming):

Consider an LP in standard form and suppose that P is 
not-empty. 

Then, either

the LP is unbounded over P

or

an optimal solution for the LP can be attainted at an    

extreme point of P.



Fundamental Theorem of LP
Proof: Let v1, v2, …, vk be the extreme points of P and let 

d1, d2, …, dl be the extreme direction of P. Then by the 
Resolution Theorem every point x P can be expressed 

as                          where λ1, λ2, …, λk ≥ 0 and                   

and μi ≥ 0 for i = 1, …, l. Without loss generally, let           
which is a recession direction by Corollary 2.4. There 
are two cases:  

 Case (1) d is such that cTd < 0. In this case, for any x0 P

the ray {x Rn | x0 + λd for λ [0, 1]}    P, will be such 

that cTx = cTx0 + λcTd and this can be made to diverge 
towards -∞ as λ∞ since cTd < 0 and λ ≥ 0.
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Fundamental Theorem of LP
 Case (2) d is such that cTd ≥ 0. So                     where λ1,

λ2, …, λk ≥ 0 and             , Now let vmin be that extreme 
point that result in the minimum value of cTvmin over 
for i = 1, …, k. Then for any x P, cTx = cT(              ) =

cT(           ) + cTd ≥ cT(          ) =                ≥                        

=                   = cTvmin. Thus the minimum value for the 

LP is attainted at vmin that is an extreme point.
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