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FIGURE 2.1
Graph of feasible set of LP (2.1).




FIGURE 2.2
Closed halfspace 1 + 9 < 20.
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FIGURE 2.3
Closed halfspace x1 > 0.
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FIGURE 2.4
Hyperplane in R?.
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FIGURE 2.5
a and —a are perpendicular to H.
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FIGURE 2.6
Convexity of xo > 0.




C, convex C, not convex

FIGURE 2.7

Convexity and non-convexity.
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FIGURE 2.8
Hyperplane characterization of optimality for LP (2.1).
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FIGURE 2.9
Corner points of feasible set of LP (2.1).
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FIGURE 2.10

Hyperplane characterization of infinite optimal solutions for LP (2.2).



FIGURE 2.11
Unbounded LP (2.3).
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FIGURE 2.12
Extreme points of feasible set of LP (2.1).
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FIGURE 2.13
Feasible set (2.4).
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FIGURE 2.14
A polytope with 5 extreme points.



FIGURE 2.15
Some rays of feasible set (2.5).



