Chapter 2

Exercise 2.1
Consider the constraint
22X+ %X, £2

(a) Express this constraint as a closed-half space of the form He = {x€R" | a'x < B} i.e. determine a
and B.

(b) Sketch the closed half-space in (a) showing any vector that is normal to the hyperplane that is
contained in H..

(c) Show that the closed half-space in (a) is a convex set.

Solution:
(@) a=[2 1] ,B=2.
(b) Itis easy to see that any vector a that is a normal to the hyperplane -2x; +x, = 2 is contained

in H.
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(c) For any two points z = [z; z,) and y = [y; y,]" in He, need to show [-2 1](Az + (1 - A)y) < 2 for all
AE[0,1]. Now note that [-2 1](Az + (1 - A)y) = [-2 1)(A[z1 z5]" + (1 - A)y1 vl") =A[-2 1][z; z,]" + (1
-A) [-2 1]ly; vol" £ A2 + (1 - A)2 = 2, thus the half space He= { xE R2| -2x;1 +x, < 2} is convex.

Exercise 2.2
Consider a linear program in standard form
minimize ¢ x
subjectto Ax=b
x20

(a) Prove that the feasible set P = { x€R"| Ax = b, x 2 0} of the linear program is a convex set
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directly using the definition of convex set.
(b) Prove that the set of optimal solutions for the linear program in standard form P* = { xeR"| x
is an optimal solution for LP} is a convex set.

Solution:

(a) For any two points zER"and y ER" in feasible set P, need to show (1) A(Az + (1 - A)y) = b and
(2)Az+(1-A)y=20forall A€[0,1]. For (1), A(Az+ (1 -A)y) =AAz+ (1 -A)Ay=Ab+ (1 -A)b =b,
for (2)Az+(1-A)y=0sincez20,y>0,A20and (1-A)20. Thus the feasible set P = { xER"|
Ax=b,x20}is aconvex set.

(b) Since P is a convex set, and P* S P, by Theorem 2.8, P* also is a convex set.

Exercise 2.3
Solve the following linear programs graphically by using the sketch of the feasible set and
illustrate the hyperplane characterization of optimality when a finite optimal solution(s) exists
else illustrate the unboundedness of the linear program using hyperplanes.
(a) minimize -x; - 2x,
subject to -2x; + x, <2
X1+ X2<3
X <2
X120,%x,20

(b) minimize -x; - 2x;
subject to x; - 2x, 2 2
X1+x,24
X120,%20

(b) maximize x; + x;
subjecttox;-x,21
X1-2X22
X120,%x20

Solution:
(a) The optimal solution is the point [2,5]" in the graph. Observe that at the optimal point the
feasible set P is completely contained in the closed half space H.
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Hyperplane characterization of optimality of LP (a)
7 .

| -H={x € R*|-x, - 2%, = }

(b) The optimal solution is [10/3, 2/3]T. Observe that at the optimal point the feasible set P is
completely contained in the closed half space H-..

Hyperplane charactenzation of optimality of LP (b)
3 T T T T T
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(c) Unbound LP
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Unbaunded LP (&)

Exercise 2.4
(a) For the linear program (a) in Exercise 2.3 find all basic feasible solutions by converting the

constraints into standard form.
(b) For each linear program in Exercise 2.3 find two linearly independent directions d; and d, of

unboundedness if they exists.

Solution:
(a) First convert into standard form

minimize -x; - 2x»

subject to -2x; + x5 + X3 =2
X1+ Xo + Xy =3
X1 +X5=2

X120,X220,X320,X420,X520

with
—-21100 2 5
A=|-1101 0f,b=]3]| There are (3) = 10 possible extreme points. The following
10001 2

table lists all basic feasible solutions only. Other partitions not listed lead to infeasibility or basis B

is not invertible.

X
Partition x = [XE] Basis matrix B xg = B71b x extreme point?
X1 X4 211 2
xg = |X2 XN=[X] -110 5 yes
5
X3 100 1
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[X1] - -2 1 0] [1]
_ _ 3
Xg = |X2 XN—[X] -110 4 yes
X * | 10 1. 1
~ [X1] X [—2 1 0] [2]
Xg = X3 XN—[X] -1 01 6 yes
X4 ] > [ 1 00 5]
~ [X2] X 100 [2]
Xg = | X4 XN—[X] 110 1 yes
X 3 001 2]
- -
_ X3 X 100 2
Xg = (X4 XN = [x2] 010 3 yes
| X5 | 001 [ 2]

(b) LP (c) is unboundness case. One ray is
_ 2. [2 1 . . o _[27 .
r; = {x ER%|x = [0] +}\[O],f0r allA > O} which starts from the point x° = [0] in the
direction of
! . _ oo 3 1 .
d, = [0], and another ray is r, = {x ER%|x = [0'5] +}\[0.5],f0r allA > O} which starts
from the point
x0 = [ 3 ] in the direction of d, = [ 1] one can easily verify that d;,d, are linearly
0.5 27 lo.sr b2

independent directions.

Exercise 2.5
Consider the constraints
2x;+ X, <5

X1+ Xx,54

X1 <2

x120,x,20
(a) Sketch the feasible region.
(b) Convert the constraints to standard form and find all basic feasible solutions.
(c) Identify the extreme points in the original constraints.

Solution:
(a) the feasible region show as follows:
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(b) Converting into the standard form

Feasible region of the constrainis
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+X5=2

X120,X220,X320,X420,X520

with
21100 5 5
A=]11010{,b=]|4| There are (3) = 10 possible extreme points. The following
10001 2
table lists all basic feasible solutions.
. XB . . .
Partition x = [XN] Basis matrix B xg = B71b x extreme point?
[X1] Xs [2 1 0] [2]
Xg = |X2 XN = [X5] 111 1 yes
[ X4 ] [1 0 0 [ 1]
[X1] Xs [2 1 0] 17
Xg = |X2 XN=[X] 110 3 yes
X5 * 10 1 1]
[X1] X, [2 1 0] [2]
Xg = |X3 XN = [x5] 101 1 yes
| X4 ] [1 0 0 [ 2]
[X2] Xy [1 1 0] [4]
Xg = X3 XN = [XJ 100 1 yes
| X5 | 0 0 1] [ 2]
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Exercise 2.6
Consider the linear program
maximize x; + X,
subjecttox;-x,21
X1-2X,22
x120,x,20

(a) Sketch the feasible region.

original

constraint  variables

(b) Convert the constraints to standard form and find all basic feasible solutions and find two

extreme directions d; and d, (i.e. two linearly independent directions of unboundedness).
(c) Show that the extreme directions d; and d, from (b) satisfy Ad =0and d = 0.

Solution:
(a) the feasible region show as follows:

Feasible region of the constraints

2 —h———
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(b) Converting into standard form

minimize -x;-X;

35

45 5
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subjectto  x;-Xx,-X3 =1
X1-2X2 -X4 =3

x120,x,20,x320, x4 20

with
Mm1-1-10 ! i . . . .
A= [1 2 0 _1] ,b = [3] Th following table lists all basic feasible solutions.
X
Partition x = [x::] Basis matrix B xg = B~b x extreme point?
%1 _ X2 1 -1 3
Xp = [Xg] XN = [x4] [1 0 [2] yes
Since the feasible region is unbounded, the ray
3 1 3

r; =<4x€R*x= (2) +2A (1) ,forall A > 0 ; from the point x° = (2) in the direction of
\ 0 1 0
1 3 1
0 _ 4. _ |0 0.5 .

d, = 1,andtheray r, =({X€R*x= 5 +}\05 ,forall A = 0 » from the point
[ 1) 0 0
3 1

o _ |0} . L _ 105 . . .

=1, in the direction of d, = 05l we can verify that d,,d, are linearly independent
n 0

directions.

1 1
SRR 1 PO e £
1 0

-2 0 -1 1-2 0 -1
1 1
0 0.5
= > = >
d, 1 >0,d, 0.5 > 0.
1 0
Exercise 2.7
Solution:

(

Let X be a feasible solution for LP, i.e. Ax'® = b. Consider points of the form X9+ ad for all a >

0, then A(x(o) +ad) = AX? +aAd = AX? = b and clearly X9+ ad > 0, since X9 > 0, and ¢ 2 0. So

X9 + ad is feasible for anya>0.(H)

Exercise 2.8
Consider the following system of constraints
X1 +X,26
X1-X2<0
X1 <3
x120,x,20

(a) Sketch the feasible region.
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(b) Convert to standard form and find all basic feasible solutions.
(c) Is there a one-to-one correspondence between basic feasible solutions and extreme points? If
not, which extreme points can be represented by multiple basic feasible solutions?

Solution:

(a) the feasible region show as follows:

Feasible region of the constraints

7 A . . . ' .
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(b) Converting into the standard form

X1+ X+ X3 =6
X1-X2 + Xy =0
X1 +Xx5=3

X120,X220,X320,X420,X520

with
11100 6 5
A=1]1-101 0f,b=]0|. There are ( )= 10 possible extreme points. The following
1 0001 3 3

table lists all basic feasible solutions.

X
Partition x = [Xfl] Basis matrix B xg = B71b x extreme point?
[X1] X4 1 1 1] [3]
Xg = X2 XN = [x5] 1-10 3 yes
| X3] 1 0 O 0]
[X1] X3 1 1 0] 3]
Xg = X2 XN = [X5] 1-11 3 yes
[ X4 ] 1 0 0O 0]
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[X1] X 110 3]
xg = |X2 XN—[X] 1-10 3 yes
X * 101 0]
~ '§1' ~ [XZ 110 [0]
xg = | X3 XN—X] 100 6 yes
X * 101 3]
~ X3] ™ 1 1 0] [0]
Xg = X3 XN—[X] -100 6 yes
Xs | * 0 0 1l 3]
_ X3] X 1 0 0] 6]
Xg = | X4 XN—[X] -110 6 yes
X : 0 0 1l 3]
X
~ X3 X 100 6
Xg = | X4 XN = [x2] 010 0 yes
X5 001 3]

X
(c) The extreme points in terms of the variables of the original constraints are (x;) =

{B][g][g][g][g][g][g]} The basic feasible solution xg = EZ] = El corresponds

X X
uniquely to the extreme point (x;) = [g], the extreme point (x;) = [8] corresponds to the
X1 0 X2 0 X3 6
basic feasible solutions xg = [X3| =|6|,xg = |X3| =[6] and xg = |X4| =|0], and the
X5 3 X5 3 X5 3
X1

X1 3
extreme point ( ) = [g] corresponds to the basic feasible solutions xg = [le = [3],)(3 =
X3 0

X2
X1 3 X1 3
X2 = 3] and xg = [X2| = |3]|.
X4 0 X5 0

Exercise 2.9

(a) Solve the linear program in Exercise 2.3 (a) by generating all basic feasible solutions.

(b) Solve the linear program in Exercise 2.3 (b) by generating all basic feasible solutions. Also,
illustrate Exercise 2.2 (b). i.e. show the set of optimal solutions is convex.

Solution:
(a) Convert into standard form
minimize -x; - 2x;
subject to -2x; + X, + X3 =2

X1+ X2 + Xy =3
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X1 +X5=2

x120,x,20,x320, x4 20, x5 20

with
—21100 2 5
A=]-11010]|,b=|[3]. There are (3) = 10 possible extreme points. The following
10001 2
table lists all basic feasible solutions.
X
Partition x = [xf]] Basis matrix B xg = B~b x extreme point?
[X1] - —2 1 1] [2]
Xg = |X2 XN = [x4] -110 5 yes
5
[ X3 ] [ 1 0 0! [ 1]
[X1] - [—2 1 0] [1]
Xg = X2 XN = [x3] -110 4 yes
4
| X5 | [ 1 0 1! 1
[X1] Xy [—2 1 0] [2]
xg = [X3 xn =[] -1 01 6 yes
5
[ X4 ] [ 1 0 0l 5
[X2] Xy 100 [2]
Xg = | X4 XN=[X] 110 1 yes
3
| X5 | 001 2]
X3 Xy 100 [2]
Xg = | X4 XN=[X] 010 3 yes
2
| X5 001 2]

c=[-1 —2 0 0 0]T, then computing the objective value CEXB, for each basic feasible solution
values i.e.

we get the
2 1 2 2 2

{[—1 -2 0] [5],[—1 -2 0] [4],[—1 0 0] [6],[—2 0 0] [1],[0 0 0] [3]}= {-12, -9, -2,
1 1 5 2 2

—4, 0}, thus the optimal objective is —12 corresponding to the optimal basic feasible solution
X1 2

Xg = X2 =15].
X3 1

(b) Convert into standard form
minimize  -x; - 2x;
subjectto  x;-2x3-X3 =2
X1+ X, +x, =4
x120,x,20,x320, x4 20
with
1-2-10
11 01

lists all basic feasible solutions.

A= [ ],b = [ﬂ There are (;}) = 6 possible extreme points. The following table
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%ﬁhmnx=[§ﬂ Basis matrix B xg=Blb | xextreme point?
% =[5, =[] T 25 ves
% =[5, =[] Hry M ves
w=bal | =[] 11 2] ves

c=[-1 —2 0 0]T, then computing the objective value cfxg, for each basic feasible solution

we get {[—1 —2][120//33 ,[—1 0] [g],[—l 0] [g]}z {—%, —4, —2,}, thus the optimal

10/3]

X
objective value is —% corresponding to the optimal basic feasible solution xg = [x;] = [ 2/3 |

Exercise 2.10

Consider the following polyhedron

P ={(xq, X2, X3, x4)€R4| X1- X2 - 2X3< 1, -3X1- X3+ 2X%2 <1, %20, %, 20, X320, x4 2 0}

Find all extreme points and extreme directions of P and represent the point

x=[2 1 1 1] as a convex combination of the extreme points plus a non-negative
combination of extreme directions.

Solution:
(a) Converting into the standard form
X1-X5-2X3 +X5 =1
-3x; -X3+2x4  4x5=1
x120,x,20,x320, x4 20, x5 20, x5 20
with
1 -1-2010
-3 0 -1201

following table lists all basic feasible solutions.

A=| ],bz[i} There are (6

2)=15 possible extreme points. The

Partition x = [));3] Basis matrix B xg = B~1b X extreme point?

5

IS = N . B
X6
%,

wel | w1 0
X5
X

oI I o I &
X6
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X1
=[] = |xs [o 1 R
B = |x6 N xs 01 1 yes

X4
X1 1 X1 1 X1
X X X

Then we have 4 extreme points to P ie. x! = X; = g , X2 = Xz = g , X3 = Xz =

X4 2 X4 0 X4

0 X1 0
l : “ X4 ) XZ“ ) |;0“

0l X3 ol
0.5 X4 0

Construct direction set D = {deR" | Ad < 0,d 20, e'd = 1}. A direction of D is an extreme direction
of P if and only if d is an extreme point of D when D is a polyhedral set. Then
d;—d;—2d;3 <0
—3d; —d;+2d,<0
d;i+d,+ds;+d;, =1
d;20,d,20,d320,d,20

Converting into standard form
dl—dz—ng +d5 =0

—3d; —d;+2d; +ds;=0
d;+d,+d;+d, =1
d;20,d,20,d320, d; 20, ds 20, ds 20
with
1 -1-2010 0
A=]-3 0 -1 20 1l,b = [Ol.There are (g) = 20 possible extreme points.
1

1 1 1 100

The following table lists all basic feasible solutions.

Partition d = [SB] Basis matrix B dg =B71b d extreme point?
N

dy ds) 1 -10 0.28571429

dg = [d; dy = |ds -3 0 2 0.28571429 yes
d, dg 1 11 0.42857143
d1 -d3- 1 —1 1 0

dB = dz dN = d4 -3 00 [ll yes
[ds | dg [ 1 1 o0l 1
d1 _d3_ 1 —1 O 05

dB = dz dN = d4 -3 01 [05] yes
dg ds 1 10 1.5
d ] da] 1 -20 10.30769231]

dg = |d3 dy = |ds [—3 -1 2] 0.15384615 yes
d, de 1 1 1 10.53846154.
d ] da] 1 =20 10.66666667]

dg = |d3 dy = [d4 [—3 -1 1] 0.33333333 yes
[dg ] ds 1 10 2.33333333.
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d, d; -1-21 1
dg = |d3 dy = |ds 0 —-10 0 yes
ds | dg 1 10 1]
d, d; —10 1 1
dg = |d4 dy = |d3 0 20 0 yes
ds de [1 10 1
d, d, —11 0 1
dg = |ds dy = |d3 001 1 yes
dg d, (1 00 0
ds] 7dg ] —2 0 1] 0.66666667
dg = |d, dy = |d; -120 0.33333333 yes
ds [d] 1 10 1.33333333
ds) dq] —2 1 0] 1
dB= d5 dN= dz -1 01 yes
dg d,] 1 00
di] [0.28571429 d, 0
Then we have 7 extreme directions to P i.e. d! = d — [0-28571429 , d? = d =1 ,
ds 0 ds 0
d,] [0.42857143 dy 0
d;17 T0.5 dg 0.30769231 [d;]  [0.66666667 dy
d3=d2=0-5 d* = daf _ 0 ds = daf _ 0 d6:d2:
d; 01’ ds 0.15384615]| ’ ds 0.33333333|’ d;
dJ Lo d, 0.53846154 d, 0 d,
0 T d, 0
0 d7 — d2 — 0
0.66666667 | ds 1|
0.33333333] d, 0
X1 2
X3 1
Now for x = Xs 1 by the Resolution Theorem,
X4 1
2 1 1 0 0 0.28571429 0 0.5
1]l _, |o 0 0 0 0.28571429 1 0.5
1—)\10"‘}\20""}\3 0 +?\40+u1 0 +u20+u3 0
1 2 0 0.5 0 0.42857143 0 0
0.30769231 0.66666667 0
0 0 0
tHalo 15384615 T M5 [0.33333333] T M6 |0.66666667] T |1
0.53846154 0 0.33333333. 0

ML+ +0,=1
A=20i=1,...4
w=0i=1,..7
Then, solve the system of equations to get

38




17 [0.857064367
2| 10.40855584

A
1] [0.07308039 us| [0.69313724

A
A= |2 = |045453457) 1y | = | 0.74249143).

A . BT
}\3 ggg‘gigé;g Hs 0.97872297
4 ' He 0.19987637

71 10.42627865-

Exercise 2.11
Solution:
Suppose that x* is an optimal solution. Select € > 0 such that the set B(x*, €) = {x | | |x-x*|| < &}

is completely contained in P i.e. B(x*, &) C P.Llet X = x* + —= € B(x",£) C P. then
llcll 2

cTg = cTx* + ||c||§ > c¢Tx* since ¢ # 0.

So x* is not an optimal solution, a contradiction. (o).

Exercise 2.12
Solution:
A constraint is deleted means the feasible set is larger.
If the problem is a maximization, then the optimal objective value may increase, if the problem

is @ minimization then the objective may decrease.

Exercise 2.13

Solution:
(=>)
Suppose P is bounded and that it has an extreme direction, then forany X € P and X+ ad
€P for all a = 0. In particular we can make ||X + ad|| arbitrarily large by choosing o
arbitrarily large. Contradiction so there is no extreme direction if P is bounded.
(<=)
Now suppose P has no extreme direction, then by Resolution theorem any x € P can be
represented as x = Y, A;v; where ;=0 and Y¥X,A; =1 and v; is an extreme point. So
[Ix]] = ||21K=17\1Vi|| = }illl)\ivill which is bounded.

Exercise 2.14
Solution:
(a) Suppose x* € P is a vertex, then there is a vector ¢ such that ¢’x* < c¢’x for all x € P,
and x* # x. Now let x; andx, € P, and x* # x; and x* #X,. Thenforany 0 <A <1,
c'x* < ' (M + (1 -\)x,) since ¢'x* < ¢'x; and ¢'x* < c'x,, thus x* # Ax; + (1 —2A)x, and so
x* can’t be represented as a convex combination of two other elements in P, therefore x* is

an extreme point. (H)

39



(b) Let x* be a basic feasible solution and let / = { i | o;'x" = b; } be the index set of constraints of

Tx* = Yi ol x* = Yierb;, now for any feasible

P at equality. Now let ¢ = )i @;, then ¢
X €P we have afx = b;, so cTx = Yigafx = Tig b, s0 x* is a unique minimize of c'x

over P and thus a vertex. (H)

Exercise 2.15

Write MATLAB code that takes a linear program in standard form and solves for the optimal
solution by generating all possible basic feasible solutions. Assume that the linear program has a
finite optimal solution.

Solution: the MATLAB code written as follows:
function [non_sigular, sigular, non singu infeasi] =
enumerate extre ps (A, b)

% enumerate extre ps returns classify the different set

o

for a given matric A and RHS b of a linear system

o

o

Inputs:

o

A is the matrix from of coefficients of the linear system

o

b is a vector of the linear system

o

% Outputs:

% non_sigular is a struct includes the non-singular basis and the

% corresponding extreme point and subscript set of variables.

% sigular is a struct includes the singular basis and

% the subscript set of variables.

% non_singu infeasi is a struct includes the non-singular basis, and
subscript

o

set of variables, however the extreme point is infeasible.

Non singuSet=[]; SinguSet=[]; InfeasiSet=[];
non_sigular=[]; sigular=[];
non_singu_infeasi=[];
[m, n] = size (A); %Snumber of basic variables and number of total variables
Combi = combntns(l:n, m); % the total possible combinations
epsi=1/10"22;
for a = l:size(Combi, 1)

B = A(:, Combi(a,:));

sigu(a) = det(B); % decide B if it is nonsingular

if abs(sigu(a)) >= epsi

if min(B\b) < 0 % if any infeasible solution
InfeasiSet = cat(l, InfeasiSet, Combi(a,:));

else
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end

for

end

for

end

for

end

Non singuSet = cat(l, Non_ singuSet, Combi(a,:));
end
else
SinguSet =cat (l, SinguSet, Combi(a,:));

end

a = l:size(Non_ singusSet,1)
non_sigular{a}.set = Non singuSet(a,:);
non_sigular{a}.B = A(:, Non singuSet(a,:));

non sigular{a}.extremPoint = non sigular{a}.B\b;

a = l:size(SinguSet,1)
sigular{a}.set = SinguSet(a,:);

sigular{a}.B = A(:, SinguSet(a,:));

a = l:size(InfeasiSet,1)

non_singu infeasi{a}.set = InfeasiSet(a,:);

non_singu infeasi{a}.B = A(:, InfeasiSet(a,:));

non_singu infeasi{a}.extremPoint = non singu infeasi{a}.B\b;
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