
Chapter 2

1. Let A and B correspond to having a pool and air-conditioning, respectively. Then
P(A∪B) = P(A)+P(B)−P(AB) = P(A)+P(B)−P(A)P(B) = 0.2+0.6−0.2 ·0.6 = 0.68.

2. P(AcB) = P(B)−P(AB) = P(B)−P(A)P(B) = (1−P(A))P(B) = P(Ac)P(B). The
other cases are considered similarly.

3. (a) If ω1 and ω2 do not coincide, then P([ω1]∩ [ω2]) = P( /0) = 0. Hence, if P([ω1]) 6= 0
and the same is true for [ω2], then the events are dependent. However, if P([ωi]) = 0 for at
least one i = 1,2, then the events are independent by definition.

(b) If both events have positive probabilities, then they are dependent. However, if for
example, P(A) = 0, then P(AB) ≤ P(A) = 0, and the events A,B are independent by defini-
tion.

(c) The events are independent, since as was proved in Exercise 1.24, P(A1A2) = 1, and
hence, P(A1A2) = P(A1)P(A2).

4. Our intuition says that the events are dependent because under the condition that
among two cards chosen there is, say, a king, the chances of having an ace decrease. For-
mally, P(A1) = P(A2) =

((4
2

)
+

(4
1

)(48
1

))/(52
2

)
. (To have at least one king we should select

either two kings out of four, or one king and one card from 48 cards which are not kings.)
Similarly, P(A1A2) =

(4
1

)(4
1

)/(52
2

)
. We see that P(A1A2) 6= P(A1)P(A2).

5. Clearly, P(A)= 1/2 and P(B)= P(X and Y are both even)+P(X and Y are both odd)=
1
2 ·

1
2 + 1

2 ·
1
2 = 1/2. On the other hand, P(AB) = P(X and Y are both even) = 1

2 ·
1
2 = 1/4.

Thus, A and B are independent.
Furthermore, clearly, P(A) = P(X = 4) = 1/6 and P(AB) = P(X = 4,Y = 4) = 1/36. On

the other hand, P(B) = 9
36 = 1

4 , as is easy to compute, for example, counting all outcomes
for which X +Y is divided by 4. Hence, A,B are dependent.

6. Straight calculations lead to P(A) = 14/15 , P(B) = 11/15, P(AB) = 10/15. Hence,
as is easy to see, A and B are dependent.

However, we did not have to provide calculations. If Ω = {ω1,ω2,ω3,ω4}, A = {ω1,ω2,ω3},
and B = {ω2,ω3,ω4}, and p1 and p4 the elementary probabilities of the outcomes ω1 and
ω4 respectively, then P(A) = 1− p4, P(B) = 1− p1 and P(AB) = 1− p1 − p4. For the
independency of A and B, we should have

(1− p1 − p4) = (1− p1)(1− p4),

which is equivalent to p1 p4 = 0. Thus, at least one of probabilities, p1 or p4, should equal
zero.

7. (a) There are four outcomes, and hence P(A1) = 1
2 , P(A2) = 1

2 , and P(A1A2) = 1
4 .

9
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(b) Similarly, if there are n trials, and Ai = {the ith trial is successful}, then P(Ai) =
2n−1

2n = 1
2 . On the other hand, for any sample i1, ..., ik, we have P(Ai1 · · ·Aik) = 2n−k

2n = 1
2k .

8. We have P(A1) = 1
2 , P(A2) = 1

2 , P(A3) = 1
2 . The events A1,A2 are independent. Fur-

thermore, A1A3 = A1A2, and A2A3 = A1A2, either. This implies that P(A1A3) = P(A2A3) =
P(A1A2) = P(A1)P(A2) = 1

4 , and all three events are pairwise independent. However,
A1A2A3 = A1A2, and hence, P(A1A2A3) = P(A1A2) = 1

4 6= P(A1)P(A2)P(A3).

9. Since n = 3, relation (1.1.4) leads to (1.1.2) for k = 2, and to (1.1.3) for k = 3.

10. For Fig.6a, we have 1− (1− p1 p2 p3)(1− p4) = p4 + p1 p2 p3 − p1 p2 p3 p4.
11. The probability of passing both tests is(

10

∑
i=5

(
10
i

)
pi

1(1− p1)10−i

)(
20

∑
i=10

(
20
k

)
pk

2(1− p2)20−k

)
.

12. If p = q = 1
2 , then the r.-h.s. of (1.2.2) becomes

(n
k

)
2−n.

13. The probability in hand is 1− (0.91)15 −15 ·0.09(0.91)14 ≈ 0.396.

14.
(5

3

)( 1
64

)3 (
1− 1

64

)2 = 10 ·6−12(1−6−4)2.

15. This exercise is relevant to Exercise 1.43. Let n be the number of tosses, and Sn

be the number of heads. If n = 100, then Sn takes on an odd number of values and the
maximum of P(Sn = k) is attained at k = 50. Hence, P(Sn ≤ 49) = P(Sn ≥ 51) < 0.5.
Hence P(Sn ≤ 50) > 0.5. Excel gives P(S100 ≤ 50) > 0.5397.

If n = 101, then the maximum of P(Sn = k) is attained at two points: k = 50 and k = 51,
and P(Sn ≤ 50) = 0.5.

16. Excel gives ∑55
i=0

(100
i

)
(0.55)i(0.45)100−i ≈ 0.53867. The theoretical comments are

given in the exercise itself.
17. The events Bk,n are disjoint because they concern the precise values of the number

of successes. The sum of the probabilities equals one because ∪n
i=0Bk,n = Ω. It also follows

from the binomial formula ∑n
i=0

(n
k

)
pkqn−k = (p+q)n = 1n = 1.

18. (a)
( 4

6

)3 (1
6

)2 ≈ 0.00823.

(b)
(5

2

)( 4
6

)3 ( 1
6

)2 ≈ 0.0823.

(c)
(1

3

)5 ( 2
3

)
≈ 00274.

(d)
(1

3

)5 ≈ 0.004.

(e) the same as (d):
(1

3

)5 ≈ 0.004.

(f) The first run of black will happen on the fifth roll with a probability of
( 1

3

)( 2
3

)3 (1
3

)
.

The same probabilities for green and red are
( 5

6

)( 1
6

)3 (5
6

)
. Hence, the probability of interest

is
( 1

3

)( 2
3

)3 (1
3

)
+2

(5
6

)( 1
6

)3 (5
6

)
≈ 0.039.

19. (a)
( 1

6

)6. (b) 6!
3!3!1!

( 1
6

)6.
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20. Let A = {bb,bg,gb} and B = {bg,gb,gg}. Then P(A |B) = P(AB)
P(B) = P(bg,gb)

P(B) = 2/4
3/4 =

2/3.

21. There are 12 outcomes for which the sum is divided by 3. Hence, the probability in
hand is 1/36

12/36 = 1
12 .

22. Let A be the event that the first player does not have spades, and B be the analogous
event for the second player. Then, P(A) =

(39
13

)/(52
13

)
, and

P(AB) =

(39
13

)(26
13

)(52
13

)(39
13

) =

(26
13

)(52
13

) .

Hence, P(B |A) =
(26

13

)/(39
13

)
.

Another way of reasoning may be as follows.
Once the first player did not get spades, there are totaly

(39
13

)
possible hands for the second

player, and all 13 spades are among these 39. Hence, there are
(26

13

)
hands without spades

for the second player.

23. In the first case, the area of A1A2 constitutes one-forth of the area of A2. Hence,
P(A1 |A2) = 1/4, and P(A1) = 1/4 also. (This confirms that A1 and A2 are independent.)
For the second case, P(A1A2) = 0, and hence, P(A1 |A2) = 0.

If A1 = {x1 ≥ 0}, A2 = {x2 ≥ 0}, then in the first case, P(A1 |A2) = 1/2 = P(A1), so A1
and A2 are independent. In the case (b), the area of A1A2 constitutes a half of the area of
A2, and we have P(A1 |A2) = 1/2 = P(A1). So, A1 and A2 are independent.

24. If A ⊆ B, then AB = A, and hence P(AB)
P(B) = P(A)

P(B) . If A ⊇ B, then P(AB)
P(B) = P(B)

P(B) = 1. If

A and B are disjoint, then P(AB)
P(B) = 0. The last two answers are obvious because, in the first

case if B has occurred, then A occurred also, while in the second case, if B has occurred,
then A cannot occur.

25. (a) The probability in hand is 1
2(1− p1)+ 1

2 p2 = 1
2(1− p1 + p2). (b) The conditional

probability in hand is
1
2(1− p1)

1
2(1− p1)+ 1

2 p2
=

1− p1

1− p1 + p2
.

26. For the conditional probability in hand, the corresponding ratio is
6
15

6
15 + 4

15 + 1
15

=
6

11
.

27. (a) Let B1 be the event that a student selected at random knows the correct answer,
B2 = Bc

1, and A be the event that the student has answered correctly. We have P(A) =
P(A |B1)P(B1)+P(A |B2)P(B2) = 1 ·0.8+0.5 ·0.2 = 0.9.

(b) P(B2 |A) = P(A |B2)P(B2)
P(A) = 0.5·0.2

0.9 = 1
9 .

28. (a) Let B1 be the event that Joan hikes in the first area, B2 = Bc
1, and A be the event

that Joan saw a snake. We have P(A) = P(A |B1)P(B1) + P(A |B2)P(B2) = 0.02 · 0.5 +
0.01 ·0.5 = 0.015.
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(b) The two areas are equally likely to be chosen, and the probability of seeing a snake
in the first area is twice as large as the probability for the second area. So, it is reasonable
to guess that given that a snake has been seen, the probability that it happened in the first
area is 2/3. Rigorously, P(B1 |A) = P(A |B1)P(B1)

P(A) = 0.02·0.5
0.015 = 2

3 .

29. (a) Depending on what happened in the first draw, the chances to select a red ball in
the second draw may get larger or smaller. By analogy with the classical case c = 0, one
may conjecture that one possibility compensates the other.

(b) By the formula for total probability, the probability in hand is

r + c
r +b+ c

· r
r +b

+
r

r +b+ c
· b

r +b
=

r
r +b

(
r + c

r +b+ c
+

b
r +b+ c

)
=

r
r +b

.

(c) Given that the second ball is red, the event that the first ball was red becomes more
plausible, and one may conjecture that the larger c, to the larger extent it is manifested.
Taking into account the result of Problem (b), for the conditional probability in hand we
have

r+c
r+b+c ·

r
r+b

r
r+b

=
r + c

r +b+ c
.

30. Given the fifth component works, the probability that the signal will go through is
q1 = (p1 + p2− p1 p2)(p3 + p4− p3 p4). Given the fifth component does not work, the same
probability is q2 = 1− (1− p1 p3)(1− p2 p4) = p1 p3 + p2 p4 − p1 p2 p3 p4. By the formula
for total probability, the probability of interest is p5q1 +(1− p5)q2.

31. There are three possible situations: both will catch a fish, only one will catch a fish,
and nobody will catch a fish. Denote the corresponding events by B1,B2,B3, respectively;
and by A the event that a particular person, say the first, will bring a fish home. By the
formula for total probability,

P(A) = P(A |B1)P(B1)+P(A |B2)P(B2)+P(A |B3)P(B3)

= 1 · p2 +
1
2

2p(1− p)+0 · (1− p)2 = p.

This means that the agreement (being, certainly, friendly) does not make chances to bring
a fish home larger. The friends should just arrange a joint dinner with what they caught.

32. In an output sequence, digits appear independently regardless of whether they will
be distorted or not. Consider a particular position and denote by Bk the event that the
digit k will appear in the input sequence, and by C the event that a particular digit, say 0,
will appear in the output sequence. Then, P(C) = P(C |B0)P(B0)+∑9

k=1 P(C |Bk)P(Bk) =
1
10 p+9 · 1

10(1− p)1
9 = 1

10 . Thus, in the output sequence, all digits are equally likely also.
Let A be the event that the output sequence is 01, and B is the event that the input sequence

is 00. We have P(A |B) = [p+(1− p)1
9 ] · [(1− p)1

9 ]. Then

P(B |A) =
P(A |B)P(B)

P(A)
=

[p+(1− p)1
9 ] · [(1− p)1

9 ] · 1
10 ·

1
10

1
10 ·

1
10

= [p+(1− p)
1
9
] · (1− p)

1
9
.
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33. The Bayes formula may be rewritten as P(B1 |A) =
P(AB1)

P(AB1)+P(AB2)
. So, if

P(AB1) > P(AB2), then P(B1 |A) > 1
2 , and hence P(B2 |A) < 1

2 < P(B1 |A).

34. Let B1 be the event that Ms. K. took a tutoring course, B2 = Bc
1, and A be the event

that Ms. K. has passed the exam. We have P(B1) = 0.12, P(A |B1) = 0.9 while P(A |B2) =
0.7. We have P(A) = P(A |B1)P(B1)+P(A |B2)P(B2) = 0.9 ·0.12+0.7 ·0.88 = 0.724, and
P(B1 |A) = P(A |B1)P(B1)

P(A) = 0.9·0.12
0.724 ≈ 0.150.

35. (a) Either by the formula for total probability or directly by the multiplication rule,
considering all possible results concerning the first selection, for the desired probability we
have

10
21

· 5
11

· 17
30

+
10
21

· 6
11

· 16
30

+
11
21

· 5
11

· 16
30

+
11
21

· 6
11

· 15
30

=
368
693

.

(b) We have already found the probability of the condition. The numerator of the corre-
sponding formula is the probability that all people chosen are females. It is 11

21
6
11

15
30 . Hence,

the conditional probability in question is 11·6·15
21·11·30 = 99

368 .

36. Let Bi be the event that a randomly chosen citizen lives in province i; i = 1,2,3. Let
A be the event that this person called to the company. We have P(B1) = 0.4, P(B2) = 0.35,
P(B3) = 0.25; P(A |B1) = 0.55, P(A |B2) = 0.3, P(A |B3) = 0.2. Furthermore, P(A) =
P(A |B1)P(B1) + P(A |B2)P(B2) + P(A |B3)P(B3) = 0.55 · 0.4 + 0.3 · 0.35 + 0.2 · 0.25 =
0.375, and P(B1 |A) = P(A |B1)P(B1)

P(A) = 0.55·0.4
0.375 ≈ 0.587. The fact that P(B1 |A) > P(B1) is

not surprising: people living in the first province are more interested in gardening that
people from the other provinces.

37. Let B1,B2,B3 be the events that a randomly chosen person saw an ad only in a
newspaper, saw it in TV, and did not see an ad at all, respectively. Let A be the event
that this person bought the product. We have P(B1) = 0.02, P(B2) = 0.1, P(B3) = 0.88;
P(A |B1) = 0.1, P(A |B2) = 0.3, P(A |B3) = 1/30.

(a) We have P(A) = P(A |B1)P(B1)+P(A |B2)P(B2)+P(A |B3)P(B3) = 0.1 ·0.02+0.3 ·
0.1+(1/30) ·0.88 = 0.0613̄ .

(b) P(A |B1)P(B1)+P(A |B2)P(B2) = 0.1 ·0.02+0.3 ·0.1 = 0.032.
(c) We should expect the conditional probability in hand larger than P(B2) = 0.1 because

the percentage of people who buy the product is the largest among those who have seen the
TV ad.

(d) P(B2 |A) = P(A |B2)P(B2)
P(A) ≈ 0.3·0.1

0.613 ≈ 0.489.

38. The probability p9 is the probability of reaching the level a (before ruin), while in
our case, p coincides with the probability of reaching the level a immediately, in one step.

39. Denote by Au(a) the event that the process dropped to zero level, and it happened
before the capital reached the level a. That is, this the same event Au but we have indicated
the dependency on a. Clearly, if Au(a) occurred, then for any b > a, the event Au(b) has
also occurred. This means that the ruin probability, as a function of a, is increasing. In
particular, this implies that the probability in (2.4.7) is larger than that in (2.4.5).
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This may be also shown directly. For r 6= 1,

P(Au(a)) =
ru − ra

1− ra = 1− 1− ru

1− ra .

It is easy to see that the last function is increasing in a regardless of whether r is larger or
smaller than 1.

We derived (2.4.7) for the case p > 1/2, which is equivalent to r < 1. In this case, the
function above converges to ru as a → ∞.

40. (a) Since p
1−p = 3, the parameter r = 1

3 , and for the capital u needed, we have an
equation

(1
3

)u
< 0.01. A solution is u > ln100

ln3 ≈ 4.19. Since u is assumed to be an integer,
we come to u ≥ 5.

(b) The probability q1 is the probability of reaching zero, starting from one, and q coin-
cides with the probability of reaching zero, starting from one, in one step. So, if q 6= 1, then
q1 must be larger than q. Certainly, this follows from (2.4.7) also: q1 = r = 1−p

p ≥ 1− p = q.
(c) Let $500 be a unit of money. Mark will be ruined if his capital becomes negative.

The probability of dropping to −1 starting from 0, equals the probability of dropping to
zero starting from one. So, the probability of interest is 1−q1, and q1 = r. If p = 0.9, then
r = 1/9 and the desired probability is 8/9. To find p for which q1 ≤ 0.05, we solve the
equation 1−p

p ≤ 0.05, which leads to p ≥ 1
1.05 .

41. (a) (i) Following construction of Section 2.7, it is easy to see that if we lost at the
first time, the corresponding conditional probability is 1−p1

(1−p1)+(1−p2)
. This probability is

less than 1
2 if p1 < p2.

(ii) We have obtained in Section 2.7 that in the situation under discussion we will switch
if p1 + p2 > 1. It is impossible if p1 < 0.5 because in this case p2 < p1 < 0.5 also.

(b) Let A be the event that we won at the first time and after that, lost n times. Then
P(A |B1) = p1(1− p1)n and P(A |B2) = p2(1− p2)n. Since the prior probabilities P(B1) =
P(B2) = 1

2 , the posterior probability

P(B1 |A) =
P(A |B1)

P(A |B1)+P(A |B2)
.

This probability is larger than 1
2 if P(A |B1) > P(A |B2), which is equivalent to(

1− p1

1− p2

)n

>
p2

p1
.

For our particular case, it is equivalent to
( 7

8

)n
> 2

3 . It is easy to check that this is true for
n ≤ 3. Thus, at n = 4, we will switch to the other handle.

42. No. If, for example, the events An are independent, then for P(An occur infinitely often)=
0, it is necessary that ∑∞

1 P(An) < ∞.

43. (a) Since in Example 3-1 we assume the trials to be independent,

P(Bn) = P(An)
n−1

∏
k=1

P(Ac
k). (2.1)
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b) By Taylor’s expansion pn = 1
n +o

(1
n

)
, and hence, the series ∑∞

n=1 pn = ∞. Consequently,
by the Borel-Cantelli theorem, P(A) = 1. By (M-2.1),

P(Bn) =
(

1− e−
1
n

) n−1

∏
k=1

e−
1
k = (1− e−

1
n )exp

{
−

n−1

∑
k=1

1
k

}

=
(

1
n

+o
(

1
n

))
exp{− ln(n−1)− γ+o(1)} =

(
1
n

+o
(

1
n

))
1

n−1
e−γ eo(1)

= e−γ
(

1
n2 +o

(
1
n2

))
.

(c) In this case, pn = 1
n2 + o

( 1
n2

)
, and hence, the series ∑∞

n=1 pn < ∞. Consequently, by
the Borel-Cantelli theorem, P(A) = 0. Now, the probability that there will be no successes
during the first n trials is

n

∏
k=1

P(Ac
k) =

n

∏
k=1

e−
1

k2 = exp

{
−

n

∑
k=1

1
k2

}
→ e−

π2
6 as n → ∞.

44. (a) No, by Corollary 2, for independent events An, the probability P(A) may be equal
only to 0 or 1.

(b) If the trials are dependent, P(A) may be equal to any number between zero and one.
Let us give an example where P(A) = 0.5. Consider a box that contains two coins: one is
regular, and the other is “crooked” and, being flipped, comes up tails with probability one.
Let us imagine that we select a coin at random and toss it infinitely many times. Then, with
probability 0.5, there will be infinitely many heads, and with probability 0.5, there will be
no heads at all. Hence, in this case, P(A) = 0.5.




