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Introduction

Figure 2.1. Truss examples: (a) Montreal Biosphere Museum (b) Betsy Ross Bridge.

 Trusses are commonly used in the design of buildings,
bridges and towers.

 This chapter introduces you to the simplest 1-D structural
element, the bar element, and the finite element analysis
of truss structures using such element.

(a) (b)
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Introduction

 Most structural analysis problems can be treated as linear
static problem, based on the following assumptions

• Small deformations (loading pattern is not changed due to the deformed 
shape)

• Elastic materials (no plasticity or failures)

• Static loads (the load is applied to the structure in a slow or steady 
fashion)

 Linear analysis can provide most of the information about     
the behavior of a structure, and can be a good 
approximation for many analyses.
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Review of the 1-D Elasticity Theory

x P

L

A, E

Figure 2.2. An axially loaded elastic bar.

   
dx

xdu
x 

   xEx  

Strain-displacement relation

Strain-displacement relation

 Consider a uniform prismatic bar shown below 

Equilibrium equation

    0 xf
dx

xd

The displacement, strain and stress field in a bar needs to be solved under 
given boundary conditions, which can be done readily for a single bar, but 
can be tedious for a network of bars or a truss structure made of many bars.
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A truss is an assembly of axial bars …

Truss Modeling & Bar Element Formulation
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Figure 2.3. Modeling of a planar roof truss: (a) Physical structure (b) Discrete model.

Modeling of Trusses

 For the truss analysis, it is often assumed that
• The bars are of uniform cross sections and joined by frictionless pins.
• Loads are applied to joints only. 

 Based on the assumptions, truss members are considered to 
carry only axial loads and have negligible bending resistance.
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Formulation of the Bar Element

 Stiffness Matrix – Direct Method

Figure 2.4. Notation for a bar element.
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Element equilibrium equation is:

We conclude that the bar behaves like a 
spring. The element stiffness matrix is:

and Degree of Freedom (DOF):  Number of 
components of the displacement vector 
at a node. For 1-D bar element along the 
x-axis, we have one DOF at each node.Therefore
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 Stiffness Matrix – Energy Approach

Formulation of the Bar Element

Define two linear shape functions as follows 

  )(,1)( ji NN where 10,  
L

x

i j ξ
ξ = 0 ξ = 1 

Ni(ξ) 
= 11 

i j ξ
ξ = 0 ξ = 1 

Nj(ξ) 
= 1 1 

Figure 2.5.  The shape functions for a bar element.

We can write
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where B is the element strain-displacement matrix  LL /1/1B

and
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Formulation of the Bar Element
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Formulation of the Bar Element

 Treatment of Distributed Load

Figure 2.6.  Conversion of a distributed 
load on one element.
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Distributed axial load q can be converted to two equivalent nodal forces using 
the shape functions. Consider the work done by the distributed load q.
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Formulation of the Bar Element

Setting
qfq WW  , we obtain the equivalent nodal force vector
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Figure 2.7.  Conversion of a 
distributed load with constant 
intensity q on two elements.
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Formulation of the Bar Element

 Bar Element In 2-D and 3-D

2-D Case
x
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vi

Figure 2.8.  Local and global coordinates for a bar in 2-D space.

Local Global 

x, y X, Y

'', ii vu ii vu ,

1 DOF at each node 2 DOFs at each node

12



Finite Element Modeling and Simulation with ANSYS Workbench, © CRC Press, Boca Raton, FL, 2014. All rights reserved. Chapter 2/53

Formulation of the Bar Element

Displacement vectors in the local 
and global coordinates are related 
as follows
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Formulation of the Bar Element

In the local coordinate system, we have
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Augmenting this equation, we write
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Formulation of the Bar Element

Using the transformations, we obtain
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Formulation of the Bar Element

3-D Case
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Figure 2.9.  Local and global coordinates for a bar in 3-D space.
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Formulation of the Bar Element

The transformation relation is
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FEM software packages will do this transformation automatically. 

The input data for bar elements are simply the coordinates (X, Y, Z) for 
each node, E and A for each element (Length L can be computed from the 
coordinates of the two nodes).

where ( , , ), ( , , ) and ( , , )X Y Z X Y Z X Y Zl l l m m m n n n

x, y and z coordinate axis in the global coordinate system, respectively. 

are the direction cosines of the local
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Formulation of the Bar Element

 Element Stress

Once the nodal displacement is obtained for an element, the stress within 
the element can be calculated using the basic relations. 

For 2-D cases, we proceed as follows
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which is a general formula for 2-D bar elements.
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That is,
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We now look at examples of 1-D stress and plane truss 
problems …

Examples with Bar Elements
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Examples with Bar Elements

x

1 2
3

L

A, E
2A, E

P

1 2

L

 Example Problems

Example 2.1

Problem:     Find the stresses in the two-bar assembly which is 
loaded with force P, and constrained at the two ends.

Solution: Use two 1-D bar elements.
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Examples with Bar Elements

For element 1,
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Assemble the global FE equation as follows
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Examples with Bar Elements

Load and boundary conditions (BCs) are
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FE equation becomes
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Examples with Bar Elements

Stress in element 1 is
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Similarly, stress in element 2 is
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Check the results: Draw the FBD and check the equilibrium of the structures.

P -P/3-2P/3
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Examples with Bar Elements
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Problem: Determine the support reaction forces at the two ends of the bar shown above, 
given the following 

4 4 2

2

6.0 10 N, 2.0 10 N/mm ,

250mm , 150mm, 1.2 mm

P E

A L =

   
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Example 2.2
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Examples with Bar Elements

We first check to see if contact of the bar with the wall on the right will occur 
or not.  To do this, we imagine the wall on the right is removed and calculate 
the displacement at the right end.
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Thus, contact occurs and the wall on the right should be accounted for in the 
analysis.

The global FE equation is found to be
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Examples with Bar Elements

The load and boundary conditions are
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Solving this, we obtain

)mm(

2.1

5.1

0

3

2

1


































u

u

u

26



Finite Element Modeling and Simulation with ANSYS Workbench, © CRC Press, Boca Raton, FL, 2014. All rights reserved. Chapter 2/53

Examples with Bar Elements

To calculate the support reaction forces, we apply the 1st and 3rd 
equations in the global FE equation.
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Check the results!
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X

Y P1

P2

45o

45o

3

2

1

1

2

Example 2.3

A simple plane truss is made of two identical bars (with E, A, and L), 
and loaded as shown in the above figure.

Find:
(a) displacement of node 2;
(b) stress in each bar.
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In local coordinate systems, we have
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Assemble the structure FE equation
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Solving this, we obtain 
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Example 2.4 (Multipoint Constraint)
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The global FE equation is
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From the transformation relation and the BC, we have
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Similarly, we have a relation for the force at node 3
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This is a multipoint constraint (MPC).
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Applying the load and BC’s in the structure FE equation by “deleting” the 1st, 
2nd and 4th rows and columns, we have
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Further, from the MPC and the force relation at node 3, the equation becomes
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Solving this, we obtain the displacements
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From the global FE equation, we can calculate the reaction forces
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Case Study with ANSYS Workbench

<Problem Description> Truss bridges can span long distances and support heavy weights 
without intermediate supports. They are economical to construct and are available in a 
wide variety of styles. Consider the following planar truss, constructed of wooden 
timbers, which can be used in parallel to form bridges. Determine the deflections at each 
joint of the truss under the given loading conditions.

1m 1m 1m 1m

1m

Material: Douglas Fir
E = 13.1 GPa
ν = 0.29
Member cross section:
height = 6 cm
width = 6 cm

30kN 30kN 30kN
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Step 1: Start an ANSYS Workbench Project
Launch ANSYS Workbench and save the blank project as ‘Woodtruss.wbpj’.
Step 2: Create a Static Structural (ANSYS) Analysis System
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Step 3: Add a New Material
Double-click on the Engineering Data cell in the above Project Schematic to edit or add a 
material. In the following Engineering Data interface which replaces the Project Schematic, 
click the empty box highlighted below and type a name, ‘Douglas Fir’, for the new material.
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Select ‘Douglas Fir’ from the Outline window, and double-click Isotropic Elasticity under 
Linear Elastic in the leftmost Toolbox window. Enter ‘1.31E10’ for Young’s Modulus and 
‘0.29’ for Poisson’s Ratio in the bottom center Properties window.
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Step 4: Launch the DesignModeler Program

Ensure Line Bodies is checked in the Properties of Schematic A3: Geometry window. 
Double-click the Geometry cell to launch DesignModeler, and select ‘Meter’ as length 
unit in the Units pop-up window. 
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Step 5: Create Line Sketch
Click the Sketching tab and select Settings. Turn on Show in 2D and Snap under Grid
options. 
Draw 13 lines as shown in the sketch below. After completion, click Generate to create a 
line sketch.
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Step 6: Create Line Body from Sketch
Check off the Grid options under Settings of Sketching Toolboxes. Switch to the Modeling
tab. Note that a new item named Sketch1 now appears underneath XYPlane in the Tree 
Outline.
Select Sketch1 from the Tree Outline and click Apply to confirm on the Base Objects
selection in the Details of Line1. Click Generate to complete the line body creation. 
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Step 7: Create a Cross Section
Select a Cross Section of Rectangular from the Concept drop-down menu. A new item 
named Rect1 is now added underneath the Cross Section in the Tree Outline. In the 
Details of Rect1 under Dimensions, enter ‘0.06m’ for both B and H. 

46



Finite Element Modeling and Simulation with ANSYS Workbench, © CRC Press, Boca Raton, FL, 2014. All rights reserved. Chapter 2/53

Case Study with ANSYS Workbench

Step 8: Assign Cross Section to Line Body
Select the Line Body underneath 1Part, 1 Body in the Tree Outline. In the Details of Line 
Body, assign Rect1 to the Cross Section selection. Click Close DesignModeler to exit the 
program.
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Step 9: Launch the Static Structural (ANSYS) Program
Double-click the Model cell to launch the Static Structural (ANSYS) program. Note that in 
the Details of “Line Body” the material is assigned to Structural Steel by default. Click to 
the right of the Assignment field and select Douglas Fir from the drop-down context menu.
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Step 10: Generate Mesh
In the Details of “Mesh”, enter a fairly large number, say,‘10m’, for the Element Size, to 
ensure each member is meshed with only one element. In the Outline of Project, right-
click on Mesh and select Generate Mesh.
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Step 11: Apply Boundary Conditions
In the Outline of Project, right-click on Static Structural (A5) and select Insert and then 
Fixed Support. After completion, a Fixed Support item is added underneath Static 
Structural (A5) in the project outline tree.
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Step 12: Apply Loads
In the Outline of Project, right-click on Static Structural (A5) and select Insert and 
then Force. In the Details of “Force”, click Apply to confirm on the Geometry 
selection. Also underneath  the Details, change the Define By selection to 
Components and enter ‘-90000N’ for the Y Component.
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Step 13: Retrieve Solution
Insert a Total Deformation item by right-clicking on Solution (A6) in the Outline tree.
Right-click on Solution (A6) in the Outline tree and select Solve. The program will start to 
solve the model. After completion, click Total Deformation in the Outline to review the 
total deformation results.
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Summary

In this chapter,

We study the bar elements which can be used in truss analysis. 

 The concept of the shape functions is introduced and the derivations of 
the stiffness matrices using the energy approach are introduced.

 Treatment of distributed loads is discussed and several examples are 
studied. 

 A planar truss structure is analyzed using ANSYS Workbench. It provides 
basic modeling techniques and shows step-by-step how Workbench can 
be used to determine the deformation and reaction forces in trusses.
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