2 Truss Analysis: Force Method, Part |
1.1 Introduction

The formulation of the governing equations with the forces as unknown
variables.

Provide insight on how the externally applied loads are transmitted and
taken up by the members of the truss.

Statically determinate = SOlVed by the equilibrium equations alone

Statically indeterminate === additional equations based on the
geometric compatibility or consistent
deformations



1.2 Statically Determinate Plane Truss Types

Simple Truss

basic triangle of three bars and three nodes

adding two-bar-and-a-node one at a time




Compound Truss two or more simple trusses linked together

complex truss

Stable and unstable complex trusses.



Conclusions:

(1) Stability depends on the adequacy of external supports and internal
member connections. If M+R<2N, it Is always unstable, a truss turning into
a mechanism under certain loads.

(2)For a stable plane truss, if M+R=2N, then it is statically determinate.

(3)A simple truss is stable and determinate.

(4) For a stable plane truss, if M+R>2N, then it is statically indeterminate.
The discrepancy between the two numbers, M+R-2N, is called the degrees
of indeterminacy, or the number of redundant forces.



Statically indeterminate trusses.

The truss at the left is statically indeterminate to the first degree
because there is one redundant reaction force: M=5, R=4, and
M+R-2N=1.

The truss in the middle is also statically indeterminate to the first
degree because of one redundant member: M=6, R=3, and M+R-2N=1.

The truss at the right is statically indeterminate to the second
degree because M=6, R=4 and M+R-2N=2.



1.3 Method of Joints and Method of Sections

The method of joints
*+a FBD is selected: at the joints of a truss one at a time.
ssFrom each FBD, two equilibrium equations are derived.

ssprovides insight on how the external forces are balanced
by the member forces at each joint.

The method of sections

*+FBD is a portion of the structure created by cutting through
one or more sections.

ssFrom each FBD, three equilibrium equations are derived.

ssprovides insight on how the member forces resist external
forces at each “section”



Example 2.1 Find all support reactions and member forces of the loaded
truss shown.

dm

Solution

(1) Identify all force unknowns.

[LOKN
The member forces \ 0-5kN The reaction forces
are F;, F,, and Fs. @ are Ry, Ry, and R .
1 ©
S
R R

yl y3
Free-Body diagram of the three-bar-truss to expose the reaction forces.



(2) Examine the static determinacy of the structure.
number of all member force unknowns as M

number of reaction forces as R

total number of force unknowns is M+R

M=3, R=3 and M+R =6.

number of equilibrium equations available is 2N
N is the number of nodes in a truss.

N=3 and 2N=6

M+R=2N statically determinate

Reach the same conclusion if we note that the truss is a simple truss.



(3) Solve for force unknowns.

(a) Find all reactions.

ll.O KN
23— 0.5 kN
@
1 ©)
Rx1—>T TS
R R

ZFX:O ) Rxl+0.5:0 =) Rx]_:_o.5 kN

My =0 => Ry3(6) —(1.0)(3) =(0.5)(4) =0 =>{ Ry = 0.83 kN




(b) Find member forces.

Joint 1.

> F,=0,

F,(4/5)+0.83=0,

—F,(3/5) - F,=0,

F,(4/5)+0.17=0,

F,=-1.04 KN

F,=0.62 kN

F,=-0.21 KN

0.83 kN

, J F1
o 5 —

TOl?kN

There are no more than six independent equilibrium equations.

Select those equations that give us the easiest way of getting the
answer to the unknown forces



Example 2.2 Find all reaction and member forces for the loaded truss
shown.

,_1.5 m

3m
- Rx5

M=6, R=4 and M+R=10, a total of ten force unknowns.



(2) Examine the static determinacy of the structure.

There are five nodes, N=5. Thus
M+R=2N=10. This is a statically determinate problem.



(3) Solve for force unknowns.

There is no advantage in solving for the reactions first,
cannot solve from the FBD of the whole truss anyway.

Go from joint to joint in the following order, 3, 2, 4, 1, and
5, we will be able to solve for member forces one node at a
time and eventually getting to the reactions.

This way each node has no more then 2 unknowns.



‘s, /3$6\I<I;I& S F, =0, F(3/5)+ F4(3/5)= -6,

S F, =0, —F(4/5) + F4(4/5) =0

=» |F.=-5kN, F;=—5kN

S F, =0, Fo(4/5) + F,(4/5) =0, == |F, =5 kN.

2 5
L F 3% = F, =0, F5(3/5) - F,(3/5) -F;= 0, =s»|F;=—6kN




S F, =0, Fg(4/5) + F4(4/5) =0, wap

F, =5 kN.

¥ F, =0, F4(3/5) — F4(3/5) -F,= 0,

Joint 1.

S F, =0, R+ Fy(4/5)=0, b

Rx1

—4 KN.

S F, =0, Ry +F(3/5) +F,= 0, =

Ry:= 3 kN.




Joint 5.

SF,=0,Rc—F,(4/5)=0, = |R.=4KkN.

> F,=0,R+F4(3/5) +F,=0, = |R=3kN.

Note in both example problems, we always assume the member forces
to be in tension. This results in FBDs that have member forces
pointing away from the joints. This is simply an easy way to assign
force directions. Itis highly recommended because it avoids
unnecessary confusion that often leads to mistakes . 0



Example 2.3 Find the member forces in bars 4, 5, 6, and 7 of the loaded Fink
truss shown.

3@2m=6m kN

Solution We shall illustrate a special feature of the method of joints.

(1) Identify all force unknowns. The FBD of the whole structure would
have shown that there are three reactions. Adding the eleven member
forces, we have M=11, R=3 and M+R=14, a total of 14 force unknowns.

(2) Examine the static determinacy of the structure. There are seven
nodes, N=7. Thus M+R=2N=14. This is a statically determinate problem.



(3) Solve for force unknowns. Normally Fink trusses are used to take roof loading
on the upper chord nodes. We deliberately apply a single load at a lower chord node
in order to make a point about a special feature of the method of joints: zero force
members. We start by concentrating on Joint 5.

. _ — 7ero .I:O rce T
Joint 5. XF, =0, =» | F,=0 member y\/)( .
2F=0-Fg+Fy=0 = |Fg=F Fg F4
Joint 2. 2F,=0,and F, =0, = | F;=0.

F, Fe 2 FX = O, = 1= F 5



Joint 7.

zero force
member

- Fe F7

F. =0, from equilibrium of Joint 7. Ry F

S F,=0,Fg(2/2.23) =10 = |Fs=11.15kN.

That completes the solution for F,,F;,F; and F.



with the exception of member 6, all the web members are zero-force members

for this particular loading case. For purpose of analysis under the given load the
Fink truss is equivalent to the truss shown below.
[Zm

The zero force members are needed for other loading conditions. The
Interesting feature of the method of joints: we can identify zero-force

members easily if they exist under a given loading condition. This feature is
further illustrated in the next example.

v 10

kN
|< 4m | 2m .|

Ll




Example 2.4 ldentify zero-force members and equal-force members in
the loaded trusses shown.

Solution

The equilibrium of forces at joint C leads to F-;=0 and Fg-=Fp. Once we
know F.; = 0, it follows Fz5 =0 and then Fge = 0, based on the equilibrium
of forces at node G and node B, respectively. The equilibrium of forces at
joint F leads to F,=P and F=F;.



D
A B C vp

For practical purposes, the original truss problem is equivalent to the truss
problem shown below for the given loading case.

E

F 7P

We can identify:

(1) zero force members. At each joint, all the forces are concurrent forces. If
all the forces are co-linear except one then the lone exception must be zero.
(2) equal force members. If two forces at a joint are co-linear and all other

forces at the joint are also co-linear in another direction, then the two forces
must be equal. ]



Example 2.5 Find member forces in bars in the 37 panel from the left of
the truss shown.

4m

S

6@3m=18m I30kN

|=
I

;l

Solution We shall solve this problem by the method of sections
with the following procedures.

(1) Name all joints. We can refer to each joint by a symbol and each member by
the two end joints as shown in the figure below. We also define an x-y coordinate
system as shown. We need to find F,;, F;, and Fp. The truss is stable and
determinate.

4m

R | B C D E Iso N F GJRGV

6@3 M=18m




(2) Find reactions. We have to look at the FBD of the whole truss.

4m
RAH O
Ry B c b Evanun b GJ Rey
6@3 m=18m

(3) Establish FBD. We make a vertical cut through the 3 panel from the left,
thus exposing the member force of members 1J, CJ and CD.



4m

6@3 m=18 mI 30 kKN

S

3@ 3m=9m .
IMc=0, (4) F;+(6) Ryy =0,

IM;=0, —(4)Fcp+(9) Ry =0,

SF,=0, (0.8)Fq,+ Ry =0,

R, = 10 kN.

Fop = 2.25 R, = 22.5 kN.



To illustrate the effect of taking a different FBD, let us choose the right part
of the cut as the FBD. Note that we already know Rg,, = 20 kN.

J K L _
Fis 1

Rgy = 20 kN. ! Fo 4m

|‘ D E 130 N G‘T
| " Rgy




Example 2.6 Find member forces in bars in the 2"d panel from the
left of the truss shown.

Y3KN Y6 KN VOKN

4@ 4m=16 m

Solution The inclined chord geometry will cause complications in computation,
but the process is the same as that of the last example.

(1) Find reactions. This is a simple truss, stable and determinate.



4@ 4m=16 m

SM,=0 — (16) Rey+(4)3+(8)6+(12)9=0, Rp, =10.5 kN.
SM.=0 (16) Ry, — (12)3-8(6) — (4)9=0, Ry, =7.5 kN.

>F,=0 R, =0 kN.



(2) Establish FBD. We make a cut through the second panel from the left and
choose the left portion as the FBD.

;l

) 42m
FFC 1 3
m
17.5 o ¥ 3KN T R, '3KN YEKN YOKN Tg,
4m am 4 @ 4m=16 m

To find Fgz- we want to find a moment center that is the intersection of
the two other unknowns. The intersection point of Fr; and F. is point F.

SMe=0 — (3) Fgot(4)7.5=0, m=p  Fy. =10.00 kN.



Similarly, for Fr; we take moment about point C so that Fg is
the only unknown force in the ensuing equilibrium equation .

Frs can be transmitted to point K and the horizontal component of F at
K has no contribution to the equilibrium equation while the vertical
component is (2/4.47) Fr;=0.447 F; has, as shown in the left figure
below

4@ 4m=16 m

SMe=0 (10) 0.447F ;+(8)7.5— (4)3=0, ==p Frs=—10.74 kN



Alternatively we can transmit Fr to point G, and use the horizontal
component (4/4.47) Fr5=0.894 F; In the moment equation, as shown in
the left figure below.

g_-"re

F .
FG  0.894F

F 2m
FFC 3
m

TzskNISKN

5 - =!

m 4 @ 4m=16 m

4dm

SMc=0 (5) 0.894F;+ (8)7.5— (4)3=0, mmmp Fr;=-10.72 kN.



To find F- we need to go out of the region of the truss to find the moment
center (K) as the shown in the left figure below, and use the vertical
component of the transmitted F at point C.

Fre. 2291,
F 4
0.447F; e 7 E . —
........ 3m
Kt/l: B(J FB~C C_+

4 @4m=16 m

SMy=0 (10) 0.6Fq.— (2)7.5+(6)3=0, mmmp F..=-0.50kN.



Example 2.7 Find the force in the top and bottom chord members of
the third panel from the left of the K-truss shown.

A

A4

Y16 kN
. 6@3m=18 m .

Solution The K-truss is a simple truss that requires a special cut
for the solution of top and bottom chord member forces as we
shall see shortly. It is stable and determinate.

(1) Find reactions. Since the truss and the loading are symmetric, the
reactions at both supports are easily found to be 8 kN upward and there is no
horizontal reaction at the left support.



(2)Establish FBD. The special cut is shown by the dotted line below.

This particular cut separates the truss into two parts. We shall use the
left part as the FBD.

SMc=0, (6)8 - (8) Fg, =0 m—p  Fg,=6kN.

SM=0, (6)8+(8)Fgy =0  mmmp  Fg=-6KkN.



Alternatively, we may choose the right part as the FBD. The same results
will follow but the computation is slightly more involved.

E .“..FEH H

G Fev 16 kN 8 kN
|<—>|: :!
3m Om

SMg=0, (12)8-(3)16+(8)Fey =0  wmmb  Fg = —6kN.



Example 2.8 Find the force in the inclined web members of the third
panel from the left of the K-truss shown.

A4

116 kN
6@3m=18m |

Solution A different cut from that of the last example is needed to expose the
web member forces.

(1) Establish FBD. To expose the force in the inclined web members, we may
make a cut through the third panel.




This cut exposes four forces, the top and bottom member forces which are
known from the last example and the two inclined web member forces, Fg,,

and F;, which are unknown.

e o
|:|:|-| I4m I 4m
Fr; Em 4m
— J @, ),
fekn | +16 kN
3m ) 6@3m=18m |

In this case, the application of two force equilibrium equations produces the
desired results. In writing the equation for the horizontal forces, we note that
the top and bottom chord member forces cancel each other and will not
appear in the equation. In fact this is a special feature, which is useful for

the analysis of web member forces.




We observe that not only the top and bottom chord members have the same
magnitude forces with opposite signs, the inclined web members are in the
same situation. Furthermore, in the present example, the inclined web member
forces are the same in the second and third panel, i.e. Fog = Fey =5 KN, Fg =
Fe; = -5kN

This is because the FBD for these member forces yields equations identical to
those for the third panel.

- B €T
/Fee I4m
Ne

< F

CG 4m

8 kNt |<_;| ©

3m

SF,=0 (0.6)F g + (0.6) Fog = 0




Example 2.9 Discuss methods to find the force in the vertical web
members of the K-truss shown.

A4

116 kN
6@3Mm=18m

Solution We can use either the method of sections or the method of joints,
but the pre-requisite is the same: need to know the force in either the lower
inclined web member or the upper inclined web member.

(1) Method of sections.

Cut A exposes an upper web member a, and a
lower web member a’ . If F_. is known, F, can
be computed from the equilibrium equation for
forces in the vertical direction of the FBD to
the left of the cut and vice versa.




Cut B exposes the forces of a lower web member b, and an upper web
member, b’. If F,. is known, F, can be computed from the
equilibrium equation for forces in the vertical direction of the FBD to
the right of the cut and vice versa.

Cut C exposes the forces of the central vertical web member and two
Inclined web members; each force has a vertical component. Once the
forces in the two inclined web members are known, the force in the
central vertical member can be computed from the equilibrium equation
for forces in the vertical direction of the FBD to the left or right of the
cut.



(2) Method of joints.

At each of the circled joints, the vertical web member forces can be
computed if the force of the inclined web member is known.

For the central vertical web member, we need to know the forces of the
two joining inclined web members. In the present case, since the load is
symmetrical, the two inclined web members have identical forces. As a
result, the force in the central vertical web member is zero.



Example 2.10. Find the force in member a of the compound truss shown.

Solution The method of sections is often suitable for compound truss analyses.

(1) Identify truss type. This is a stable and determinate compound truss with three links,

a, b and c, linking two simple trusses. Each node has at least three joining members.
Thus, the method of joints is not a good option. We need to use the method of section.

(2) Find reactions. Since the geometry is simple enough, we can see that the
horizontal reaction at support A is zero and the vertical reactions at support A
and B are 10 kN and 5 kN, respectively.



(3) Establish FBD. By cutting through the three links, we obtain two FBDs.
We choose the upper-left one because it does not involve the applied force.

X Fc A
A g ™"
; Fa Yy
<] 5 T E %3 4m
4 10kN TP 4 v
3@3m=9m

|« .|
| >

To find F, we note that the other two unknown forces, F, and F_, are parallel to
each other, making it impossible to take moment about their intersection. Let’s
examine the force equilibrium in the direction perpendicular to the two parallel
forces, denoted in the above figure as the x-direction. We can decompose the 10
KN reaction at support A and the unknown force F, into components in the x-
direction and write the equilibrium equation accordingly.

SF, =0, (0.6)10+ (0.6) F, =0  mwmmp F,=—10kN. ]

END OF CH. 2



