
Programming 2D Games
Chapter 2:

Windows Programming Fundamentals

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Windows Programming Fundamentals

• Windows Application Programming
Interface (API).

• The Windows API may also be referred to
as WinAPI, Win32 API or just Win32.

• The API provides access to many of the
inner workings of Windows. P

ro
gr

am
m

in
g

2D
 G

am
es

C
op

yr
ig

ht
 ©

 2
01

2
T

ay
lo

r
an

d
F

ra
nc

is

“Hello World” Windows Style

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Getting Started with Visual Studio
• Create a new project by selecting File → New

→ Project from the menu or by clicking the
“New Project” button on the toolbar

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Getting Started with Visual Studio

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Getting Started with Visual Studio

• Select Visual C++ as the project type in the left
pane. In the center pane select “Empty Project”.

• Name the project “HelloWorld.” (The project
name is also the name given to the executable file
when the project is compiled.) The Solution
name defaults to the project name.

• Clear the checkbox labeled “Create directory for
solution.”

• Specify the location where the project should be
created and click OK.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Getting Started with Visual Studio

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Getting Started with Visual Studio
• Add a source file to the empty project by clicking

the “Add New Item” button on the toolbar.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Getting Started with Visual Studio
• Select “C++ File (.cpp)” in the center pane (A)

• Name the item “winmain” (B) and click the Add button (C).

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

“Hello World” Windows Style
• WinMain is the starting point of a Windows

program.

• The windows.h header file is required.

• The directive
#define WIN32_LEAND_AND_MEAN
is used to prevent unwanted files from being
included. P

ro
gr

am
m

in
g

2D
 G

am
es

C
op

yr
ig

ht
 ©

 2
01

2
T

ay
lo

r
an

d
F

ra
nc

is

“Hello World” Windows Style
• The WinMain function:

int WINAPI WinMain(HINSTANCE hInstance,

HINSTANCE hPrevInstance,

LPSTR lpCmdLine,

int nCmdShow)

• The return type is int.

• WINAPI is a calling convention that specifies parameter
passing protocols.

• The WinMain parameters are typically not used to control
the appearance of our window in game programs.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

The Window Class
• A window class must be created before we can

display our window.

• The window class defines features of the window.

• The window features are contained in a
WNDCLASSEX structure.

• Once we have the structure configured to our liking
we typically do no need to make any changes.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

The Window Class
WNDCLASSEX wcx;

HWND hwnd;

// Parameters that describe the main window.

wcx.cbSize = sizeof(wcx); // Size of structure

wcx.style = CS_HREDRAW | CS_VREDRAW; // Redraw if size changes

wcx.lpfnWndProc = WinProc; // Points to window procedure

wcx.cbClsExtra = 0; // No extra class memory

wcx.cbWndExtra = 0; // No extra window memory

wcx.hInstance = hInstance; // Handle to instance

wcx.hIcon = NULL;

wcx.hCursor = LoadCursor(NULL,IDC_ARROW); // Predefined arrow

wcx.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); // Background brush

wcx.lpszMenuName = NULL; // Name of menu resource

wcx.lpszClassName = CLASS_NAME; // Name of window class

wcx.hIconSm = NULL; // Small class icon

// Register the window class

if (RegisterClassEx(&wcx) == 0) // If error

return false;

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Our message handler

The Window Class
• The Window class must be registered with Windows

using the RegisterClassEx function.

// Register the Window class
// RegisterClassEx returns 0 on error
if (RegisterClassEx(&wcx) == 0) // If error

return false;

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

CreateWindow function
• The CreateWindow function is called to create the

window.
HWND CreateWindow(

LPCTSTR lpClassName,

LPCTSTR lpWindowName,
DWORD dsStyle,
int x,
int y,
int nWidth,
int nHeight,
HWND hWndParent,
HMENU hMenu,
HINSTANCE hInstance,
LPVOID lpParam

);

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

CreateWindow function parameters
• lpClassName. A pointer to a NULL-terminated string

containing the window class name. This name must match
the name used in the lpszClassName member in the
CreateWindowClass function.

• lpWindowName. The text that appears in the title bar.

• dsStyle. The style of window to create. Such as:

• WS_OVERLAPPEDWINDOW. Creates a resizable window with the
familiar controls.

• WS_OVERLAPPED. Creates a fixed size window with no controls. This
is the style we will most often use for windowed games.

• WS_EX_TOPMOST | WS_VISIBLE | WS_POPUP: These are three styles
combined with the OR ‘|’ operator. This is the style we will use for
full-screen games.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

CreateWindow function parameters

• x, y. The coordinates of the top-left corner of the
window.

• nWidth. The width of the window in pixels.

• nHeight. The height of the window in pixels.

• hWndParent. The parent window. Normally our
games will not have a parent window.

• hMenu. The window menu.

• hInstance. The application identifier from the
window class.

• lpParam. Additional window parameters.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Message Loop

• Windows communicates with our program by
sending it messages.

• A loop in WinMain is used to check for messages.

• If our application is going to accept character input
it needs to call the TranslateMessage function
inside the message loop.

• TranslateMessage converts virtual-key
messages into character messages.

• The messages are sent to our WinProc function for
processing by the DispatchMessage function.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Message Loop
// Main message loop

int done = 0;
while (!done)
{

// Check for Windows messages
if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
{

// Look for quit message
if (msg.message == WM_QUIT)

done = 1;
// Decode and pass messages on to WinProc
TranslateMessage(&msg);
DispatchMessage(&msg);

}
}
return msg.wParam;

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Be sure to use
PeekMessage, not

GetMessage

WinProc Function

• The WinProc function is used to process messages.
• The name used for this function must match the

name specified in the WNDCLASSEX structure.
• We respond to desired messages by placing code in
WinProc.

• Any messages we ignore will be handled by
Windows.

• The WM_DESTROY message is sent to our application
when our window is being destroyed.

• PostQuitMessage(0) sends a WM_QUIT message to
our program which ends the message loop in
WinMain.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

WinProc Function
//==
// Window event callback function
//==
LRESULT WINAPI WinProc(HWND hWnd, UINT msg,

WPARAM wParam, LPARAM lParam)
{

switch(msg)
{

case WM_DESTROY:
// Tell Windows to kill this program
PostQuitMessage(0);
return 0;

}
return DefWindowProc(hWnd, msg, wParam, lParam);

}

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Device Context

• Windows supports output to a variety of devices.

• The output is the same regardless of the output device.

• Output device independence is possible because of the
graphics device interface (GDI).

• The GDI is a dynamic-link library that, together with a
device driver, enables applications to output to different
devices in the same manner.

• Access to an output device is done through a device
context (DC).

• A DC is a structure that defines a graphics object and its
properties. Windows created a DC when it created our
window.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Keyboard Input with Windows API

• The two types of keyboard input used by games
are:

• Text. We want to know which character the
user pressed.

• Keyboard as game controller. We want to know
which combination of keys is currently
pressed.

• Windows sends several messages related to key
presses.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

WM_CHAR Message

• The WM_CHAR message is sent when a character
is typed on the keyboard.

• To read the typed character we add a WM_CHAR
message handler to our WinProc function.

• The wParam contains the character code.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

WM_CHAR Message

LRESULT WINAPI WinProc(HWND hwnd, UINT msg,
WPARAM wParam, LPARAM lParam)

{
switch(msg)
{

case WM_DESTROY:
// Send WM_QUIT message
PostQuitMessage(0);
return 0;

// A character was entered by the keyboard
case WM_CHAR:

// The character is in wParam
switch (wParam) {

// Process the character

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

WM_KEYDOWN, WM_KEYUP message

• The WM_KEYDOWN and WM_KEYUP messages
allow us to use the keyboard like a giant game
controller.

• Each time a key is pressed a WM_KEYDOWN
message is sent.

• When the key is released a WM_KEYUP message is
sent.

• The virtual key code is contained in wParam.
• We save the state of each key as true or false in

the vkKeys array.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

WM_KEYDOWN, WM_KEYUP message

• Virtual key codes are different from the
character codes we get from WM_CHAR messages.

• Each key on the keyboard has an assigned
virtual key code.

• For a complete list of virtual key codes look in
the WinUser.h file.

• Virtual key constants begin with the prefix VK_
• The arrow keys are: VK_LEFT, VK_UP,

VK_RIGHT, VK_DOWN.
• To test for a right arrow press use:

if (vkKeys[VK_RIGHT])

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Using a Mutex to Prevent Multiple Instances

• If a user runs multiple instances of our game
undesirable results may occur.

• We can use a mutex to prevent multiple instances of
our game from running.

• A mutex is an object that may be owned by only one
thread at a time.

• If our game creates a mutex then any subsequent
attempts to create the same mutex will fail.

• The mutex is created with a call to the
CreateMutex function.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Using a Mutex to Prevent Multiple Instances

//==
// Checks for another instance of the current application
// Returns: true if another instance is found
// false if this is the only one
//==
bool AnotherInstance()
{

HANDLE ourMutex;
// Attempt to create a mutex using our unique string
ourMutex = CreateMutex(NULL, true,

"Use_a_different_string_here_for_each_program");
if (GetLastError() == ERROR_ALREADY_EXISTS)

return true; // Another instance was found

return false; // We are the only instance
}

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Multitasking in Windows

• Multiple applications and internal processes may
be running in Windows at any given time.

• Our game will be given access to a processor for
brief amounts of time (on the order of 1 to 20
milliseconds).

• This presents a challenge when we want our
game to have smooth animation. We will see how
to overcome this challenge in later chapters.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

Chapter Review

• WinMain is the starting point for a Windows application.

• The WNDCLASSEX structure describes our window class.

• The CreateWindow function creates the window.

• Windows sends our program messages.

• The WinProc function processes Windows messages.

• The WM_CHAR message is used to read character input.

• WM_KEYDOWN and WM_KEYUP messages are used to read
the keyboard like a game controller.

• A Mutex may be used to prevent multiple instances or a
program from running.

• Windows uses multitasking to run programs in short time
slices.

P
ro

gr
am

m
in

g
2D

 G
am

es
C

op
yr

ig
ht

 ©
 2

01
2

T
ay

lo
r

an
d

F
ra

nc
is

