[72]
®
S
©
©)
[a)
N
o
=
S
(S
©
S
)
o
o

L
(&)
=
©
=

L

©
=
[35]
—_

=
8
=
(q\]
—
o
(V]
+—
=
(@]
=
P
[oX
@]
O

Programming 2D Games

Chapter 2:
Windows Programming Fundamentals

Windows Programming Fundamentals

* Windows Application Programming
Interface (API).

* The Windows APl may also be referred to
as WInAPI, Win32 API or just WIin32.

* The API provides access to many of the
Inner workings of Windows.

[72]
®
S
©
©)
o
N
o
=
S
(S
©
S
)
o
o

2
(&]
c
@©
S

L

=]
c
(3]
S

=
g
-
N
-
o
N
+—
=
(=)
=
by
o
@]
@)

“Hello World” Windows Style

and Francis

)
)
S
©
O]
o
N
o
=
S

Program
Copyright © 2012 Taylor

Getting Started with Visual Studio

* Create a new project by selecting File — New
— Project from the menu or by clicking the
“New Project” button on the toolbar

)
)
S
©
O]
@)
N
o
=
S
S
©
S
<)
o
o

D)
(&)
C
©
=

LL

o
c
(35
—

=
=
|_
(q\]
—
(]
(V]
+—
=

(@]
=
>
SN
o
@)

Getting Started with Visual Studio

)
)
S
©
O]
o
N
o
=
S
S
©
S
<)
o
o

o)
(&)
(=
©
—

UL

e}
(=
(35
—_

=
=
|_
(q\]
—i
(]
(V]
—
L=

(@)
=
P
SN
(@]
@)

Getting Started with Visual Studio

« Select Visual C++ as the project type In the left
pane. In the center pane select “Empty Project”.

« Name the project “HelloWorld.” (The project
name Is also the name given to the executable file

when t
name d

ne project is compiled.) The Solution
efaults to the project name.

e Cleart

ne checkbox labeled “Create directory for

solution.”

« Specify the location where the project should be
created and click OK.

LD
(&)
=
=

81"'
yo]

%c

<
O 5
S
o
o

%(‘\l

O

c’q—a

e =

o .2

p—

>

o

o

O

Getting Started with Visual Studio

)
)
S
©
O]
o
N
o
=
S
S
©
S
<)
o
o

o)
(&)
(=
©
—

UL

e}
(=
(35
—_

=
=
|_
(q\]
—i
(]
(V]
—
L=

(@)
=
P
SN
(@]
@)

Getting Started with Visual Studio

« Add a source file to the empty project by clicking
the “Add New Item” button on the toolbar.

g
(&]
c
E

8LL

S

C ©

%5

S

o

o

%N
= ©
@4—1
° =

o .2
—
>
o
o

o

Getting Started with Visual Studio

 Select “C++ File (.cpp)” In the center pane (A)
* Name the item “winmain” (B) and click the Add button (C).

g
(&]
c
=

8LL

S

C ©

%5
S
o

o

E N

€ o

o))

© =

-

o .2

—

>

o

o

(@)

“Hello World” Windows Style

* WinMain is the starting point of a Windows
program.

* The windows.h header file is required.

e The directive
#tdefine WIN32 LEAND AND MEAN

IS used to prevent unwanted files from being
Included.

[72]
®
S
©
©)
o
N
o
=
S
(S
©
S
)
o
o

2
(&]
c
@©
S

L

=]
c
(3]
S

=
g
-
N
-
o
N
+—
=
(=)
=
by
o
@]
@)

“Hello World” Windows Style

e The WinMain function:
int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR lpCmdLine,
int nCmdShow)
e The return type Is int.

* WINAPI is a calling convention that specifies parameter
passing protocols.

* The WinMain parameters are typically not used to control
the appearance of our window In game programs.

LD
(&)
c
<
S

81"'
ge
E
T ©
=
S
o
o
EN
C o
U"-o—a
° =
o .2
p—
>
o
o
(@)

The Window Class

o A window class must be created before we can
display our window.

* The window class defines features of the window.

* The window features are contained In a
WNDCLASSEX structure.

« Once we have the structure configured to our liking
we typically do no need to make any changes.

LD
(&)
c
<
S

81"'
ge
E
T ©
=
S
o
o
EN
C o
U"-o—a
° =
o .2
p—
>
o
o
(@)

The Window Class

WNDCLASSEX wcx;

HWND hwnd;

// Parameters that describe the main
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.
WCX.

rhdow.
cbSize = sizeof(wcx); // Size of structure

style = CS_HREDRAW | CS DRAW; // Redraw if size changes

lpfnWndProc = WinProc; // Points to window procedure
cbClsExtra = 0; // No extra class memory
cbWndExtra = 0; // No extra window memory
hInstance = hInstance; // Handle to instance

hIcon = NULL;

hCursor = LoadCursor(NULL,IDC_ARROW); // Predefined arrow
hbrBackground = (HBRUSH)GetStockObject(BLACK BRUSH); // Background brush
lpszMenuName = NULL; // Name of menu resource

lpszClassName = CLASS_NAME; // Name of window class

hIconSm = NULL; // Small class icon

// Register the window class
if (RegisterClassEx(&wcx) == 0) // If error

return false;

o
(&)
[
I
S

8l_l_
£ 2
T ©
O 5
S
o
o
%N
O
)
o =
P
o .2
p—
>
o
o
O

The Window Class

* The Window class must be registered with Windows
using the RegisterClassEx function.

// Register the Window class

// RegisterClasskEx returns © on error

if (RegisterClassEx(&wcx) == 0) // If error
return false;

o
(&)
[
<
S

gl_l_
£ 2
T ©
O 5
S
o
o
EN
C o
o>
© =
P
o .2
p—
>
o
o
(@)

CreateWindow function

 The Createlindow function is called to create the

window.
HWND CreateWindow(
LPCTSTR 1pClassName,

LPCTSTR lpWindowName,
DWORD dsStyle,

81"'
£
T
25
int X, 83
int Y, £S
° . E(\l
int nWidth, o
° ° eE
int nHeight, =
HWND hWndParent, g

HMENU hMenu,
HINSTANCE hInstance,
LPVOID 1pParam

I

CreateWindow function parameters

e 1pClassName. A pointer to a NULL-terminated string
containing the window class name. This name must match
the name used in the 1pszClassName member in the
CreateWindowClass function.

* 1pWindowName. The text that appears in the title bar.

« dsStyle. The style of window to create. Such as:

- WS_OVERLAPPEDWINDOW. Creates a resizable window with the
familiar controls.

- WS _OVERLAPPED. Creates a fixed size window with no controls. This
Is the style we will most often use for windowed games.

- WS_EX_TOPMOST | WS_VISIBLE | WS_POPUP: These are three styles
combined with the OR ‘|’ operator. This is the style we will use for
full-screen games.

LD
(&)
=
=

81"'
yo]

%c

<
O 5
S
o
o

%(‘\l

O

c’q—a

° =

o .2

p—

>

o

o

O

CreateWindow function parameters

* X, y. The coordinates of the top-left corner of the
window.

* nWidth. The width of the window In pixels.

* nHeight. The height of the window In pixels.

e hWndParent. The parent window. Normally our
games will not have a parent window.

e hMenu. The window menu.

* hInstance. The application identifier from the
window class.

e 1pParam. Additional window parameters.

LD
(&)
=
=

81"'
yo]

%c

<
=
S
o
o

EN

C o

c’q—a

° =

o .2

p—

>

o

o

O

Message Loop

* Windows communicates with our program by
sending It messages.

* Aloop in WinMain is used to check for messages.

« If our application Is going to accept character input
It needs to call the TranslateMessage function
Inside the message loop.

* TranslateMessage converts virtual-key
messages Into character messages.

* The messages are sent to our WinProc function for
processing by the DispatchMessage function.

LD
(&)
=
=

gl_l_
yo]

%c

<
=
S
o
o

%N

O

c’q—a

° =

o .2

p—

>

o

o

O

Message Loop Be sure to use

PeekMessage, not
GetMessage

// Main message loop
int done = 0;
while (!done)

{

// Check For Windows messages
if (PeekMessage(&msg, NULL, ©, ©, PM REMOVE))
{
// Look for quit message
if (msg.message == WM QUIT)
done = 1;
// Decode and pass messages on to WinProc
TranslateMessage(&msg);
DispatchMessage(&msg);

o
(&)
[
I
S

gl_l_

£ 2

T

O 5
S
o

o

%N

O

)

o =

P

o .2

p—

>

o

o

O

¥
¥

return msg.wParam;

WinProc Function

* The WinProc function is used to process messages.

e The name used for this function must match the
name specified in the WNDCLASSEX structure.

* We respond to desired messages by placing code In
WinProc.

« Any messages we ignore will be handled by
Windows.

 The WM_DESTROY message Is sent to our application
when our window Is being destroyed.

« PostQuitMessage(0) sends a WM_QUIT message to
our program which ends the message loop in
WinMain.

LD
(&)
=
=

gl_l_
yo]

%c

<
=
S
o
o

EN

C o

c’q—a

° =

o .2

p—

>

o

o

O

WinProc Function

LRESULT WINAPI WinProc(HWND hWnd, UINT msg,
WPARAM wParam, LPARAM 1lParam)

{
switch(msg) %%

{ E§%
case WM_DESTROY: Bl

// Tell Windows to kill this program §§
PostQuitMessage(9); gz

return 0; e

} @)

return DefWindowProc(hWnd, msg, wParam, 1lParam);

Device Context

* Windows supports output to a variety of devices.
* The output is the same regardless of the output device.

 Qutput device independence Is possible because of the
graphics device interface (GDI).

« The GDI is a dynamic-link library that, together with a
device driver, enables applications to output to different
devices in the same manner.

 Access to an output device Is done through a device
context (DC).

* A DC is a structure that defines a graphics object and its
properties. Windows created a DC when it created our
window.

LD
(&)
=
=

81"'
yo]

%c

<
=
S
o
o

%(‘\l

O

c’q—a

° =

o .2

p—

>

o

o

O

Keyboard Input with Windows AP|

* The two types of keyboard input used by games
are:

» Text. We want to know which character the
user pressed.

» Keyboard as game controller. We want to know
which combination of keys is currently
pressed.

* Windows sends several messages related to key
presses.

LD
(&)
c
<
S

81"'
ge
E
T ©
O 5
S
o
o
EN
C o
U"-o—a
° =
o .2
p—
>
o
o
(@)

WM CHAR Message

* The WM_CHAR message Is sent when a character
IS typed on the keyboard.

* To read the typed character we add a WM_CHAR
message handler to our WinProc function.

 The wParam contains the character code.

LD
(&)
c
<
S

81"'

ge

E

T ©

O 5
S
o

o

EN

C o

U"-o—a

° =

o .2

p—

>

o

o

(@)

WM CHAR Message

LRESULT WINAPI WinProc(HWND hwnd, UINT msg,
WPARAM wParam, LPARAM 1lParam)

{
switch(msg)

{
case WM DESTROY:
// Send WM_QUIT message
PostQuitMessage(0);
return 0;
// A character was entered by the keyboard
case WM _CHAR:
// The character is in wParam
switch (wParam) {
// Process the character

o
(&)
[
I
S

8l_l_
£ 2
T ©
O 5
S
o
o
%N
O
)
o =
P
o .2
p—
>
o
o
O

WM KEYDOWN, WM KEYUP message

e The WM_KEYDOWN and WM_KEYUP messages
allow us to use the keyboard like a giant game
controller.

e Each time a key Is pressed a WM_KEYDOWN
message Is sent.

e When the key Is released a WM_KEYUP message IS
sent.

* The virtual key code Is contained in wParam.

* \We save the state of each key as true or false In
the vkKeys array.

LD
(&)
=
I
S

81"'
g
E
T ©
O 5
S
o
o

%(‘\l

O

U"-o—a

° =

o .2

p—

>

o

o

O

WM KEYDOWN, WM KEYUP message

* Virtual key codes are different from the

character codes we get from WM_CHAR messages.

* Each key on the keyboard has an assigned
virtual key code.

* For a complete list of virtual key codes look In
the WinUser.h file.

* Virtual key constants begin with the prefix VK__

* The arrow keys are: VK_LEFT, VK_UP,
VK_RIGHT, VK_DOWN.

» To test for a right arrow press use:

if (vkKeys[VK _RIGHT])

LD
(&)
=
=

81"'
yo]

%c

<
=
S
o
o

%(‘\l

O

c’q—a

° =

o .2

p—

>

o

o

O

Using a Mutex to Prevent Multiple Instances

o If a user runs multiple instances of our game
undesirable results may occur.

* We can use a mutex to prevent multiple instances of
our game from running.

* A mutex Is an object that may be owned by only one
thread at a time.

* If our game creates a mutex then any subsequent
attempts to create the same mutex will fail.

* The mutex Is created with a call to the
CreateMutex function.

LD
(&)
=
=

81"'
yo]

%c

<
O 5
S
o
o

EN

C o

c’q—a

e =

o .2

p—

>

o

o

O

Using a Mutex to Prevent Multiple Instances

// Checks for another instance of the current application
// Returns: true if another instance is found

// false if this is the only one
//==
bool AnotherInstance()

{

HANDLE ourMutex;
// Attempt to create a mutex using our unique string
ourMutex = CreateMutex(NULL, true,
"Use a _different string here for _each program");
if (GetLastError() == ERROR_ALREADY_ EXISTS)
return true; // Another instance was found

o
(&)
[
I
S

8l_l_
£ 2
T
O 5
S
o
o
%N
O
)
o =
P
o .2
p—
>
o
o
O

return false; // We are the only instance

Multitasking in Windows

« Multiple applications and internal processes may
be running in Windows at any given time.

« Our game will be given access to a processor for
brief amounts of time (on the order of 1 to 20
milliseconds).

* This presents a challenge when we want our
game to have smooth animation. We will see how
to overcome this challenge in later chapters.

LD
(&)
=
I
S

81"'

g
E
T ©
O 5
S
o

o

%(‘\l

O

U"-o—a

° =

o .2

p—

>

o

o

O

Chapter Review

e WinMain is the starting point for a Windows application.
e The WNDCLASSEX structure describes our window class.
* The CreateWindow function creates the window.

* Windows sends our program messages.

e The WinProc function processes Windows messages.

* The WM_CHAR message Is used to read character input.

 WM_KEYDOWN and WM_KEYUP messages are used to read
the keyboard like a game controller.

« A Mutex may be used to prevent multiple instances or a
program from running.

« Windows uses multitasking to run programs in short time
slices.

LD
(&)
=
=

81"'
yo]

%c

<
=
S
o
o

EN

C o

c’q—a

° =

o .2

p—

>

o

o

O

