2 First Law- the E = Mc¢? of
thermodynamics

Problem 2.1 Consider the melting of 100 gms of ice at 273 K
and 1 atm. of pressure. The densities of ice and water under
these conditions are, respectively, 0.92 gms/cc and 1.0 gms/cc.
The latent heat of fusion of ice is 80 cal/gm. Apply the first law
to determine the heat absorbed, the work done and the change
in internal energy. Do you expect the internal energy per unit
mass of water to be greater or lesser than that of ice, and why?

In this problem 100 gms of ice is melting at its melting point, which has
been taken to be 273 K. The actual melting point is close to this. The amount
of heat that needs to be added to ice is given by AQ =m -1 = 80-100 = 8000
calories. Before answering the rest of the question, let us settle a point of
principle. One sometimes comes by the query as to whether there is any
pressure dependence to latent heats, or whether latent heats only depend on
T. It should be kept in mind that latent heat is the amount of heat required
to change certain amount of the system in one phase to another, and is mea-
sured (or calculated) at the phase coexistence point. But such a point lies on
the phase coexistence curve which relates the pressure to the temperature and
vice versa. Therefore, it makes sense to only specify the temperature depen-
dence of the latent heat without any loss of information.

Next, we calculate the work done in the melting process above. The
volume of 80 gms of ice is V; = 80/0.92 = 86.96 cc, while the vol-
ume of water is 80/1.0 = 80 cc. Hence the work done is PAV = —6.96 -
107%m®1.0/9.8710°N /m? = —6.96/9.87J = —6.96/(4.18 - 9.87) = —0.17
cal. Here we have used various properties of SI units: the unit of volume is
m?® which is 10° cc, 1 atm = 1/9.87 MPa(mega pascal), 1 Pa = 1 N/m?, 1
J(oule) = 1 N.m and finally 1 cal =4.18 J. Thus we see that the work done is
a negligible fraction of the heat transferred!

Applying the first law to this process, the change AU in the internal energy
is AU = AQ — P8V = 8000.17 cal. The internal energy has increased in the
process. Water being in liquid form is expected to have a higher internal
energy than the frozen ice which is in solid form.

Problem 2.2 Show that the conditions for adiabatic changes
of an ideal gas are governed by %P +¥(T) dVV =0 ar _

P
y(};gle dTT = 0, and that they can be integrated to PV? = const.

a
and P = const.T v-1 when the specific heats are constant.

We need the ideal gas law and the first law to solve this problem. Let us
keep things general and assume that there are n moles of the ideal gas under
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consideration. The ideal gas law is then PV = nRT. Since the changes are
adiabatic, the first law says

0 =dQ = dU + PdV = nCy(T)dT + PdV @2.1)

Here Cy (T) is the molar specific heat at constant volume. For an ideal gas this
is a function of T only. Note that we have considered the general situation,
and not assumed Cy to be a constant. On using 7 = PV /nR, this becomes

CP(T)dv+Cv(T)

VdP (2.2
R R 22)

P 14
0=nCy(T) <anV + ana> P+PdV =

We have used the relation Cp(T) = Cy(T) + R for ideal gases. Note that
both specific heats are still functions of T, and not assumed to be constants.
Consequently, the adiabaticity condition becomes

dv dP
- =

T+ 5

Where y(T) = Cp(T)/Cy(T) is the temperature dependent ratio of the spe-
cific heats. One can eliminate V in favor of T i.e use V = nRT/V, to also
write this condition as

dr 4P\ dP _ dP  y(T) dT
Y<T><T—P>+p—“P‘y<T>—1T‘O 24

0 (2.3)

This can not be integrated in general. However, when Cy, and hence Cp and
Y are independent of T, these equations can be readily integrated to give

v
PVY = const P =const.T7 T (2.5)

Problem 2.3 Show that for an atmosphere in hydrostatic equi-
librium, the heat Q is a state function at each height i.e
Q(V(z),T(z),z). Also show that H+gh-Q=const. Apply this to
the problem of the adiabatic atmosphere. The quantity H+gh
is sometimes referred to as the dry static energy.

Even though the heat differential 4Q can not be represented as an exact
differential in general, it can be so expressed if the transformations are along
a fixed path. The reader should verify that this is indeed so for simple situa-
tions like isothermal, isobaric changes etc.

In the case of the atmosphere in hydrostaic equilibrium, this equilibrium
condition is essentially like fixing a path. The equation for hydrostatic equi-
librium is given by

dpP

— =—gp vdP=—gdz (2.6)
dz

Here z is the height as measured from the ground. This equilibrium equation
results from the physical consideration that a negative pressure gradient is
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necessary to balance the downward pull of gravity. In the second form, we
have traded the density p for the specific volume v. Now let us consider the
first law for a unit mass of the atmosphere by treating T,P as the independent
thermodynamic parameters:

dq=cpdT —vdP =cpdT +gdz=d(z+gh) =dq(P(z),T(z),z) (2.7)

Here h is the enthalpy per unit mass. We have taken the specific heats of the
atmosphere to be independent of T. Thus we see that in this case heat at any
particular height is indeed a state function.

If the atmosphere satisfies adiabaticity i.e dg = 0, it immediately follows
that h + gz is a constant. This latter quantity is sometimes referred to as Dry
static Energy.

In the case of an adiabatic atmosphere, pressure P is related to density as
P = ap”. This case was examined in Example 2.5 where it was shown that
the temperature falls off linearly with height. The precise relation was

This indicates that the atmosphere can not extend beyond z. = (RTy/gM)(y—
1)/y, where Tj is the ground temperature. As shown there this is roughly
27.85 km. But it is also worthwhile to examine the density profile. Then the
condition eqn.(2.6) combined with adiabaticity condition yields

d
@ _ 8 pry 2.9)
dz ay
This can easily be solved to give
L\
_(pr 8T\ " 2.10
p(z) <p0 . 7 z) (2.10)

Here pg is the density at the ground. Again the atmosphere is seen to extend
only upto z' = (a}/pgfl)/(g(y— 1)). But the ideal gas equationi P = (p /M) -
RT means RTy = aM pg ~! and therefore 7’ = z,.
Problem 2.4 An empty container is filled adiabatically at tem-
perature 7j at pressure Py with dry air. A volume Vj is trans-
ferred from outside. Calculate the final temperature of the air
inside the container. Give a physical reasoning for the rise in
temperature.

This is the problem of filling of vessels and is strictly speaking belongs to
the domain of thermodynamics of Open systems. The reader is encouraged to
consult J. Kestin’s book on A Course in Thermodynamics for a lucid discus-
sion. Let v be the volume of unit mass of the gas that is filled into a rigid
vessel. If the outside pressure is Py, the work done on the system is Pyvg.
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Since the filling in question is adiabatic this leads to a change in specific
internal energy(the internal energy per unit mass) of Au = uy —u; = Pyvo.

If 77 is the final temperature after filling, uy = cyTy. Hence uy = u; +
Pyvo = h;, where h is the enthalpy per unit mass. If 7; is the initial tempera-
ture, the gas being ideal, its initial enthalpy is given by #; = cpT;. Hence the
final temperature is Ty = (cp/cy) T; > T;.

Essentially the kinetic energy of the initial flow is converted into internal
energy after filling. This is the explanation for the increase in temperature.
Interestingly, this is another way of measuring the ratio of specific heats. For
air, this ratio being 1.4, there is substantial heating upon filling i.e a 40% rise
in temperature.

Problem 2.5 Chemists find the so called enthalpy diagrams
very useful. These diagrams show various products of for-
mation like H,O from H, and O: etc. along with their en-
thalpies, called enthalpy of formation, at, say, atmospheric
pressure. Draw such a diagram for H, and O, taking the
enthalpy of the uncombined constituents to be 0 when en-
thalpy of formation are as follows:H>0(-188),H " (0),0H (-
230),H>O(vapor)(-242) and H>O(liquid)(-285). Calculate the
heat released when these are transformed into each other. The
enthalpies are in kJ/mole, and the reactions are assumed to
take place at 1 atm.

First let us briefly review the thermodynamic basis behind the concept
of heat of reactions. The processes to which this applies occur at constant
pressure. Consequently dQ = dH where H is the enthalpy. Again, since the
transformations take place along a fixed path i.e constant pressure, heat itself
is a state function. Thus Ar;Q = Hy — H;.

It is also important to remember the sign convention used: if the heat of
reaction is negative, the reaction is exothermic i.e it releases heat to the sur-
roundings, and if it is positive, the reaction is endothermic i.e the reaction
needs heat to be supplied from outside. Thus all the products listed above
are the result of exothermic reactions of Hy and Os. It is also obvious that
oxygen and hydrogen themselves are assigned zero enthalpies of formation.

It is then clear that the product with the most negative enthalpy of forma-
tion is also the most stable.

Such a diagram in this case would consist of a horizontal line for each
product with the enthalpy of formation for that product arranged in the order
of these enthalpies of formation. So the top line would be for the uncombined
constituents "nHy +mO-”(i.e n moles of Hs reacting with m moles of O5)
with 0, and the bottom most line would be for H2O in liquid state with -285.

Let us illustrate the idea with the reaction 2Hs + Oy — 2H50. We take the
final state to be the liquid state of H»O. The initial enthalpy H; is 0 while the
final enthalpy is Hy = —470kJ(because 2 moles of H2O are produced). The
change in enthalpy Hy — H;, which is also the heat of the reaction, is negative
meaning that in this reaction 470 kJ of heat is produced. But the catch is that
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Hs and O3 do not react on their own at 1 atm and room temperature! So they
have to be made to react somehow and the enthalpy of formation inferred.

Now let us look at the reverse reaction 2H20(1) — 2Hy + 202. Now the
change in enthalpy, and hence the heat of the reaction, is 470 KJ meaning
that this amount of heat has to be supplied to convert two moles of liquid wa-
ter into into oxygen and hydrogen. This example makes the sign convention
clearer as clearly heat has to be supplied to dissociate water into oxygen and
hydrogen!

We can consider reactions between any two levels of a enthalpy diagram.
But the number of moles of the reactants as well as the products must be
appropriately chosen. Let us for example consider conversion of liquid water
into steam as such a reaction i.e HoO(l) — H20(g). The entropy change is 43
kJ, according to the data given. We already know that heat has to be supplied
for this process. The latent heat of 540 cal/g actually translates to about 41
kJ if we use 18 as the molecular weight of water.

Let us consider Hydrogen Peroxide(H2O2) transforming to water i.e
2H,09 — 2H50(l) + O,. This also illustrates the importance of correctly
choosing the number of moles for a balanced reaction. The initial enthalpy
is -376 kJ while the final enthalpy is -470 kJ(note O3 in the final state con-
tributes zero enthalpy). Hence the heat of the reaction is -94 kJ which means
for every mole of hydrogen peroxide the reaction gives out 47 kJ of heat.

Finally, let us consider reactions involving the ion OH ™. Clearly a reaction
of the type Ho + Oy — 20H ™ is nonsensical as electrical charge will not
be conserved in such a reaction. What is a correct reaction is 2Hs + Oy —
20H™ + Hs. This reaction is exothermic with 230 kJ of heat given out for
every mole of OH ™.

Problem 2.6 Consider a Carnot cycle operating with an ideal
gas of constant specific heats Cy,Cp. The cycle starts at Py, V)
and goes through the following stages:an isothermal expan-
sion to 2V, a subsequent adiabatic expansion to 4V, an
isothermal compression to such a volume that an adiabat can
connect this third state to the original state, and finally an adi-
abatic compression to the original state. Separately calculate
the total heat given out, and the total work done during the
cycle. Are they equal? Why?

This may appear to be a somewhat contrived problem, but it is designed
to show the workings of a Carnot cycle in a nontrivial way. Let the starting
configuration A be (Py,Vy, Tp). Assuming there are n moles of the ideal gas,
we should have Ty = PyVp/nR. Specifying the specific heats is just a red
herring to mislead the reader. As long as we can directly calculate various
AQ, AW, as we can indeed do in this example, there is no need to know the
specific heats individually. However, their ratio Y = Cp/Cy is relevant.

First stage: in this stage, which is an isothermal change, the temperature
remains at 7y but volume doubles to 2Vy. Consequently pressure drops to
Py/2 leading to the configuration B with parameters (P —0/2,2Vy, Tp. Since
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the transformation is isothermal, and the internal energy U for ideal gases
only depends on T, there is no change of internal energy during this stage i.e
A1U = 0. Therefore, work done and heat absorbed are related by AW =
A1Q. The work done is given by

AW = PdV = nRT, - = nRTyIn2 >0 @2.11)

2V 2o qv
. J

Vo

From what we said above, A1Q = nRTyln2 > 0.

Second stage: This is an adiabatic change and hence A>Q = 0. Neither
the internal energy change AU nor the work done AoW vanish(in fact they
are equal and opposite). But we are required only to calculate Ay W. Because
of adiabaticity, PVY = K where K is a constant which in this case takes the
value K = (2Vp)"Py/2. Since the final volume is 4Vj, it is easy to see that
the pressure at the end of this stage is 2~ '~YPy. The final temperature can be
worked out using the ideal gas law and turns out to be 2!~?T;. Thus the end
point of the second stage is the state C parametrised by 271=7Py, 4V, 217 7T,.
The work done during this stage is easily calculated:

Vo qv K nRT,
AW = K—=— (V)" "= 2V)i "= —2"7"-1) <0
2 w, KV 1—3/(( 0) (2Wo) ") 1_},( )
(2.12)

The last step follows on substituting the value of K and using the ideal gas
law.

Third stage: This stage is again isothermal, but now at the temperature
21=7T,. As before, there is no change of internal energy during this stage i.e
A3U = 0 and consequently A3Q = AsW. But the volume V3 at the end of
this stage needs to be carefully evaluated. The pressure P at the end of this
stage follows from ideal gas law to be P3 = (217YPyVy)/V3. But this state
with (Ps, V3,2 77Ty) is stated to lie on the adiabat passing through the initial
state Py, Vy, Ty. Hence

PoVo2!~7
RV =PV =227

V= Vs =2V, (2.13)
Thus the state of the system after the third stage is D with parameters
(277Ry,2Vy,2' ~Tp). The work done during this stage can be calculated as
before and the result is

AsW = —nRTp2' "In2 < 0 (2.14)

AISO, AJQ == AgW
Last stage: In this stage the system adiabatically returns from the state D
to its initial state. Obviously A4Q = 0, and A4W is calculated, exactly as in

stage 2, to be

RT,
AW = H(l—Ql_y) >0 (2.15)
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It is clearly seen that AoW + A4W =0 = AsQ + A4Q. Since heat and work
are equal to each other during the stages 1 and 3, the total work and total heat
absorbed must match. Explicitly

AiotW = AW + DoW + AsW 4+ AyW = nRTy(1 — 217" In2 = A, Q
(2.16)

As the totality of changes represents a cycle i.e the system returns to its orig-
inal state after all the stages, A;,;U = 0, and first law demands the equality
of total work done and total heat absorbed.

Problem 2.7 In the Clement-Desormes for measuring the ra-

tio y of specific heats for an ideal gas, one starts with the gas

at some initial pressure P, and temperature 7] in a container

which is then allowed to adiabatically decompress to a pres-

sure P, and temperature 75 by quickly opening and closing a

valve. The gas is then heated at constant volume till it reaches

the original temperature 77, but at a different pressure Ps.

Show how 7y can be determined from a knowledge of P, P», Ps.

What fraction of the gas was lost to outside during the adia-

batic decompression?

Let the volume of the vessel containing the gas at the initial pressure
Py at temperature 77 be Vj. Let us consider the gas to be ideal with a con-
stant ratio y of specific heats. Under the adiabatic decompression, or equiv-
alently rearefaction,its pressure drops to P» < P;. The adiabaticity condition
being PV = const., the volume of the gas immediately after decompres-
sion is Vo = (P /Pg)l/ YV1 > Vi. The temperature of the gas after this step is
T = (PI/P2)(1_Y)/7 <T.

In the original Clement-Desormes method, the gas is sealed inside the
container after letting Vo — V; to escape to the outside. Therefore the fraction
of the gas lost to the outside is

Vo—Vi P

1
=)D (2.17)

After this first step of adiabatic decompression, the system characterised by
(P»,V1,T») is heated at constant volume till it reaches the original temperature
T:. Thus the final pressure P; is given by

Ti . Py 1-v Py B P

1
Pr=P—= =P (-2)7 — =(=)7 2.18
YN L 219)

Thus 7y can be determined as

(2.19)

From a knowledge of the three pressures Py, P», P, the ratio of specific heats
Y can be determined.
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Problem 2.8 Show that any two points on the P-V plane can be
connected by a combination of an isochore and an adiabat of
the type PV”(note that the system need not be an ideal gas). If
the heat Q discharged by a system during isochoric compres-
sion from P; to Py is given by A(P; — F;), calculate the internal
energy difference U(P,V) — U(Py,Vp) for arbitrary values of
Py, Vo, P,V (Callen)

This problem can be handled in two different ways. Let the point Py, Vj
in the P-V plane be called A, and the point P,V by B. In the first method,
connect the point A to an intermediate point C whose coordinates are (P',V)
i.e a point whose volume is the same as that of B, along an adiabat. Therefore
P'=Py(Vy/V)Y = Por~ 7. The equation for the adiabat is given to be PV? = K
with K as a constant. Such an equation is also obeyed by black body radiation,
for example. In fact, in the text the reader can find more examples. Since for
an adiabat AQ = 0, it follows from first law that A,4;,U = —A44icW. Hence

AjgeaU = —AjgeaW = — v W dv = 7@(‘/]‘ o Vl ) (2.20)
The constant K can be replaced by either PiVl.y or PfVJZ/ depending on the
context. This will be explicitly illustrated in this problem. Using this for the
change from A to C, and using K = POVOY, one finds

U(P',V)=U(Py,Vp) = fl—ywlftvol”) =———(@"7=1) 21

Here r =V /Vj. Now let us connect C to B by an isochore(same volume). We
chose the volume of C to be the same as that of B precisely so we can do this.
The change in U during this step is given to be

UPV)-UP,V)=AV)P-P)=AV)(P—Px7) (2.22)
Adding the last two equations one gets
PoVo
1=y
The second way to solve this problem, connect the state A to an intermediate
state D along an isochore instead of by an adiabat as in the first method. The
coordinates of D are then (P*,Vj) where P* is the pressure required to put D

along an adiabat passing through B i.e P* = Pr?. Same reasonings as before
give

U(PV)—U(Py,Vo) =A(V)(P—Pyr?) r"T-1) (223

PV
U(RY) = U (P, Vo) = A(Vo)(Pr" —Fo) — 7= (1~ 224
Superficially this answer looks different from the previous one. The reader is
encouraged to show their equivalence.
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Problem 2.9 Consider the air in a room, which is not airtight,
being isobarically heated to a higher temperature. If air is
treated as an ideal gas, show that the total internal energy of
the air within the room does not change despite the heating.
Since the air escaping from the room goes to merely heat the
outside and hence that amount of heat is wasted, is there still
any benefit to this way of heating?

First let us consider an infinitesimal amount of heating. Let the ini-
tial parameters be (P,7,V), and let there be n moles of the ideal gas ini-
tially. Actually it is necessary to further assume that Cy is constant(remember
that even for an ideal gas Cy(T') can be a function of T). As a result of
raising the temperature by AT due to heating, the volume increases by
AV = (nRAT)/P. The fact that pressure does not change during heating
has been made use of.

If the room is airtight, the internal energy has to increase as a result of
heating. Since the room is not airtight, as the volume tends to increase due
to heating, the excess volume leaks out. This has the effect of reducing the
number of moles n. If An is such a decrease, then An = (nAT)/T. The last
remark simply follows from the fact that to this approximation (én/n) =
(AV V).

The increase in U due to the change in temperature by AT is nCy AT while
the decrease in U due to reduction in number of moles is AnCy T, and it is
easy to see that the two effects exactly cancel. This means that the internal
energy of the enclosed gas does not change at all!

Let us now look at the same problem without restricting to small changes.
Let the parameters before heating be P,V,T,n and the parameters after heat-
ing be P,V/,T',n’. The total internal energy before heating is U = nCy T
while that after heating is U’ = n’Cy T’. We shall assume that the volume be-
fore heating was just the volume of the enclosure. Let the number of moles
left after leakage to outside is n*. Then the internal energy of the air enclosed
after heating is U* = n*Cy T'.

Applying ideal gas to the enclosed gas before and after, PV = nRT and
PV =n*RT’. From this it follows that U = U*. It is also clear that this would
not have been the case if Cyy were T-dependent.

Even though the leakage causes heat to be wasted to outside, the tempera-
ture of the interrior has indeed increased and therefore this type of heating is
still sensible.

Problem 2.10 A medium size iceberg weighs about 100,000
metric tons. If the energy received from the Sun is 2 cals/sq.cm
in a minute, how long will it take to completely melt such an
iceberg if all the solar energy incident on 1 square km is used
for it? The latent heat of fusion of ice is 80 cal/g.Considering
that the cross-sectional area of such icebergs is about 1000
square metres, how long will an iceberg last in its journey?
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The mass of the iceberg in kg’s is 10® kgs. The latent heat being 80 cal/g,
it would take 80 - 10® kcal to completely melt all of the iceberg. The solar
constant being 2 cal/sqcm/min means that in one minute the heat received
is 2-10%cal /m? or 20 kcal per square meters. The total heat received in one
square km is therefore 10%-20 = 2- 107 kcal in one minute. This is much less
than the total heat of 8 -10? kcals required to completely melt the iceberg.
Therefore in one minute the fraction of the iceberg melted by solar heat col-
lected over 1 square kilometer is 1/400. In other words it would take such a
heat 400 minutes or 6h 40m to melt the iceberg.

Since the cross-sectional area is only 1000 sq.m, the complete melting of
the iceberg will take 1000 times longer, which works out to be approximately
278 days.

Problem 2.11 What fraction of ice will still remain after 1 Kg
of ice has been supplied with 200 kJ of heat(all at 273 K)?

This problem is exactlt in the same spirit as the previous problem. Only
note the units used! Since one cal is 4.18 J, the latent heat is 80 - 4.18kJ /kg.
This works out to approximately 335 kJ/kg. Hence the supplied heat of 200
kJ is not enough to melt 1 kg of ice. Instead the fraction that is melted is
200/335. The fraction of ice remaining is therefore 135/335.

Problem 2.12 The specific heat of a solid substance near abso-
lute zero has been found to vary with temperature as C(T) =
2.0Te=3T J/mol.K. How much heat will be needed to raise
the temperature of 1 mol of this substance from 0 K to 10 K?

Since the substance is a solid, effects of changes in volume can be ne-
glected to a good approximation. The amount of heat required to raise the
temperature by dT is dQ = nCy (T)dT (in this case it is legitimate to repre-
sent the heat change as a perfect differential). Thereore, the heat required in
Joules(J) is

10 T

AQ = 2.0Te30Tdr = 2-0[(—5—1/9)(”] 1o
0
31 1
= 2-0[—36‘3%@]%0.22 (2.25)



