QUESTIONS AND SOLUTIONS: CHAPTER 2
The shearbox test

Q2.1 Describe with the aid of a diagram the essential features of the conventional shearbox
apparatus. Stating clearly the assumptions you need to make, show how the quantities
measured during the test are related to the stresses and strains in the soil sample.

02.1 Solution
Diagram of shear box: See main text Figure 2.14

Assume that the stresses and strains are uniform and continuous, and that the actual
deformation in shear (main text Figure 2.15a) is idealised as indicated in main text Figure
2.15b.

The known or measured quantities are

the sample area on plan, assumed to remain constant during the test)

the initial height of the sample

the normal (hanger) load

the shear force

the relative horizontal displacement between the upper and lower halves of the
shearbox

the upward movement of the shearbox lid.
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Consideration of main text Figure 2.15b gives strains
shear strain Y= x/H
volumetric strain &, = -v/H

In terms of stresses,
shear stress on central horizontal plane T = F/A
normal stress on central horizontal plane o = N/A

If it is further assumed that the pore water pressure u is zero (so that ¢’ = o) and the central
horizontal plane is the plane of maximum stress obliquity (7/0")max, a Mohr circle of stress
may be drawn (eg main text Figure 2.30), and the mobilised effective angle of friction is

Bob = tan” {0/ )k

Q2.2 With the aid of sketches, describe, explain and contrast the results you would expect to
obtain from conventional shearbox tests on samples of dry sand which were (a) initially loose,
and (b) initially dense. What factors would you take into account in selecting a soil strength
parameter for use in design?
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Q2.2 Solution
Typical graphs of (a) shear stress T against shear strain ¥ (b) volumetric strain &, against

shear strain y,; and (c) specific volume v against shear strain yare as shown in main text
Figure 2.21.

In the test carried out on the initially dense sample, the shear stress gradually increases with
shear strain to a peak at P, before falling to a steady value at C which is maintained as the
shear strain is increased. The sample may undergo a very small compression at the start of
shear, but then begins to dilate. The curve of €., vs ¥ becomes steeper, indicating that the
rate of dilation -dg,,/dy is increasing. The slope of the curve reaches a maximum at p, but
with continued shear strain the curve becomes less steep until at c it is horizontal. When the
curve is horizontal dg,,/dyis zero, indicating that dilation has ceased. The peak shear stress
at P coincides with the maximum rate of dilation at p. The steady state shear stress at C
corresponds to the achievement of the critical specific volume at c.

The initially loose sample displays no peak strength, but eventually reaches the same critical
shear stress as the first sample. The second sample does not dilate, but gradually compresses
during shear until the same critical specific volume is reached (i.e. the volumetric strain
remains constant).

In both cases, a critical state, is reached in which the soil continues to shear at constant
specific volume, constant shear stress and constant normal effective stress.

A dense sample displays a peak strength because additional work has to be done to overcome
the effect of the initially high degree of interlocking — high, that is, relative to the equilibrium
specific volume for continued shear at the vertical effective stress at which the test is carried
out. The initial dense packing means that the particles are forced to ‘“ride up” over each
other (= dilation) for deformation to occur (see the “saw blades analogy”, Figure 2.24).

In design, it may be safer to use the critical state strength ¢'.;; than the peak strength @pear,
because
o the peak strength depends on the extent to which the soil is dense in relation to the
critical state under the effective stress conditions at failure. It is not a soil constant,
and is unlikely to be the same throughout the mass of soil involved in a potential
failure mechanism
o it is unlikely that the peak strength will be mobilised simultaneously throughout the
soil mass, instead, progressive failure at an average strength rather lower than the
peak may occur.
However, the factors of safety used in many traditional methods of design may well allow for
these possibilities, and their use in connection with the critical state strength could lead to
overconservatism.
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Development of a critical state model

Q2.3 Mining operations frequently generate large quantities of fine, particulate waste known
as tailings. Tailings are generally transported as slurries, and stored in reservoirs impounded
by embankments or dams made up from the material itself. In order to investigate the
geotechnical behaviour of a particular tailings material (Gg=2.70), an engineer carried out
three slow, drained shear tests - each over a period of one day - and three fast, undrained shear
tests - each over a period of two minutes - in a conventional 60mm X 60 mm shearbox
apparatus.

The three samples in each group were initially allowed to come into drained equilibrium
under the application of vertical hanger loads of 100 N, 200 N and 300 N. During each shear
test, the hanger load was kept constant and the ultimate shear force Fyj; recorded.

Immediately after each test, a water content sample was taken from the centre of the rupture
zone. All of the samples were initially saturated, and all of the tests were carried out with the
sample under water in the shearbox.

The test results are summarised in table 2.8. Use the results of the drained tests to construct a
critical state model in terms of the normal effective stress ¢' and shear stress T on the shear
plane, and the specific volume v. Give the values of ¢'crit, Vo and A. Deduce a relationship

between the undrained shear strength 7, and the normal effective stress at the start of the test,
and compare its predictions with the experimental data from the undrained tests.

Table 2.8: Shearbox test data, Q2.3

Test type Vertical load V, N | Shear load Fy;jt, N | Water content w,
%
slow, drained 100 53 35.1
200 105 31.3
300 156 29.5
fast, undrained 100 42 36.0
200 80 32.6
300 120 30.6

02.3 Solution

The critical state model must be constructed using the drained test data only, because only in
these tests do we know that the pore water pressure u = 0 and that the vertical effective stress
0’ is equal to the normal load divided by the sample area. We must assume that the data given
for the slow tests were measured at true critical states.

For each sample,
the normal effective stress o' =V (kN)/A (mz )
the ultimate shear stress t,j; = Fy,j; (kN)/A (m?)

and the specific volume v may be calculated from the water content w using main text
Equation 1.10 with S;=1,
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v=1+wGg (main text Equation 2.12)
Vertical | normal In(o’) | Shear | Shear Water | Specific

load V, effective stress load stress Typp | content | volumev

N o', kPa Fuit N'| kPa w, %

100 27.8 3.325 |53 14.7 35.1 1.95

200 55.6 4.018 | 105 29.2 31.3 1.85

300 83.3 4.422 | 156 43.3 29.5 1.80

Plot graphs of 1,j; against ¢’ and v against Ino’ to determine the critical state parameters, as

in main text Figure 2.28 (Example 2.2).

B erit=28% vy =2.43; A=0.14

During the undrained tests, there is no overall volume change. Assuming that the specific
volume is uniform throughout the sample, it must remain constant during the test. The critical
state eventually reached therefore depends on the as-tested specific volume. Our model
predicts that, at the critical state, the vertical effective stress o is related to the specific
volume by the expression
v=v,-Ano (main text Equation 2.11)
or

o' = exp{(vy-v)/A}

The normal effective stress at the critical state is related to the shear stress 7,1 by the
expression

Tyl = O-tan@cyit (main text Equation 2.10)
Hence

Tult = expi{(vo-v)/Al.tand'cpit

where v = 1 + w.Gg. The calculated and measured values of t,; for the undrained tests are

compared below:

Vertical | normal Shear | Measured | Water | Specific Calculated

load V, effective stress | load shear content | volumev | shear

N o', kPa Fulp, N | stress Ty, | W, % stress, Tyt
kPa kPa

100 27.8 42 11.7 36.0 1.972 14.0

200 55.6 80 22.2 32.6 1.880 27.0

300 83.3 120 33.3 20.6 1.826 39.8
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The measured values are smaller than the theoretical values by about 16%. This is probably
due to internal drainage and discontinuous sample behaviour.

Determination of peak strengths

Q2.4 Table 2.9 gives results obtained from a shearbox test on a 60 mm X 60 mm sample of
dry sand of unit weight 18 kN/m3.

Table 2.9: Shearbox test data, Q2.4

Reading on proving ring deflexion
dial gauge (divisions)

Zero force 91
Peak shear force for a hanger load of 3kg 128
Peak shear force for a hanger load of 10kg 162

Peak shear force for a hanger load of 20kg 210

One division on the proving ring dial gauge corresponds to a force of 1.1N across the proving
ring.

(a) Plot the data on a graph of shear stress against normal effective stress, and sketch the peak
strength failure envelope.

(b) What is the peak resistance to shear on a horizontal plane at a depth of 3 m below the top
of a dry embankment made from this soil?

(c) A model of the embankment is constructed from the same sand at a scale of 1:10. What is
the peak resistance to shear on a horizontal plane at a depth of 300mm below the top of the
model?

(d) Would you expect the model to behave in the same way as the real embankment?

02.4 Solution
(a) The normal stress on the sample is given by the hanger load (kg) x 9.81 (N/kg) + the

sample area, 0.06m x0.06m = 3.6x10-3m2, + 1000 to convert from Pa to kPa.

The shear force on the sample is given by 1.1 x (the number of proving ring dial divisions -
the number of divisions at zero load), i.e. 1.1 x(n - 91). To convert this to the shear stress, it

is necessary to divide the shear force by the area of the sample, 0.06m x 0.06m = 3.6x10"
3m2, and divide by 1000 to convert from Pa to kPa.

Hanger load, kg

Normal stress, kPa

Peak shear load, N

Peak shear stress, kPa

3 8.175 40.7 11.31
10 27.25 78.1 21.69
20 54.5 130.9 36.36
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These data are plotted on a graph of T against o in Figure Q2.4. The peak strength failure
envelope is highly non-linear, with ¢'peak = 55%at 0 =8 kPa, falling to ¢'peak =34°t o =
55 kPa

(b) At a depth of 3m below the top of a dry embankment made of this sand, the vertical

effective stress is 3mxI 8kN/m3 = 54kPa. This corresponds to a hanger load of 20kg, at which
the peak shear stress is approximately 36.4 kPa

(c) In the 1:10 scale model, the vertical effective stress at a depth of 300mm is about 0.3m x

18kN/m3 = 5.4 kPa. From Figure Q2.4, this gives a peak shear resistance of approximately
7.7kPa

(d) The model would not be expected to behave in the same way as the real embankment,
because the operational values of ¢'peak at corresponding depths in the model and the real
embankment are quite different.
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Figure Q2.4: Shear stress against normal effective stress at peak, Q2.4
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Use of strength data to calculate friction pile load capacity

Q2.5 A friction pile, 300 mm in diameter, is driven to a depth of 25 m in dense sand of unit

weight 19 kN/m3. The ratio of horizontal to vertical effective stresses is 0.5. The angle of
friction between the pile and the sand is 26° and the resistance offered at the base of the pile
may be ignored. The natural water table, below which the pore water pressures are
hydrostatic, is Sm below ground level. During construction works, the water table is
temporarily lowered to a depth of 16m by pumping from wells. A load test on the pile is
carried out while pumping to lower the groundwater level is still in progress. Calculate the
ultimate load capacity of the pile (a) observed in the test, and (b) after pumping from the wells
has stopped, and the water table has recovered to its natural level.

02.5 Solution
The vertical total stress oy, the pore water pressure u and the vertical (o",) and horizontal

(0'y) effective stresses all vary linearly with depth between the soil surface and the water
table, and between the water table and the base of the pile.

In general at depth z, with the water table at a depth h,
oy = ¥z
u = 0 above the water table (z<h)
U = Y%y.(z - h) below the water table (z=h)

oy =0y,-u
op=05x0,
shear stress on pile T= o'y, xtan26 °

(a) With the water table depth h = 16m. y= 19 kN/m3 and Ky = 9.81 kN/m3, the following

relationship between shear stress Tand depth z is calculated:

z,m o, kPa u, kPa o', kPa o'y kPa 7, kPa

At the soil surface 0 0 0 0 0 0
At the water table 16 304 0 304 152 74.14
At the base of the pile 25 475 88.29  386.71 193.36 94.31

The frictional resistance to pile movement is given by integrating the shear stress Tover the
surface area of the pile. The surface area of the upper 16m of the pile is (r x 0.3)m x 16m =

]5.08m2, and the average shear stress over this area is 74.14kPa + 2 = 37.07kPa. The

surface area of the lower 9m of the pile is (r x 0.3)m x 9m = 8.48m2, and the average shear
stress over this area is (74.14kPa + 94.31kPa) + 2 = 84.23kPa. Thus the overall frictional
resistance is

(15.08m2 x37.07kPa) + (8.48m?2 x 84.23kPa) = 1273kN

(b) With the water table depth h = 5m. y= 19 kN/m3 and ¥, = 9.81 kN/m3:
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zzm oy, kPa u kPa o kPa O kPa 1 kPa

At the soil surface 0 0 0 0 0 0
At the water table 5 95 0 95 47.5 23.17
At the base of the pile 25 475 196.2  278.8 139.4 67.99

The surface area of the upper Sm of the pile is (r X 0.3)m x 5m = 4. 7Im2, and the average
shear stress over this area is 23.17kPa +2 = 11.59kPa. The surface area of the lower 20m of

the pile is (r x 0.3)m x 9m = 18.85m2, and the average shear stress over this area is
(23.17kPa + 67.99kPa) +2 = 45.58kPa. Thus the overall frictional resistance is

(4.71m2 x 11.59kPa) + (18.85m?2 x45.58kPa) = 914kN

Q2.6 The depth of the friction uplift pile described in main text Example 2.4 is increased to
20m, where the undrained shear strength of the clay is 40 kPa. Calculate the short- and long-
term uplift resistance of the 20m pile.

02.6 Solution
The total shear resistance of the clay/pile interface is given by

T = average shear stress X surface area of pile

(a) In the short term, the average shear stress is the average undrained shear strength on the
interface, so that

T = [(0 + 40kPa) = 2] x[(7 x0.5m) x 20m] = 628 kN

(b) In the long term, the ultimate shear stress on the interface is given by

Tl = Op.tand

where o'y = 0.5 x 0y, is the horizontal effective stress and O 'is the angle of friction between
the clay and the pile

At a depth z,

o, (kPa) = {y(kN/m®) x z (m)} = {18 (kN/m3) xz (m)}

u (kPa) = { %, (kN/m’) x z (m)} = {9.81 (kN/m3) xz (m)}, and
oy =0y-u

As in (a), T = average shear stress X surface area of pile

The shear stress T on the soil/pile interface is now
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0.5 x o'.tano
which increases linearly from zero at the top of the pile to

0.5 x[(18 kN/m3 x20 m) - (9.81 kN/m3 x20 m)] xtan20°= 29.81 kPa at the base
Hence

T = [(0 +29.81 kPa) + 2] x[(7x0.5m) x20 m] = 468 kN

Stress analysis and interpretation of shearbox test data

Q2.7 A drained shearbox test was carried out on a sample of saturated sand. The normal
effective stress of 41.67 kPa was constant throughout the test, and the initial sample
dimensions were 60 mm X 60 mm on plan X 30 mm deep). In the vicinity of the peak shear
stress, the data recorded were as shown in table 2.10.

Table 2.10: Shearbox test data, Q2.7

Shear stress 1, kPa 425 |43.1 42.8

relative horizontal displacement x, mm 0.30 |0.40 0.80

upward movement of shearbox lid y, mm 0.05 |0.075 | 0.105

(a) Draw the Mohr circle of stress for the soil sample when the shear stress is a maximum,
stating the assumption that you need to make. Determine ¢'peak, and the orientations of the

planes of maximum stress ratio (T/0")pax. Draw the Mohr circle of strain increment leading
to the peak, and hence determine the maximum angle of dilation, yyax. Use an empirical

relationship between ¢'peak,Wmax and ¢'crit to estimate the critical state friction angle, ¢'crit.

(b) Three further drained tests on similar samples of the same soil were carried out, at
different normal effective stresses. The peak and critical state shear stresses were:

Normal effective stress, kPa 20 100 200
Peak shear stress, kPa 23.8 83.9 132.0
Critical state shear stress, kPa 12.6 63.2 126.4

For all four tests, plot the peak and critical state shear stresses Tpeak and Terit as a function of

the normal effective stress ¢'. Sketch failure envelopes for both peak and critical states, and
comment briefly on their shapes. Which would you use for design, and why?

02.7 Solution
(@) At Ty (= 43.1 kPa), @ pear = tan” {(T/ ) mar} = tan” (43.1/41.67) = 46 °

assuming that the central horizontal plane is a plane of maximum stress ratio. The Mohr
circle of stress is shown in Figure Q2.7a.
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Figure Q2.7a: Mohr circle of stress, Q2.7

The first plane of maximum stress ratio is horvizontal (this is an assumption that has to be
made to draw the Mohr circle of stress). From Figure Q2.7a, the second plane of maximum
stress ratio is at (90° - @pear) = (90° - 46°) = 44° to the horizontal, either clockwise or
anticlockwise depending on whether the shear stress on the horizontal plane plots positive or
negative. (Note: the answer given in the main text is slightly ambiguous here. The planes of
maximum stress ratio are horizontal and either + or - 44 ° to the horizontal and not, as might
be interpreted from the answer given in the main text, + and - 44 °to the horizontal).

The increments of shear (A and vertical (Ag,) strain leading up to peak are given by
Ag, = Ay/H = 0.025/30 = 0.083%, and
Ay=A/H = 0.1/30 = 0.333%

where Ax and Ay are the incremental relative horizontal displacement of the two halves of the
shearbox and the upward displacement of the shearbox lid respectively, and H = 30 mm ins
the initial sample height. The increment of horizontal strain Ag, = 0. The Mohr circle of
strain increment is shown in Figure Q2.7b, and is plotted with coordinates (A€ Ay2) =
(0.083%, 0.167%) for the strains associated with (normal to) the horizontal plane and (0, -
0.167%) for the strains associated with (normal to) the vertical plane.
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Figure Q2.7b: Mohr circle of strain increment leading up to peak, Q2.7

From Figure Q2.7b, the angle of dilation at peak is given by
Winax = /A = 2.5/10 = Wy = 14°
We might expect @'crit ~ @'peak — 0.8 X Wax (main text Equation 2.14), giving

¢'crit ~46 ‘- 11°or _,é_’critﬂ

(b) The data are plotted as Tyeq and 1., against o' in Figure Q2.7c.
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Figure Q2.7c: Failure envelopes in terms of peak and critical state strengths, Q2.7
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The failure envelopes sketched in Figure Q2.7c show that
o @' is constant (= 32.5° closer to @peak —Wmax = 32 °than the estimate of 35 ° based
on @peak — 0.8 X Way) because there is no dilation at the critical state
o @ear reduces as the normal effective stress o' increases, because the amount of
dilation needed to reach the appropriate (critical) specific volume is reduced.

In design, it may be safer to use the critical state strength ¢'..;; than the peak strength ¢'peak,
because
o the peak strength depends on the extent to which the soil is dense in relation to the
critical state under the effective stress conditions at failure. It is not a soil constant,
and is unlikely to be the same throughout the mass of soil involved in a potential
failure mechanism
o it is unlikely that the peak strength will be mobilised simultaneously throughout the
soil mass, instead, progressive failure at an average strength rather lower than the
peak may occur.
However, the factors of safety used in may traditional methods of design may well allow for
these possibilities, and their use in connection with the critical state strength could lead to
overconservative design.

Q2.8 To investigate the drained strength of a natural silt containing thin clay laminations at a
spacing of approximately 6 mm, an engineer carried out a series of shearbox tests. The clay
laminations were inclined at various angles © to the horizontal. With the laminations
horizontal (0 = 0), the rupture formed entirely in the clay and the apparent angle of shearing
resistance was 18°. With the laminations at an angle 6 = 60°, the rupture formed entirely in
the silt and the apparent angle of shearing resistance was 30°. Stating clearly the assumptions
you need to make, construct Mohr circles of stress at failure for various values of apparent
angle of shearing resistance, marking on each the stress state corresponding to the clay
laminations. (Hint: the mobilized strength on the clay laminations must never exceed 18°).
Plot a graph showing the relationship between the angle 0 and the apparent angle of shearing
resistance of the soil.

02.8 Solution
When 6 = 0, the shear plane forms in the clay so @' = 18 ° for the clay. When 6 = 60° the
shear plane forms in the silt so ¢'c.;y = 30 °for the silt.

Assume that the sample behaves as a continuum up to rupture, and that the central horizontal
plane of the shearbox is the plane of maximum and apparent stress ratio (T/0°) = tan@'.pparent.
The easiest procedure is to construct Mohr circles of stress for apparent ¢'values of 21 24
27°and 30° and deduce the corresponding orientation of the clay laminations such that the
stress ratio on the laminations is (7/0) = tanl8°. Each value of @'.pparen Will give four
possible orientations of the clay laminations (6 measured clockwise from the horizontal), as
indicated in Figure Q2.8a.

Figure Q2.8a shows a general Mohr circle from which algebraic expressions for the
orientations 6 (measured clockwise from the horizontal) of the yellow clay laminations to give
the given value of @'ypparen. Remember that the rotation on the Mohr circle must be divided by
2 to give the actual rotation in the physical plane.
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Figure Q2.8a: Mohr circle of stress, 02.8

The orientations 6 of the clay laminations are given by the angles clockwise from the
horizontal plane 6;, &, 6; and 6y, corresponding to the points P, O, R and S respectively on
Figure 02.8a.

From triangle OTC, t/s" = sin®spparent

From triangle OPC, angle OCP = 180°- @y - 18 °and angle OCP = 26; + (90 °- ¢'spparent)

Applying the sine rule to triangle OPC,

s"/sinay = t/sinl8° = sina; = sinl8 Y(t/s') or sin@; = sinl8 /sin@ ypparen: (note @y is acute, ie
less than 90°)

Applying the sine rule to triangle OSC,

s"sinay = t/sinl8° = sinay = sinl8 /(t/s') or sinawy = sinl8 /sin@spparent (n0te @y is obtuse, ie
greater than 909

By considering the geometry of the Mohr circle shown in Figure Q2.8a, the values of 6, to 6,
may be determined as follows.

20] = (900+ ¢'apparent) - (a)] + ]80) = 0] =05 X(720- w; + ¢'apparent)

260, =(90°+ Glapparen) + (1 +18°) = 6, = 0.5 x(108°+ @y + Gappareny)
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265=(90°+ Gapparen) + (@4 + 18°) = 65 = 0.5 X (108°+ @ + Papparens)
205 =(90°+ Popparen) + (04 + 18°) + 2(180°- 18°- ay) = 64 = 0.5 X (432°- @y + Popparent)

The values of w;, ay and 6 to Oy for @ apparen = 21 245 27 °and 30 ° are detailed below.

'apparent (] Wy 6] 62 03 64
21 59.57 112043 | 16.72 | 94.29 | 124.72 | 166.28
24 49.44 | 130.56 | 23.28 1 90.72 | 131.28 | 162.72
27 42.90 | 137.10 | 28.05 | 88.98 | 136.05 | 160.95
30 38.12 | 141.83 | 31.94 | 88.06 | 139.92 | 160.01

These values are used to construct the graph of apparent angle of shearing resistance @'opparent
against orientation of the clay laminations 6 shown in Figure (Q2.8b: note that for
orientations of the laminations 0 between 32 °and 88 °, and between 140°and 160°, the value
of @' upparent 1S equal to @' for the silt, 30 °
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Figure Q2.8b: apparent effective angle of friction against angle of lamination inclination,
02.8

Note that unless you are very confident with geometry and trigonometry, this problem is
probably much more easily addressed by drawing out the four individual Mohr circles to
scale and measuring off the angles 6, to 6,. The principles, and hopefully the answers, are
however the same.
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QUESTIONS AND SOLUTIONS: CHAPTER 3
Laboratory measurement of permeability; fluidization; layered soils

Q3.1 Describe by means of an annotated diagram the principal features of a constant head
permeameter. Give three reasons why this laboratory test might not lead to an accurate
determination of the effective permeability of a large volume of soil in the ground. Suggest
how each of these problems might be overcome.

03.1 Solution
Diagram of constant head permeameter: see main text Figure 3.8

Inaccurate determination of the in situ permeability might result from
a) sample disturbance — unrepresentative void ratio of a uniform soil
b) sample disturbance — destruction of soil fabric e.g. in a soil with a layered structure
¢) large scale inhomogeneities e.g. fissures and high permeability lenses, which cannot
be represented in the small scale laboratory sample
d) low permeability of a soil with fine particles leads to inaccurate determination of
flowrate due to evaporation losses and general measurement errors

These can be overcome by
a) testing recompacted samples at maximum and minimum achievable void ratio to give
possible limits to the in situ permeability
b) & c) carrying out field pumping tests
¢) using a falling head permeameter

Q3.2 Describe by means of an annotated diagram the principal features of a falling head
permeameter.

Show that the water level in the top tube h would be expected to change with time t according
to the following equation

In(hhg) = -(kA1/AoL).t

where h, is the initial water level in the top tube, Aj is the cross sectional area of the sample
and L is its length, k is the soil permeability and Ay is the cross sectional area of the top tube.

Give two reasons why this laboratory test might not lead to an accurate determination of the
effective permeability of a large volume of soil in the ground.
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