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Figure 2.1 General three-dimensional state of stress. The faces of the cubic element shown are termed the positive
faces, because the outward normals are in the positive directions of x, y and z. On the faces not shown (the
negative faces), the directions of the stresses are reversed in order to satisfy to condition of equilibrium.
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Figure 2.2 Axisymmetry.
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Figure 2.3 Normal and shear stresses acting on an imaginary cut within the cross-sectional plane of a long geotechni-
cal construction.

002x003.eps



Courtesy of CRC Press/Taylor & Francis Group

! Mohr circle of
effective stress Mohr circle of total stress
Centre ats'= 5 (6] +03) Centreats= 5 (6,+03)
Radius t=5 (61-03) Radius t= % (6,-03)

(b)

Figure 2.4 Mohr circles of stress showing (a) the circles representing total and effective stress separated by the pore
water pressure, u; and (b) the stress state on an imaginary ‘cut’ at an angle 0 anticlockwise from the plane
on which the major principal effective stress acts.
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Figure 2.5 Strain: (a) direct strain and (b) engineering shear strain.
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Figure 2.6 Mohr circle of strain.
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Figure 2.7 True shear strain.
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Figure 2.8 (a) Uniform compression. (b) Pure shear.
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Figure 2.9 Mohr circles of stress for the plane containing the major and minor principal stresses. (a) Material which
is able to resist shear stress. (b) Material which is unable to resist shear stress.
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Figure 2.10 Wooden block on a wooden table.
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Figure 2.11 (a) Angle of inclination of resultant force on the interface; (b) relationship between F and N when the
block starts to slide.
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Figure 2.12 Sliding interface (shearbox) test to investigate frictional characteristics of a soil.
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Figure 2.13 Combinations of shear stress and normal effective stress: (a) impossible stress state, (b) permissible stress

state with soil not at failure, and (c) permissible stress state with soil on verge of failure (limiting stress state).
(d) The lines T =+0 tan @ as an envelope to all possible limiting stress states.
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Figure 2.14 Standard shearbox apparatus.
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Figure 2.15 Schematic deformation of shearbox sample, showing quantities measured during shear test: (a) actual
deformation and (b) idealised deformation.
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Figure 2.16 Shearbox test data plotted as: (a) T/6” (or T) vs Y, and (b) €, (or v) vs .
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Figure 2.17 Dilation.
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Figure 2.18 Conceptual model for: (a) compression and (b) dilation during shear.
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Figure 2.19 Visualisation of rearrangement of soil particles during shear: (a) dilation; (b) contraction; (c) critical state.
(Redrawn with permission from Bolton, M.D., A Guide to Soil Mechanics, M.D. & K. Bolton, Cambridge,
1991.)
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Figure 2.20 Demonstration of dilation: (a) rubber bulb full of saturated dense sand in undisturbed state; (b) what hap-
pens when the bulb is squeezed, causing the sand to shear and dilate.
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Figure 2.21 Idealised shearbox test results: (a) Tvs Y; (b) €, vs ¥; (c) Vvs Y.
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Figure 2.22 Idealised results from shearbox tests, carried out at different normal effective stresses, on four samples
having the same initial void ratio: (a) stress ratio 7/’ vs y; (b) specific volume v vs 7; (c) critical states (end
points of tests); T vs 0’; (d) critical states; v vs &”; (e) critical states; v vs In 6.
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Figure 2.23 Critical state line in (¢, T, v) space with projections onto (1, 6’) and (v, ¢’) planes.
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Figure 2.24 (a) W.yuren, is the current angle of dilation, (b) Sawtooth analogy for dilation. (From Bolton, M.D., A Guide
to Soil Mechanics, M.D. & K. Bolton, Cambridge, 1991. With permission.)
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Figure 2.25 (a) Peak strength data, plotted as T vs ¢’, showing curved failure envelope and (b) error associated with
simplistic interpretation of peak strength data.
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Figure 2.26 Graphs of: (a) shear stress T against shear strain v, (b) volumetric strain €, against shear strain vy, and (c)
specific volume v against shear strain y for Example 2.1.
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Figure 2.27 Envelope to all possible Mohr circles of total stress at failure for a clay sheared at constant volume.
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Figure 2.28 (a) T against 6" and (b) v against In 6" for Example 2.2.
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Figure 2.29 Cross-section through grouted ground anchor.
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Figure 2.30 Mohr circle of stress for shearbox sample, assuming that the horizontal plane is the plane of maximum
stress ratio.
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Figure 2.31 For a shearbox test: (a) stresses and (b) plastic strain increments.
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Figure 2.32 Mohr circle of plastic strain increment for a shearbox test.
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Figure 2.33 Mohr circle of effective stress for shearbox test, assuming that planes of major principal stress and major
principal strain increment coincide.
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Figure 2.34 Mohr circle of total stress for an undrained shearbox test on a clay, assuming that the horizontal plane is
the plane of maximum shear stress.
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Figure 2.35 Mohr circle of plastic strain increment for an undrained shearbox test on a clay.
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Figure 2.36 Simple shear apparatus. (From Kishida, H. and Uesughi, M., Géotechnique, 37, 1, 45-52, 1987. With
permission.)
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Figure 2.37 Research shearbox: (a) at start of test and (b) during the test.
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Figure 2.38 Mohr circles of stress for Example 2.5.
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Figure 2.39 Geometry of Mohr circle of strain.
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Figure 2.40 Plots of: (a) (¢/s”) against ¥y,,,, and (b) €, against Y, .
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