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QUESTIONS AND SOLUTIONS: CHAPTER 2 
 
The shearbox test 
 
Q2.1 Describe with the aid of a diagram the essential features of the conventional shearbox 
apparatus. Stating clearly the assumptions you need to make, show how the quantities 
measured during the test are related to the stresses and strains in the soil sample.  
 
Q2.1 Solution 
Diagram of shear box: See main text Figure 2.14 
 
Assume that the stresses and strains are uniform and continuous, and that the actual 
deformation in shear (main text Figure 2.15a) is idealised as indicated in main text Figure 
2.15b. 
 
The known or measured quantities are  
A the sample area on plan, assumed to remain constant during the test) 
H the initial height of the sample 
N the normal (hanger) load  
F the shear force   
x the relative horizontal displacement between the upper and lower halves of the 

shearbox 
y the upward movement of the shearbox lid. 
 
Consideration of main text Figure 2.15b gives strains  
shear strain γ = x/H 
volumetric strain εvol = -y/H 
 
In terms of stresses, 
shear stress on central horizontal plane τ = F/A 
normal stress on central horizontal plane σ = N/A 
 
If it is further assumed that the pore water pressure u is zero (so that σ' = σ) and the central 
horizontal plane is the plane of maximum stress obliquity (τ/σ')max, a Mohr circle of stress 
may be drawn (eg main text Figure 2.30), and the mobilised effective angle of friction is 
 
φ'mob = tan-1{(τ/σ')max}   
 
 
Q2.2 With the aid of sketches, describe, explain and contrast the results you would expect to 
obtain from conventional shearbox tests on samples of dry sand which were (a) initially loose, 
and (b) initially dense. What factors would you take into account in selecting a soil strength 
parameter for use in design? 
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Q2.2 Solution 
Typical graphs of (a) shear stress τ against shear strain γ; (b) volumetric strain εvol against 
shear strain γ ; and (c) specific volume v against shear strain γ are as shown in main text 
Figure 2.21.  
 
In the test carried out on the initially dense sample, the shear stress gradually increases with 
shear strain to a peak at P, before falling to a steady value at C which is maintained as the 
shear strain is increased. The sample may undergo a very small compression at the start of 
shear, but then begins to dilate. The curve of ε vol vs γ becomes steeper, indicating that the 
rate of dilation -dεvol/dγ is increasing. The slope of the curve reaches a maximum at p, but 
with continued shear strain the curve becomes less steep until at c it is horizontal. When the 
curve is horizontal dεvol/dγ is zero, indicating that dilation has ceased. The peak shear stress 
at P coincides with the maximum rate of dilation at p. The steady state shear stress at C 
corresponds to the achievement of the critical specific volume at c. 
 
The initially loose sample displays no peak strength, but eventually reaches the same critical 
shear stress as the first sample. The second sample does not dilate, but gradually compresses 
during shear until the same critical specific volume is reached (i.e. the volumetric strain 
remains constant). 
 
In both cases, a critical state, is reached in which the soil continues to shear at constant 
specific volume, constant shear stress and constant normal effective stress. 
 
A dense sample displays a peak strength because additional work has to be done to overcome 
the effect of the initially high degree of interlocking – high, that is, relative to the equilibrium 
specific volume for continued shear at the vertical effective stress at which the test is carried 
out. The initial dense packing means that the particles are forced to “ride up” over each 
other ( dilation) for deformation to occur (see the “saw blades analogy”, Figure 2.24). 
 
In design, it may be safer to use the critical state strength φ'crit than the peak strength φ'peak, 
because 

• the peak strength depends on the extent to which the soil is dense in relation to the 
critical state under the effective stress conditions at failure. It is not a soil constant, 
and is unlikely to be the same throughout the mass of soil involved in a potential 
failure mechanism 

• it is unlikely that the peak strength will be mobilised simultaneously throughout the 
soil mass; instead, progressive failure at an average strength rather lower than the 
peak may occur. 

However, the factors of safety used in many traditional methods of design may well allow for 
these possibilities, and their use in connection with the critical state strength could lead to 
overconservatism. 
 



16 
 

Development of a critical state model 
 
Q2.3 Mining operations frequently generate large quantities of fine, particulate waste known 
as tailings. Tailings are generally transported as slurries, and stored in reservoirs impounded 
by embankments or dams made up from the material itself. In order to investigate the 
geotechnical behaviour of a particular tailings material (Gs=2.70), an engineer carried out 

three slow, drained shear tests - each over a period of one day - and three fast, undrained shear 
tests - each over a period of two minutes - in a conventional 60mm × 60 mm shearbox 
apparatus. 
 
The three samples in each group were initially allowed to come into drained equilibrium 
under the application of vertical hanger loads of 100 N, 200 N and 300 N. During each shear 
test, the hanger load was kept constant and the ultimate shear force Fult recorded. 

Immediately after each test, a water content sample was taken from the centre of the rupture 
zone. All of the samples were initially saturated, and all of the tests were carried out with the 
sample under water in the shearbox. 
 
The test results are summarised in table 2.8. Use the results of the drained tests to construct a 
critical state model in terms of the normal effective stress σ' and shear stress τ on the shear 
plane, and the specific volume v. Give the values of φ'crit, vo and λ. Deduce a relationship 

between the undrained shear strength τu and the normal effective stress at the start of the test, 

and compare its predictions with the experimental data from the undrained tests. 
 
Table 2.8: Shearbox test data, Q2.3 
 
Test type Vertical load V, N Shear load Fult, N Water content w, 

% 
slow, drained 100 53 35.1 
 200 105 31.3 
 300 156 29.5 
fast, undrained 100 42 36.0 
 200 80 32.6 
 300 120 30.6 
 
 
Q2.3 Solution 
 
The critical state model must be constructed using the drained test data only, because only in 
these tests do we know that the pore water pressure u = 0 and that the vertical effective stress 
σ' is equal to the normal load divided by the sample area. We must assume that the data given 
for the slow tests were measured at true critical states. 
 
For each sample, 

the normal effective stress σ' = V (kN)/A (m2) 

the ultimate shear stress tult = Fult (kN)/A (m2) 

 
and the specific volume v may be calculated from the water content w using main text 
Equation 1.10 with Sr=1, 
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v = 1 + w.Gs        (main text Equation 2.12) 

 
Vertical 
load V, 
N 

normal 
effective stress 
σ', kPa 

ln(σ') Shear 
load 
Fult, N 

Shear 
stress τult, 
kPa 

Water 
content 
w, % 

Specific 
volume v 

100 27.8 3.325 53 14.7 35.1 1.95 
200 55.6 4.018 105 29.2 31.3 1.85 
300 83.3 4.422 156 43.3 29.5 1.80 
 
Plot graphs of τult against σ' and v against lnσ' to determine the critical state parameters, as 

in main text Figure 2.28 (Example 2.2). 
 
φ'crit ≈ 28°; vo ≈ 2.43; λ ≈ 0.14 

 
During the undrained tests, there is no overall volume change. Assuming that the specific 
volume is uniform throughout the sample, it must remain constant during the test. The critical 
state eventually reached therefore depends on the as-tested specific volume. Our model 
predicts that, at the critical state, the vertical effective stress σ' is related to the specific 
volume by the expression 
 
v = vo - λ.lnσ'        (main text Equation 2.11) 

 
or 
 
σ' = exp{(vo-v)/λ} 

 
The normal effective stress at the critical state is related to the shear stress τult by the 

expression 
 
τult = σ'.tanφ'crit       (main text Equation 2.10) 

 
Hence 
 
τult = exp{(vo-v)/λ}.tanφ'crit  

 
where v = 1 + w.Gs. The calculated and measured values of τult for the undrained tests are 

compared below: 
 
Vertical 
load V, 
N 

normal 
effective stress 
σ', kPa 

Shear 
load 
Fult, N 

Measured 
shear 
stress τult, 
kPa 

Water 
content 
w, % 

Specific 
volume v 

Calculated 
shear 
stress, τult 
kPa 

100 27.8 42 11.7 36.0 1.972 14.0 
200 55.6 80 22.2 32.6 1.880 27.0 
300 83.3 120 33.3 20.6 1.826 39.8 
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The measured values are smaller than the theoretical values by about 16%. This is probably 
due to internal drainage and discontinuous sample behaviour. 
 
 
Determination of peak strengths 
 
Q2.4 Table 2.9 gives results obtained from a shearbox test on a 60 mm × 60 mm sample of 

dry sand of unit weight 18 kN/m3. 
 
Table 2.9: Shearbox test data, Q2.4 
 
 Reading on proving ring deflexion 

dial gauge (divisions) 
Zero force 91 
Peak shear force for a hanger load of 3kg 128 
Peak shear force for a hanger load of 10kg 162 
Peak shear force for a hanger load of 20kg 210 
 
One division on the proving ring dial gauge corresponds to a force of 1.1N across the proving 
ring. 
 
(a) Plot the data on a graph of shear stress against normal effective stress, and sketch the peak 
strength failure envelope. 
 
(b) What is the peak resistance to shear on a horizontal plane at a depth of 3 m below the top 
of a dry embankment made from this soil? 
 
(c) A model of the embankment is constructed from the same sand at a scale of 1:10. What is 
the peak resistance to shear on a horizontal plane at a depth of 300mm below the top of the 
model? 
 
(d) Would you expect the model to behave in the same way as the real embankment? 
 
Q2.4 Solution 
(a) The normal stress on the sample is given by the hanger load (kg) × 9.81 (N/kg) ÷ the 

sample area, 0.06m × 0.06m = 3.6×10-3m2, ÷ 1000 to convert from Pa to kPa. 
 
The shear force on the sample is given by 1.1 × (the number of proving ring dial divisions - 
the number of divisions at zero load), i.e. 1.1 × (n - 91). To convert this to the shear stress, it 

is necessary to divide the shear force by the area of the sample, 0.06m × 0.06m = 3.6×10-

3m2, and divide by 1000 to convert from Pa to kPa. 
 
Hanger load, kg Normal stress, kPa Peak shear load, N Peak shear stress, kPa 
3 8.175 40.7 11.31 
10 27.25 78.1 21.69 
20 54.5 130.9 36.36 
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These data are plotted on a graph of τ against σ' in Figure Q2.4. The peak strength failure 
envelope is highly non-linear, with φ'peak = 55° at σ' ≈ 8 kPa, falling to φ'peak = 34° at σ' ≈ 

55 kPa 
 
(b) At a depth of 3m below the top of a dry embankment made of this sand, the vertical 

effective stress is 3m×18kN/m3 = 54kPa. This corresponds to a hanger load of 20kg, at which 
the peak shear stress is approximately 36.4 kPa 
 
(c) In the 1:10 scale model, the vertical effective stress at a depth of 300mm is about 0.3m × 
18kN/m3 = 5.4 kPa. From Figure Q2.4, this gives a peak shear resistance of approximately 
7.7kPa 
 
(d) The model would not be expected to behave in the same way as the real embankment, 
because the operational values of φ'peak at corresponding depths in the model and the real 

embankment are quite different. 
 

Figure Q2.4: Shear stress against normal effective stress at peak, Q2.4 
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Use of strength data to calculate friction pile load capacity 
 
Q2.5 A friction pile, 300 mm in diameter, is driven to a depth of 25 m in dense sand of unit 

weight 19 kN/m3. The ratio of horizontal to vertical effective stresses is 0.5. The angle of 
friction between the pile and the sand is 26° and the resistance offered at the base of the pile 
may be ignored. The natural water table, below which the pore water pressures are 
hydrostatic, is 5m below ground level. During construction works, the water table is 
temporarily lowered to a depth of 16m by pumping from wells. A load test on the pile is 
carried out while pumping to lower the groundwater level is still in progress. Calculate the 
ultimate load capacity of the pile (a) observed in the test, and (b) after pumping from the wells 
has stopped, and the water table has recovered to its natural level. 
 
Q2.5 Solution 
The vertical total stress σv, the pore water pressure u and the vertical (σ'v) and horizontal 

(σ'h) effective stresses all vary linearly with depth between the soil surface and the water 

table, and between the water table and the base of the pile. 
 
In general at depth z, with the water table at a depth h, 
 σv = γ.z;  

 u = 0 above the water table (z≤h) 
 u = γw.(z - h) below the water table (z≥h) 

  σ'v = σv - u 

 σ'h = 0.5 × σ'v 

 shear stress on pile τ = σ'h ×tan26° 

 

(a) With the water table depth h = 16m. γ = 19 kN/m3 and γw = 9.81 kN/m3, the following 

relationship between shear stress τ and depth z is calculated: 
 
 z, m σv, kPa u, kPa σ'v, kPa σ'h, kPa τ, kPa 

At the soil surface 0 0 0 0 0 0 
At the water table 16 304 0 304 152 74.14 
At the base of the pile 25 475 88.29 386.71 193.36 94.31 
 
The frictional resistance to pile movement is given by integrating the shear stress τ over the 
surface area of the pile. The surface area of the upper 16m of the pile is (π × 0.3)m × 16m = 

15.08m2,  and the average shear stress over this area is 74.14kPa ÷ 2 = 37.07kPa. The 

surface area of the lower 9m of the pile is (π × 0.3)m × 9m = 8.48m2,  and the average shear 
stress over this area is (74.14kPa + 94.31kPa) ÷ 2 = 84.23kPa. Thus the overall frictional 
resistance is 
 

(15.08m2 × 37.07kPa) + (8.48m2 × 84.23kPa) =   1273kN 
 

(b) With the water table depth h = 5m. γ = 19 kN/m3 and γw = 9.81 kN/m3: 
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 z, m σv, kPa u, kPa σ'v, kPa σ'h, kPa τ, kPa 

At the soil surface 0 0 0 0 0 0 
At the water table 5 95 0 95 47.5 23.17 
At the base of the pile 25 475 196.2 278.8 139.4 67.99 
 

The surface area of the upper 5m of the pile is (π × 0.3)m × 5m = 4.71m2,  and the average 
shear stress over this area is 23.17kPa ÷ 2 = 11.59kPa. The surface area of the lower 20m of 

the pile is (π × 0.3)m × 9m = 18.85m2,  and the average shear stress over this area is 
(23.17kPa + 67.99kPa) ÷ 2 = 45.58kPa. Thus the overall frictional resistance is 
 

(4.71m2 × 11.59kPa) + (18.85m2 × 45.58kPa) =   914kN 
 
  
Q2.6 The depth of the friction uplift pile described in main text Example 2.4 is increased to 
20m, where the undrained shear strength of the clay is 40 kPa. Calculate the short- and long-
term uplift resistance of the 20m pile. 
 
Q2.6 Solution 
The total shear resistance of the clay/pile interface is given by 
 
T = average shear stress × surface area of pile 
 
(a) In the short term, the average shear stress is the average undrained shear strength on the 
interface, so that 
 
T  = [(0 + 40kPa) ÷ 2] × [(π × 0.5m) ×  20m] = 628 kN 
 
 
 (b) In the long term, the ultimate shear stress on the interface is given by 
 
τult  = σ'h.tanδ 

 
where σ'h = 0.5 × σ'v is the horizontal effective stress and δ is the angle of friction between 

the clay and the pile 
 
At a depth z, 
 

σv (kPa) = {γ (kN/m3) ×  z (m)} = {18 (kN/m3) × z (m)} 

 

u (kPa) = {γw (kN/m3) ×  z (m)} = {9.81 (kN/m3) × z (m)}, and 

 
σ'v = σv - u 

 
As in (a), T = average shear stress × surface area of pile 
 
The shear stress τ on the soil/pile interface is now 
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0.5 × σ'v.tanδ 

 
which increases linearly from zero at the top of the pile to 
 

0.5 × [(18 kN/m3 × 20 m) - (9.81 kN/m3 × 20 m)] × tan20° = 29.81 kPa at the base 
 
Hence 
 
T  = [(0 + 29.81 kPa) ÷ 2] × [(π × 0.5 m) × 20 m] = 468 kN 
 
 
Stress analysis and interpretation of shearbox test data 
 
Q2.7 A drained shearbox test was carried out on a sample of saturated sand. The normal 
effective stress of 41.67 kPa was constant throughout the test, and the initial sample 
dimensions were 60 mm × 60 mm on plan × 30 mm deep). In the vicinity of the peak shear 
stress, the data recorded were as shown in table 2.10. 
 
Table 2.10: Shearbox test data, Q2.7 
 
Shear stress τ, kPa 42.5 43.1 42.8 
relative horizontal displacement x, mm 0.30 0.40 0.80 
upward movement of shearbox lid y, mm 0.05 0.075 0.105 
 
(a) Draw the Mohr circle of stress for the soil sample when the shear stress is a maximum, 
stating the assumption that you need to make. Determine φ'peak, and the orientations of the 

planes of maximum stress ratio (τ/σ')max. Draw the Mohr circle of strain increment leading 

to the peak, and hence determine the maximum angle of dilation, ψmax. Use an empirical 

relationship between φ'peak,ψmax and φ'crit to estimate the critical state friction angle, φ'crit.  

 
(b) Three further drained tests on similar samples of the same soil were carried out, at 
different normal effective stresses. The peak and critical state shear stresses were: 
 
Normal effective stress, kPa 20 100 200 
Peak shear stress, kPa 23.8 83.9 132.0 
Critical state shear stress, kPa 12.6 63.2 126.4 
 
For all four tests, plot the peak and critical state shear stresses τpeak and τcrit as a function of 

the normal effective stress σ'. Sketch failure envelopes for both peak and critical states, and 
comment briefly on their shapes. Which would you use for design, and why? 
 
Q2.7 Solution 
(a) At τmax (= 43.1 kPa), φ'peak = tan-1{(τ/σ')max} = tan-1(43.1/41.67) = 46° 
 
assuming that the central horizontal plane is a plane of maximum stress ratio. The Mohr 
circle of stress is shown in Figure Q2.7a.  
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Figure Q2.7a: Mohr circle of stress, Q2.7 
 
 
The first plane of maximum stress ratio is horizontal (this is an assumption that has to be 
made to draw the Mohr circle of stress). From Figure Q2.7a, the second plane of maximum 
stress ratio is at (90° - φ'peak) = (90° - 46°) = 44° to the horizontal, either clockwise or 
anticlockwise depending on whether the shear stress on the horizontal plane plots positive or 
negative. (Note: the answer given in the main text is slightly ambiguous here. The planes of 
maximum stress ratio are horizontal and either + or - 44° to the horizontal and not, as might 
be interpreted from the answer given in the main text, + and - 44° to the horizontal).  
 
 The increments of shear (Δγ) and vertical (Δεv)  strain leading up to peak are given by 
 
Δεv = Δy/H = 0.025/30 = 0.083%, and 
 
Δγ = Δx/H = 0.1/30 = 0.333% 
 
where Δx and Δy are the incremental relative horizontal displacement of the two halves of the 
shearbox and the upward displacement of the shearbox lid respectively, and H = 30 mm ins 
the initial sample height. The increment of horizontal strain Δεh = 0. The Mohr circle of 
strain increment is shown in Figure Q2.7b, and is plotted with coordinates (Δε, Δγ/2) = 
(0.083%, 0.167%) for the strains associated with (normal to) the horizontal plane and (0, -
0.167%) for the strains associated with (normal to) the vertical plane. 
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Figure Q2.7b: Mohr circle of strain increment leading up to peak, Q2.7 
 
 
From Figure Q2.7b, the angle of dilation at peak is given by 
 
ψmax = Δy/Δx = 2.5/10  ψmax = 14° 
 
We might expect φ'crit ~ φ'peak – 0.8 × ψmax (main text Equation 2.14), giving 
 
φ'crit ~ 46° - 11° or φ'crit ~35°  
 
 
(b) The data are plotted as τpeak and τcrit against σ' in Figure Q2.7c.   
 

Figure Q2.7c: Failure envelopes in terms of peak and critical state strengths, Q2.7 
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The failure envelopes sketched in Figure Q2.7c show that 

• φ'crit is constant (= 32.5°, closer to φ'peak –ψmax = 32° than the estimate of 35° based 
on φ'peak – 0.8 × ψmax) because there is no dilation at the critical state 

• φ'peak reduces as the normal effective stress σ' increases, because the amount of 
dilation needed to reach the appropriate (critical) specific volume is reduced. 

 
In design, it may be safer to use the critical state strength φ'crit than the peak strength φ'peak, 
because 

• the peak strength depends on the extent to which the soil is dense in relation to the 
critical state under the effective stress conditions at failure. It is not a soil constant, 
and is unlikely to be the same throughout the mass of soil involved in a potential 
failure mechanism 

• it is unlikely that the peak strength will be mobilised simultaneously throughout the 
soil mass; instead, progressive failure at an average strength rather lower than the 
peak may occur. 

However, the factors of safety used in may traditional methods of design may well allow for 
these possibilities, and their use in connection with the critical state strength could lead to 
overconservative design. 
 
 
Q2.8 To investigate the drained strength of a natural silt containing thin clay laminations at a 
spacing of approximately 6 mm, an engineer carried out a series of shearbox tests. The clay 
laminations were inclined at various angles θ to the horizontal. With the laminations 
horizontal (θ = 0), the rupture formed entirely in the clay and the apparent angle of shearing 
resistance was 18°. With the laminations at an angle θ = 60°, the rupture formed entirely in 
the silt and the apparent angle of shearing resistance was 30°.  Stating clearly the assumptions 
you need to make, construct Mohr circles of stress at failure for various values of apparent 
angle of shearing resistance, marking on each the stress state corresponding to the clay 
laminations. (Hint: the mobilized strength on the clay laminations must never exceed 18°). 
Plot a graph showing the relationship between the angle θ and the apparent angle of shearing 
resistance of the soil. 
 
Q2.8 Solution 
When θ = 0, the shear plane forms in the clay so φ'crit = 18° for the clay. When θ = 60°, the 
shear plane forms in the silt so φ'crit = 30° for the silt. 
 
Assume that the sample behaves as a continuum up to rupture, and that the central horizontal 
plane of the shearbox is the plane of maximum and apparent stress ratio (τ/σ') = tanφ'apparent. 
The easiest procedure is to construct Mohr circles of stress for apparent φ' values of 21°, 24°, 
27° and 30° and deduce the corresponding orientation of the clay laminations such that the 
stress ratio on the laminations is (τ/σ') = tan18° . Each value of φ'apparent will give four 
possible orientations of the clay laminations (θ measured clockwise from the horizontal), as 
indicated in Figure Q2.8a. 
 
Figure Q2.8a shows a general Mohr circle from which algebraic expressions for the 
orientations θ (measured clockwise from the horizontal) of the yellow clay laminations to give 
the given value of φ'apparent. Remember that the rotation on the Mohr circle must be divided by 
2 to give the actual rotation in the physical plane. 
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Figure Q2.8a: Mohr circle of stress, Q2.8 
 
The orientations θ of the clay laminations are given by the angles clockwise from the 
horizontal plane θ1, θ2, θ3 and θ4, corresponding to the points P, Q, R and S respectively on 
Figure Q2.8a.  
 
From triangle OTC, t/s' = sinφ'apparent 
 
From triangle OPC, angle OCP  = 180° - ω1 - 18° and angle OCP = 2θ1 + (90° - φ'apparent) 
 
Applying the sine rule to triangle OPC,  
 
s'/sinω1 = t/sin18°  sinω1 = sin18°/(t/s') or sinω1 = sin18°/sinφ'apparent  (note ω1 is acute, ie 
less than 90°) 
 
Applying the sine rule to triangle OSC,  
 
s'/sinω4 = t/sin18°  sinω4 = sin18°/(t/s') or sinω4 = sin18°/sinφ'apparent  (note ω4 is obtuse, ie 
greater than 90°) 
 
By considering the geometry of the Mohr circle shown in Figure Q2.8a, the values of θ1 to θ4 
may be determined as follows. 
 
2θ1 = (90° + φ'apparent) - (ω1 + 18° )  θ1 = 0.5 × (72° - ω1 + φ'apparent) 
 
2θ2 = (90° + φ'apparent) + (ω1 + 18° )  θ2 = 0.5 × (108° + ω1 + φ'apparent) 
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2θ3 = (90° + φ'apparent) + (ω4 + 18° )  θ3 = 0.5 × (108° + ω4 + φ'apparent) 
 
2θ4 = (90° + φ'apparent) + (ω4 + 18° ) + 2(180° - 18° - ω4)  θ4 = 0.5 × (432° - ω4 + φ'apparent) 
 
The values of ω1, ω4 and θ1 to θ4 forφ'apparent = 21°, 24°, 27° and 30° are detailed below. 
 
φ'apparent ω1 ω4 θ1 θ2 θ3 θ4 
21 59.57 120.43 16.72 94.29 124.72 166.28
24 49.44 130.56 23.28 90.72 131.28 162.72
27 42.90 137.10 28.05 88.98 136.05 160.95
30 38.12 141.83 31.94 88.06 139.92 160.01
 
These values are used to construct the graph of apparent angle of shearing resistance φ'apparent 
against orientation of the clay laminations θ shown in Figure Q2.8b: note that for 
orientations of the laminations θ between 32° and 88°, and between 140° and 160°, the value 
of φ'apparent is equal to φ' for the silt, 30°. 
 

 
Figure Q2.8b: apparent effective angle of friction against angle of lamination inclination, 
Q2.8  
 
Note that unless you are very confident with geometry and trigonometry, this problem is 
probably much more easily addressed by drawing out the four individual Mohr circles to 
scale and measuring off the angles θ1 to θ4. The principles, and hopefully the answers, are 
however the same. 
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QUESTIONS AND SOLUTIONS: CHAPTER 3 
 
Laboratory measurement of permeability; fluidization; layered soils 
 
Q3.1 Describe by means of an annotated diagram the principal features of a constant head 
permeameter. Give three reasons why this laboratory test might not lead to an accurate 
determination of the effective permeability of a large volume of soil in the ground. Suggest 
how each of these problems might be overcome. 
 
Q3.1 Solution 
Diagram of constant head permeameter: see main text Figure 3.8 
 
Inaccurate determination of the in situ permeability might result from 

a) sample disturbance – unrepresentative void ratio of a uniform soil 
b) sample disturbance – destruction of soil fabric e.g. in a soil with a layered structure 
c) large scale inhomogeneities e.g. fissures and high permeability lenses, which cannot 

be represented in the small scale laboratory sample 
d) low permeability of a soil with fine particles leads to inaccurate determination of 

flowrate due to evaporation losses and general measurement errors 
 
These can be overcome by 

a) testing recompacted samples at maximum and minimum achievable void ratio to give 
possible limits to the in situ permeability 

b) & c) carrying out field pumping tests 
c) using a falling head permeameter 

 
 
Q3.2 Describe by means of an annotated diagram the principal features of a falling head 
permeameter. 
 
Show that the water level in the top tube h would be expected to change with time t according 
to the following equation 
 
       ln(h/ho) = -(kA1/A2L).t 

 
where ho is the initial water level in the top tube, A1 is the cross sectional area of the sample 

and L is its length, k is the soil permeability and A2 is the cross sectional area of the top tube.  

 
Give two reasons why this laboratory test might not lead to an accurate determination of the 
effective permeability of a large volume of soil in the ground. 
  
 


