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Figure 2.1 � General three-dimensional state of stress. The faces of the cubic element shown are termed the positive 

faces, because the outward normals are in the positive directions of x, y and z. On the faces not shown (the 
negative faces), the directions of the stresses are reversed in order to satisfy to condition of equilibrium.
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Figure 2.2  Axisymmetry.
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Figure 2.3 � Normal and shear stresses acting on an imaginary cut within the cross-sectional plane of a long geotechni-
cal construction.
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Figure 2.4 � Mohr circles of stress showing (a) the circles representing total and effective stress separated by the pore 
water pressure, u; and (b) the stress state on an imaginary 'cut' at an angle θ anticlockwise from the plane 
on which the major principal effective stress acts.
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Figure 2.5  Strain: (a) direct strain and (b) engineering shear strain.
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Figure 2.6  Mohr circle of strain.
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Figure 2.7  True shear strain.
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Figure 2.8  (a) Uniform compression. (b) Pure shear.
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Figure 2.9 � Mohr circles of stress for the plane containing the major and minor principal stresses. (a) Material which 

is able to resist shear stress. (b) Material which is unable to resist shear stress.
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Figure 2.10  Wooden block on a wooden table.
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Figure 2.11 � (a) Angle of inclination of resultant force on the interface; (b) relationship between F and N when the 
block starts to slide.
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Figure 2.12  Sliding interface (shearbox) test to investigate frictional characteristics of a soil.
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Figure 2.13 � Combinations of shear stress and normal effective stress: (a) impossible stress state, (b) permissible stress 
state with soil not at failure, and (c) permissible stress state with soil on verge of failure (limiting stress state). 
(d) The lines τ = ±σ  as an envelope to all possible limiting stress states.
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Figure 2.14  Standard shearbox apparatus.
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Figure 2.15 � Schematic deformation of shearbox sample, showing quantities measured during shear test: (a) actual 
deformation and (b) idealised deformation.
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Figure 2.16  Shearbox test data plotted as: (a) τ/σ′ (or τ) vs γ, and (b) εvol (or v) vs γ.
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Figure 2.17  Dilation.
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Figure 2.18  Conceptual model for: (a) compression and (b) dilation during shear.
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Figure 2.19 � Visualisation of rearrangement of soil particles during shear: (a) dilation; (b) contraction; (c) critical state. 
(Redrawn with permission from Bolton, M.D., A Guide to Soil Mechanics, M.D. & K. Bolton, Cambridge, 
1991.)
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Figure 2.20 � Demonstration of dilation: (a) rubber bulb full of saturated dense sand in undisturbed state; (b) what hap-
pens when the bulb is squeezed, causing the sand to shear and dilate.
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Figure 2.21  Idealised shearbox test results: (a) τ vs γ; (b) εvol vs γ; (c) v vs γ.
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Figure 2.22 � Idealised results from shearbox tests, carried out at different normal effective stresses, on four samples 
having the same initial void ratio: (a) stress ratio τ/σ′ vs γ; (b) specific volume v vs γ; (c) critical states (end 
points of tests); τ vs σ′; (d) critical states; v vs σ′; (e) critical states; v vs ln σ′.
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Figure 2.23  Critical state line in (σ′, τ, v) space with projections onto (τ, σ′) and (v, σ′) planes.
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Figure 2.24 � (a) ψcurrent is the current angle of dilation, (b) Sawtooth analogy for dilation. (From Bolton, M.D., A Guide 
to Soil Mechanics, M.D. & K. Bolton, Cambridge, 1991. With permission.)
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Figure 2.25 � (a) Peak strength data, plotted as τ vs σ′, showing curved failure envelope and (b) error associated with 
simplistic interpretation of peak strength data.

002x025.eps



Courtesy of CRC Press/Taylor & Francis Group

60

50

40

30

20

10

0

–2

–1

0

1.56

1.55

1.54

1.53

1.52

1 2 3 4 5 6

1 2 3 4 5 6

τPeak

τcrit

γ (%)

γ (%)

10 2 3

(a)

(b)

(c)
4 5 6

γ (%)

τ 
(k

Pa
)

ε v
ol

 (%
)

v

vcrit

ψmax

Figure 2.26 � Graphs of: (a) shear stress τ against shear strain γ, (b) volumetric strain εvol against shear strain γ, and (c) 
specific volume v against shear strain γ for Example 2.1.
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Figure 2.27 � Envelope to all possible Mohr circles of total stress at failure for a clay sheared at constant volume.
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Figure 2.28  (a) τ against σ′ and (b) v against ln σ′ for Example 2.2.
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Figure 2.29  Cross-section through grouted ground anchor.
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Figure 2.30 � Mohr circle of stress for shearbox sample, assuming that the horizontal plane is the plane of maximum 
stress ratio.
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Figure 2.31  For a shearbox test: (a) stresses and (b) plastic strain increments.
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Figure 2.32  Mohr circle of plastic strain increment for a shearbox test.
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Figure 2.33 � Mohr circle of effective stress for shearbox test, assuming that planes of major principal stress and major 
principal strain increment coincide.
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Figure 2.34 � Mohr circle of total stress for an undrained shearbox test on a clay, assuming that the horizontal plane is 
the plane of maximum shear stress.
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Figure 2.35  Mohr circle of plastic strain increment for an undrained shearbox test on a clay.
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Figure 2.36 � Simple shear apparatus. (From Kishida, H. and Uesughi, M., Géotechnique, 37, 1,  45–52, 1987. With 
permission.)
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Figure 2.37  Research shearbox: (a) at start of test and (b) during the test.
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Figure 2.38  Mohr circles of stress for Example 2.5.
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Figure 2.39  Geometry of Mohr circle of strain.
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Figure 2.40  Plots of: (a) (t/s′) against γmax and (b) εvol against γmax.
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