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Figure 2.3 Elastic rebound theory: (a) slip as a function of time; (b) from left to right: initial stage, straining

before earthquake, after earthquake.
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Figure 2.4 Fence offset in Hollister, California.
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Figure 2.5 Fault types.
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Figure 2.6 Relationship between magnitude scales.

002x006.eps



Courtesy of CRC Press/Taylor & Francis Group

(@) 0.20
C 0.10
[=}
=]
T 0.00- "A A \AAAAVAV‘WWWJWWW
E v“ W il
Q
51
< -0.10
-0.20 " ; . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100 110
Time (s)
(b) 0.04
% 0.02
[=]
Ret
= 0.00-
RS
S
2 -0.02
-0.04 . . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100 110
Time (s)

Figure 2.7 Records of the 1985 Michoacan Guerrero earthquake in Mexico City: (a) SCT (soft soil);
(b) Tacubaya (rock).
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Figure 2.8 Hazard curves: each curve corresponds to a given seismic source.
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Figure 2.9 Side-sway plastic mechanisms in concrete buildings: (a) soft-storey mechanism in weak column—
strong beam frame; (b), (c) beam-sway mechanisms in strong column/weak beam frames; (d), (e)
beam-sway mechanisms in wall-frame systems.
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Figure 2.10 (a) Collapse of open ground storey building; (b) collapsed building shown at the background;
similar building at the foreground is still standing with large ground storey drift.
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Figure 2.11 Typical collapses of frame buildings with open ground storey; ‘pancake’ type of collapse shown
on the right.
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Figure 2.12 Role of walls in preventing pancake collapse of otherwise condemned buildings.
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Figure 2.13 Collapse of Alto Rio wall building in Concepcién, Chile; February 2010 earthquake (structural
walls are shown in black in the framing plan).
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(b)

Figure 2.14 Typical concentration of failures or damage in ground storey (a), (b) with role and damage to
infills shown in (c).
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Figure 2.15 Collapse of top floors in Mexico City (1985) or of an intermediate one in Kobe (1995).
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Figure 2.16 Collapse of flexible sides in torsionally imbalanced building with stiffness concentrated near
one corner.
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Figure 2.17 Shear failure of short columns on stiff side (inside rectangle) causes collapse of flexible side as
well.
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Figure 2.18 Flexural damage (a) or failure (b, c) at column ends.
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Figure 2.19 Shear failure of columns, (a)—(e), including a captive one between the basement p
and the beam (c) and short columns due to mid-storey constraint by a stair (d) or a landing (e)

erimeter wall

supported on the column.
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Figure 2.20 Despite complete failure of columns across the ground storey, their residual axial load capacity
still supports gravity loads.
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Figure 2.21 Shear failure of beam—column joints.
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Figure 2.22 Typical features of beam behaviour: (a) pullout of beam bars from narrow corner column, due
to short straight anchorage there; (b) wide crack in slab at right angles to the beam at the con-
nection with the columns shows the large participation of the slab as effective flange width in

tension; (c) failure, with concrete crushing and bar buckling at bottom flange next to the column.
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Figure 2.23 Typical failures of concrete walls: (a) flexural, with damage in shear; (b) in shear; (c) by sliding shear.
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Figure 2.24 lllustration of wave trapping in sedimentary basins.
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Figure 2.25 Relationship between PGA on rock and PGA at ground surface.
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Figure 2.26 Lateral spreading (EI Asnam, 1980).
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Figure 2.27 Liquefaction-induced settlement in Marina district (Loma Prieta earthquake, 1989).
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Figure 2.30 Bearing capacity failure in Mexico City (Michoacan Guerrero earthquake, 1985).
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Figure 2.31 Earthquake-induced foundation settlement (Michoacan Guerrero earthquake, 1985).
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Figure 2.32 Settlement of a poorly compacted backfill (Moss Landing, Loma Prieta earthquake, 1989).
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Figure 2.33 Settlement of a pipeline trench adjacent to a building (Mexico, 1985).
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Figure 2.34
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Loss of reservoirs after the 1995 Hyogo-ken Nambu earthquake. (Modified from O’Rourke,
T.D. 1996. Lessons learned for lifeline engineering from major urban earthquakes. Paper no.
2172. Eleventh World Conference on Earthquake Engineering. Acapulco, Mexico.)
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Figure 2.35 Ground acceleration for Question 2.1.
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Figure 2.36 (a—c) Beams of Question 2.3.
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Figure 2.37 (a—l) Columns of Question 2.4.
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Figure 2.38 (a—f) Walls of Question 2.5.
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