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Figure 2.1 � World seismicity between 1900 and 2012. (From United State Geological Survey – USGS.)
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Figure 2.2  Plate boundaries.
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Figure 2.3 � Elastic rebound theory: (a) slip as a function of time; (b) from left to right: initial stage, straining 
before earthquake, after earthquake.
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Figure 2.4 � Fence offset in Hollister, California.
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Figure 2.5 � Fault types.
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Figure 2.6 � Relationship between magnitude scales.
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Figure 2.7 � Records of the 1985 Michoacán Guerrero earthquake in Mexico City: (a) SCT (soft soil); 
(b) Tacubaya (rock).
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Figure 2.8 � Hazard curves: each curve corresponds to a given seismic source.
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Figure 2.9 � Side-sway plastic mechanisms in concrete buildings: (a) soft-storey mechanism in weak column–
strong beam frame; (b), (c) beam-sway mechanisms in strong column/weak beam frames; (d), (e) 
beam-sway mechanisms in wall-frame systems.
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Figure 2.10 � (a) Collapse of open ground storey building; (b) collapsed building shown at the background; 
similar building at the foreground is still standing with large ground storey drift.
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Figure 2.11 � Typical collapses of frame buildings with open ground storey; ‘pancake’ type of collapse shown 
on the right.
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Figure 2.12 � Role of walls in preventing pancake collapse of otherwise condemned buildings.
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Figure 2.13 � Collapse of Alto Rio wall building in Concepción, Chile; February 2010 earthquake (structural 
walls are shown in black in the framing plan).
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Figure 2.14 � Typical concentration of failures or damage in ground storey (a), (b) with role and damage to 
infills shown in (c).
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Figure 2.15 � Collapse of top floors in Mexico City (1985) or of an intermediate one in Kobe (1995).
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Figure 2.16 � Collapse of flexible sides in torsionally imbalanced building with stiffness concentrated near 
one corner.
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Figure 2.17 � Shear failure of short columns on stiff side (inside rectangle) causes collapse of flexible side as 
well.
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Figure 2.18 � Flexural damage (a) or failure (b, c) at column ends.
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Figure 2.19 � Shear failure of columns, (a)–(e), including a captive one between the basement perimeter wall 
and the beam (c) and short columns due to mid-storey constraint by a stair (d) or a landing (e) 
supported on the column. 
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Figure 2.20 � Despite complete failure of columns across the ground storey, their residual axial load capacity 
still supports gravity loads.
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Figure 2.21 � Shear failure of beam–column joints.
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Figure 2.22 � Typical features of beam behaviour: (a) pullout of beam bars from narrow corner column, due 
to short straight anchorage there; (b) wide crack in slab at right angles to the beam at the con-
nection with the columns shows the large participation of the slab as effective flange width in 
tension; (c) failure, with concrete crushing and bar buckling at bottom flange next to the column.
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Figure 2.23 � Typical failures of concrete walls: (a) flexural, with damage in shear; (b) in shear; (c) by sliding shear. 
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Figure 2.24 � Illustration of wave trapping in sedimentary basins.
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Figure 2.25 � Relationship between PGA on rock and PGA at ground surface.
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Figure 2.26 � Lateral spreading (El Asnam, 1980).
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Figure 2.27 � Liquefaction-induced settlement in Marina district (Loma Prieta earthquake, 1989).

002x027.tif



Courtesy of CRC Press/Taylor & Francis Group

Figure 2.28 � Bearing capacity failure due to liquefaction (Hyogo-ken Nambu earthquake, 1995).
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Figure 2.29 � Slope failure on State Highway 17, California (Loma Prieta earthquake, 1989).
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Figure 2.30 � Bearing capacity failure in Mexico City (Michoacán Guerrero earthquake, 1985).
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Figure 2.31 � Earthquake-induced foundation settlement (Michoacán Guerrero earthquake, 1985).
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Figure 2.32 � Settlement of a poorly compacted backfill (Moss Landing, Loma Prieta earthquake, 1989).
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Figure 2.33 � Settlement of a pipeline trench adjacent to a building (Mexico, 1985).
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Figure 2.34 � Loss of reservoirs after the 1995 Hyogo-ken Nambu earthquake. (Modified from O’Rourke, 
T.D. 1996. Lessons learned for lifeline engineering from major urban earthquakes. Paper no. 
2172. Eleventh World Conference on Earthquake Engineering. Acapulco, Mexico.)
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Figure 2.35  Ground acceleration for Question 2.1. 
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Figure 2.36  (a–c) Beams of Question 2.3.
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Figure 2.37  (a–l) Columns of Question 2.4.
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Figure 2.38  (a–f) Walls of Question 2.5. 
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