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Damped and Driven Harmonic Oscillation

2.1 A damped harmonic oscillation is written

X(t) = Xo€ "' cosur t) + (U()-;—)/Xo) e sin(wr t), (1)

wherexg is the initial displacementy the initial velocity,y the damping rate,
wr = (w§ — ¥?)?, andwo the undamped oscillation frequency. The zeros of
the oscillation cycle correspond xo= 0. So, setting the previous expression
to zero, we obtain

Jowr @)
Uo + VvV Xo

where the, is the time of an individual zero. The previous equation hees o
solution forwr t in the range O tar. Moreover, tang, ty, + 71) = tan(wy tm).

It follows that successive maxima occur in a regular segeeviwse period
isT = n/w;. This is half the time period between successive maximae (Se
Exercise 2.2.)

2.2 A damped harmonic oscillation is written

Vo +V Xo

r

X(t) = Xoe”" cos t) + ( )eyt sin(wr t), (3)

wherexg is the initial displacementy the initial velocity,y the damping rate,
wr = (wZ-y?)"?, andwo the undamped oscillation frequency. It follows that

Xoa)§+yv

X =uvg€ " cosrt) - ( O] e sin(w t). 4)

r

The maxima and minima of the oscillation cycle correspond te 0. So,
setting the previous expression to zero, we obtain

tan@ ty) = — o

(5)

2 9
Xowy + Y Vo

where thdy, is the time of an individual maximum or minimum. The previous
equation has two solutions fay t in the range 0 to2 One of these corre-
sponds to a maximum, and the other to a minimum. It follows$hacessive
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maxima occur in a regular sequence whose peridd is 2r/w;. Thus, the
ratio of successive maxima is

X(tm+T) T

X(tm)

which is a constant. This result follows from Equation (33éese sinp, (tn+
T)] = sin(w, t) and cosfr (tm + T)] = coS(r t).

: (6)

2.3 The amplitude of a damped harmonic oscillation decays as
a(t) = xoe™", )

wherey is the damping constant. The amplitude decreasefoflits initial
value whert = 1/y. The angular frequency of the oscillationds = (a)g -

Y22, wherewy is the undamped oscillation frequency. The ratio of the

period of the oscillation to that when there is no damping is

2\-1/2
T _w_ (1_ 7_) ) 8)
To w

However, we are told that= 1/y = nT ~ nTy (becausd =~ T, when the
damping is weak, so that> 1). Hence,

~1/2 ~1/2

T 1 1 1

el El ey =(1—T) *ltgms. (9
To wETEm 472 n 82 n

becausdg = 21/ wo.
2.4 Given thatf, = 256 s1, it follows that
wo = 2 fo = 16085 rad s2. (10)
Assuming that the mean energy varies as
(E) = Eq exp(-vt), (11)

the time required for the mean energy to decay to half of it&lrvalue is

In2
typ = —. (12)
v
Howeverty, = 1s, so
v=1In2=06931st (13)
Hence, the fiective quality factor is
Qi = 20 - 10985 o301 (14)
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2.5 The displacement of the electron is
X =Asin(wt), (15)
wherew = 2 f. Hence, the acceleration is
a=X=-Aw’ sinwt). (16)

By analogy with the analysis of Exercise 1.11, the average’aver an
oscillation cycle is

1
(@) = > AZ 4, (17)
Thus, the mean energy loss rate of the oscillator due totiadies

_KE) K@ KA

d ¢ 2c (18)
Hence, the energy loss per cycle is
2,3
AE:—Td<E>=7TKe2Aw, (19)

dt c3

whereT = 2r/w is the oscillation period. From Exercise 1.11, the mean
energy of the oscillator is

(B) = U) + () = 5 mea? A (20)
wherem is the electron mass. The quality factor of the oscillatdhis

(E)  mec®

—opat o o
Qr AE  K&w

(21)

As we saw in Exercise 2.4, the half-life of a damped oscithagystem is

In2

tyo=—. (22)
v
However,
w
Qf = (23)
4
S0 n20Q
n f
t]_/2 = . (24)
w
The number of oscillations in this time period is
wlyn
N = . 25
o (25)

The wavelength of green light i3 = 5.7 x 10’m. Hence,f = c¢/1 =
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3x10%/5.7x 107 = 53x 10%s!, andw = 27 f = 3.3x 10%rad s*. It

follows that
me c3 9.1x 1031 (3.0x 10°)3 .
= = =~ 5 10 . 26
Q= Ko = Bx10P(L6x 1092335105 = > (26)
Likewise, .
IN2Q¢ In2(5x 10" g
b= = = 3axags C1x107s 27)
and s o
N:3.3><1 (1X1U):5X106. (28)
2n
2.6 The quality factor is defined
2rE
where—AE is the energy lost in an oscillation cycle. We can write
dE
-AE = s T, (30)
where—dE/dt is the mean energy loss rate, afndhe period. Hence, we
obtain dE o
—-_=_E 31
G- o1 (31)
which can be solved to give
2n t
E(t) = E -——=. 32
® = Eoexpl -5 7] (32
Thus, whert = Q T,
E=FEpe?~19x10723 (33)

BecauseE « a?, the amplitude decays by a factore~ 0.04 in the same
time interval.

2.7 The solution to the damped harmonic oscillator equatiombe written

sin(w1 t), (34)

+ 2
X(t) = Xo€Y? cosgs t) + (700 Y Xof )e”/ 2
w1

wherew; = (wg —v?/4)Y/2. Here, it is assumed that< 2wp. Furthermore,
Xo = X(0) andvg = X(0). Taking the limitv — 2w, which is equivalent to
taking the limitw; — 0, we find that

2
X(t) — xp €V + (vo + v Xo/ )e—vt/Z wit, (35)
w1

because cas~ 1 and sird ~ 6§ when|d| < 1. Hence,

X() = (%o + [vo+ (v/2) xo] ) €72, (36)
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2.8 Letly(t), 12(t), andls(t) be the currents flowing in the left, middle, and right
legs of the circuit, respectively. I{t) = Io cost) is the current fed into the
circuit then Kirchhdr’s first circuital law requires that

[(t) = 12(t) + 12(t) + I5(1). (37)

Becuase the three legs of the circuit are connected in phriie potential
drops across them are the same. The potential drop acrolesttleg) is

dly
whereas the potential drop across the middle leg is
=P (39)

and the potential drop across the right leg is

f t I3(t’)dt’/ C. (40)
0

Hence, the common potential drop across all three legs is

t
v(t)=L%:R|2=f Is(t')dt’/C- (41)
dt 0
It follows that L dl
[ _ -1 42
2Rt (42)
and P d
Iy L diy
LC oz =la=l-li—lz=1-l~ = - (43)
Thus, )
d |1 dll
F_WEJra)ghza)glo cos@t), (44)

wherewg = 1/ VLC andv = 1/RC. This is the driven damped harmonic
oscillator equation. The resonant frequency is

1
wp = ——, 45
"~ JLc “9
whereas the quality factor takes the form
wo R
=— =, 46
Qr =~ T (46)

At the resonant frequencw(= wo), the first and third terms on the left-hand
side of Equation (44) cancel (sindé/dt?> = —w?), and we are left with
dly 2

Vg = @o lo cOS(uot). 47
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However, the potential drop across the circuit is

dl]_ La)g
V() =L i lo cosot) = Rlg cosguot). (48)
4

Thus, the mean power absorbed by the circuit is
= (1) V(1)) = (RI§ cos(wt))y = = RI 2, (49)
2.9 Minus the rate of work of the damping forde= —mv %, is

P=—fX=mvx2 (50)

Given thatx = xg coswt — ¢), the average rate of work is
(P) = (my w? X0 sif(wt —¢)) = = mva) Xo- (51)

However, according to Equation (2.48) (in the book),

= “o X (52)
X0 = (w2 - w?)? +1v2 w212’
Hence,
1 Wt
Py = = my X2 0 . 53
(P 2 % [(a)g—a)z)2+v2a)2 (53)

In the vicinity of the resonant frequencyy§ — w?)? + v? w? ~ 4w? (wo -
w)? +v? wg, andw? ~ wg, SO0

w4
Py~ = vaO [—0} (54)

4 (wo — w)2 +12

Howevera)O k/mandQ; = wg/v, SO

2

@)= 5 ook Q| oz | (55)
which is the same as Equation (2.59) (in the book).
2.10 Consider the driven undamped harmonic oscillator timua
mX+ kx = Fg sinwt). (56)

Let us search for a “time-asymptotic” solution of the form

X(t) = asint - ¢). (57)



Damped and Driven Harmonic Oscillation

T T T
A N LAY ™
2 W 1o !y ! [
\
1 [ 1
[ \ \ 1
—~~ - [ o ro L
() | \ 1 \ ! 1
G \ ' \ [ [ !
1 1 \
3 \ 1 0 1 1
1 1 \
\ ! 1 ! 1
i 1 \
\ ! \ ! 1
! \ i \ i ' 1 b
Y U 1 i i y i
> 0 -
=S I \ i \ 1 \ |
' '
~ l‘ 1 \ I \l 1 v I
1 \ i 1 \ |
1 1 !
~ - \ I \ 1 \ f
| 1
\ ! 1 ! 1 1
! i
\ ! 1 1 1 1
\
w .o V! ' Vo
[ 1
v ! v ! v ol
Vo
[ ] vt
-2 v ‘s ' . m
% . N =
PR S TR RN SR SO TR N SN TR TR N S S

Substitution into Equation (56) yields

-mo?asinwt—¢) +ka sint — ¢) = Fo sint)
This equation is satisfied when= 0, and
— FO
m(wg - w?)’
wherewp = vk/m. Thus, the “time-asymptotic” solution is

Fo sint)
O g A
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(58)

(59)

(60)

The preceding figure shows the “time-asymptotic” solutiahcalated for

w = 0.8 wq (solid curve) andv = 1.2 wg (dashed curve).

The “transient” solution (i.e., the solution that would bertsient were a small
amount of damping added to the system) satisfies Equatignwib the

right-hand side set to zero: that is,

mX+kx=0.
Hence,

X(t) = A cosgot) + B sin(wot),

(61)

(62)

whereA and B are constants. The most general solution is the sum of the

“time-asymptotic” and the “transient” solutions. In othweords,

x(t) = %ﬂ(‘“% + A cosfuot) + B sin(wot).
a)o — W

(63)
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1 L I
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wt /m
Thus,
x(0) = A,
and E
. wko
X(0) = ————— + wo B.
0)= s
Sincex(0) = x(0) = 0, we have
A=0,
and
_ __Fo(w/wo)
m(wg - w?)’
Hence,
Fo . w .
X(t) = sint) — — sin(wot)|.
0= oz a7 | SN - 5 sintod

Taking the limitw — wo, we havew? — w? ~ 2 wo (wo — w), and
sin(t) = sinfwot) + (wt — wot) cosot) +--- .

Thus,

x(t) zm [sin(wot) + (w — wo) t COSot)

- (1 + 9 ”0) sin(wo?)
wo

>

(64)

(65)

(66)

(67)

(68)

(69)

(70)
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which yields
Fo

2
2mwyg

X(t) ~

This solution is plotted in the preceding figure.

[sin(wot) — wot coSEot)] .
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(71)



