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Damped and Driven Harmonic Oscillation

2.1 A damped harmonic oscillation is written

x(t) = x0 e−γ t cos(ωr t) +

(

v0 + γ x0

ωr

)

e−ν t sin(ωr t), (1)

wherex0 is the initial displacement,v0 the initial velocity,γ the damping rate,
ωr = (ω2

0 − γ2)1/2, andω0 the undamped oscillation frequency. The zeros of
the oscillation cycle correspond tox = 0. So, setting the previous expression
to zero, we obtain

tan(ωr tm) = − x0ωr

v0 + ν x0
, (2)

where thetm is the time of an individual zero. The previous equation has one
solution forωr t in the range 0 toπ. Moreover, tan(ωr tm + π) = tan(ωr tm).
It follows that successive maxima occur in a regular sequence whose period
is T = π/ωr. This is half the time period between successive maxima. (See
Exercise 2.2.)

2.2 A damped harmonic oscillation is written

x(t) = x0 e−γ t cos(ωr t) +

(

v0 + ν x0

ωr

)

e−γ t sin(ωr t), (3)

wherex0 is the initial displacement,v0 the initial velocity,γ the damping rate,
ωr = (ω2

0 −γ2)1/2, andω0 the undamped oscillation frequency. It follows that

.
x = v0 e−γ t cos(ωr t) −













x0ω
2
0 + γ v0

ωr













e−γ t sin(ωr t). (4)

The maxima and minima of the oscillation cycle correspond to
.
x = 0. So,

setting the previous expression to zero, we obtain

tan(ωr tm) =
v0ωr

x0ω
2
0 + γ v0

, (5)

where thetm is the time of an individual maximum or minimum. The previous
equation has two solutions forωr t in the range 0 to 2π. One of these corre-
sponds to a maximum, and the other to a minimum. It follows that successive
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maxima occur in a regular sequence whose period isT = 2π/ωr. Thus, the
ratio of successive maxima is

x(tm + T )
x(tm)

= e−γ T , (6)

which is a constant. This result follows from Equation (3) because sin[ωr (tm+
T )] = sin(ωr t) and cos[ωr (tm + T )] = cos(ωr t).

2.3 The amplitude of a damped harmonic oscillation decays as

a(t) = x0 e−γ t, (7)

whereγ is the damping constant. The amplitude decreases to 1/e of its initial
value whent = 1/γ. The angular frequency of the oscillation isωr = (ω2

0 −
γ2)1/2, whereω0 is the undamped oscillation frequency. The ratio of the
period of the oscillation to that when there is no damping is

T
T0
=
ω0

ω
=













1− γ2

ω2
0













−1/2

. (8)

However, we are told thatt = 1/γ = n T ≃ n T0 (becauseT ≃ T0 when the
damping is weak, so thatn ≫ 1). Hence,

T
T0
=













1− 1

ω2
0 T 2

0 n2













−1/2

=

(

1− 1
4π2 n2

)−1/2

≃ 1+
1

8π2 n2
, (9)

becauseT0 = 2π/ω0.

2.4 Given thatf0 = 256 s−1, it follows that

ω0 = 2π f0 = 1608.5 rad. s−1. (10)

Assuming that the mean energy varies as

〈E〉 = E0 exp(−ν t), (11)

the time required for the mean energy to decay to half of its initial value is

t1/2 =
ln 2
ν
. (12)

However,t1/2 = 1 s, so

ν = ln 2 = 0.6931 s−1. (13)

Hence, the effective quality factor is

Q f =
ω0

ν
=

1608.5
0.6931

≃ 2321. (14)



Damped and Driven Harmonic Oscillation 11

2.5 The displacement of the electron is

x = A sin(ω t), (15)

whereω = 2π f . Hence, the acceleration is

a =
..
x = −Aω2 sin(ω t). (16)

By analogy with the analysis of Exercise 1.11, the average ofa2 over an
oscillation cycle is

〈a2〉 = 1
2

A2ω4. (17)

Thus, the mean energy loss rate of the oscillator due to radiation is

−d〈E〉
dt
=

K e2 〈a2〉
c3

=
K e2 A2ω4

2c3
. (18)

Hence, the energy loss per cycle is

∆E = −T
d〈E〉

dt
=
πK e2 A2ω3

c3
, (19)

whereT = 2π/ω is the oscillation period. From Exercise 1.11, the mean
energy of the oscillator is

〈E〉 = 〈U〉 + 〈K〉 = 1
2

me ω
2 A2, (20)

whereme is the electron mass. The quality factor of the oscillator isthus

Q f = 2π
〈E〉
∆E
=

me c3

K e2ω
. (21)

As we saw in Exercise 2.4, the half-life of a damped oscillatory system is

t1/2 =
ln 2
ν
. (22)

However,
Q f =

ω

ν
, (23)

so

t1/2 =
ln 2 Q f

ω
. (24)

The number of oscillations in this time period is

N =
ω t1/2

2π
. (25)

The wavelength of green light isλ = 5.7 × 10−7 m. Hence, f = c/λ =



12 Oscillations and Waves: Solutions to Exercises

3 × 108/5.7× 10−7 = 5.3× 1014 s−1, andω = 2π f = 3.3× 1015 rad. s−1. It
follows that

Q f =
me c3

K e2ω
=

9.1× 10−31 (3.0× 108) 3

6× 109 (1.6× 10−19) 2 3.3× 1015
≃ 5× 107. (26)

Likewise,

t1/2 =
ln 2 Q f

ω
=

ln 2 (5× 107)
3.3× 1015

≃ 1× 10−8 s, (27)

and

N =
3.3× 1015 (1× 10−8)

2π
≃ 5× 106. (28)

2.6 The quality factor is defined

Q f =
2π E
−∆E

, (29)

where−∆E is the energy lost in an oscillation cycle. We can write

−∆E = −dE
dt

T, (30)

where−dE/dt is the mean energy loss rate, andT the period. Hence, we
obtain

dE
dt
= − 2π

Q f T
E, (31)

which can be solved to give

E(t) = E0 exp

(

− 2π
Q f

t
T

)

. (32)

Thus, whent = Q f T ,

E = E0 e−2π ≃ 1.9× 10−3. (33)

BecauseE ∝ a2, the amplitude decays by a factor e−π ≃ 0.04 in the same
time interval.

2.7 The solution to the damped harmonic oscillator equationcan be written

x(t) = x0 e−ν t/2 cos(ω1 t) +

(

v0 + ν x0/2
ω1

)

e−ν t/2 sin(ω1 t), (34)

whereω1 = (ω2
0 − ν2/4)1/2. Here, it is assumed thatν ≤ 2ω0. Furthermore,

x0 = x(0) andv0 =
.
x(0). Taking the limitν → 2ω0, which is equivalent to

taking the limitω1 → 0, we find that

x(t)→ x0 e−ν t/2 +

(

v0 + ν x0/2
ω1

)

e−ν t/2ω1 t, (35)

because cosθ ≃ 1 and sinθ ≃ θ when|θ| ≪ 1. Hence,

x(t)→ (x0 + [v0 + (ν/2) x0] t) e−ν t/2. (36)
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2.8 LetI1(t), I2(t), andI3(t) be the currents flowing in the left, middle, and right
legs of the circuit, respectively. IfI(t) = I0 cos(ω t) is the current fed into the
circuit then Kirchhoff’s first circuital law requires that

I(t) = I1(t) + I2(t) + I3(t). (37)

Becuase the three legs of the circuit are connected in parallel, the potential
drops across them are the same. The potential drop across theleft leg is

L
dI1

dt
, (38)

whereas the potential drop across the middle leg is

R I2, (39)

and the potential drop across the right leg is
∫ t

0
I3(t′) dt′

/

C. (40)

Hence, the common potential drop across all three legs is

V(t) = L
dI1

dt
= R I2 =

∫ t

0
I3(t′) dt′

/

C. (41)

It follows that

I2 =
L
R

dI1

dt
, (42)

and

L C
d2I1

dt2
= I3 = I − I1 − I2 = I − I1 −

L
R

dI1

dt
. (43)

Thus,
d2I1

dt2
+ ν

dI1

dt
+ ω2

0 I1 = ω
2
0 I0 cos(ω t), (44)

whereω0 = 1/
√

L C andν = 1/R C. This is the driven damped harmonic
oscillator equation. The resonant frequency is

ω0 =
1
√

L C
, (45)

whereas the quality factor takes the form

Q f =
ω0

ν
=

R
√

L/C
. (46)

At the resonant frequency (ω = ω0), the first and third terms on the left-hand
side of Equation (44) cancel (sinced2/dt2 ≡ −ω2), and we are left with

ν
dI1

dt
= ω2

0 I0 cos(ω0 t). (47)
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However, the potential drop across the circuit is

V(t) = L
dI1

dt
=

Lω2
0

ν
I0 cos(ω0 t) = R I0 cos(ω0 t). (48)

Thus, the mean power absorbed by the circuit is

P = 〈I(t) V(t)〉 = 〈R I 2
0 cos2(ω t)〉 = 1

2
R I 2

0 . (49)

2.9 Minus the rate of work of the damping force,f = −m ν
.
x, is

P = − f
.
x = m ν

.
x 2. (50)

Given thatx = x0 cos(ω t − ϕ), the average rate of work is

〈P〉 = 〈m νω2 x 2
0 sin2(ω t − ϕ)〉 = 1

2
m νω2 x 2

0 . (51)

However, according to Equation (2.48) (in the book),

x0 =
ω2

0 X0

[(ω2
0 − ω2)2 + ν2ω2]1/2

. (52)

Hence,

〈P〉 = 1
2

m ν X 2
0













ω2ω4
0

(ω2
0 − ω2)2 + ν2ω2













. (53)

In the vicinity of the resonant frequency, (ω2
0 − ω2)2 + ν2ω2 ≃ 4ω2

0 (ω0 −
ω)2 + ν2ω2

0 , andω2 ≃ ω2
0 , so

〈P〉 ≃ 1
2

m ν X 2
0













ω4
0

4 (ω0 − ω)2 + ν2













. (54)

However,ω2
0 = k/m andQ f = ω0/ν, so

〈P〉 ≃ 1
2
ω0 k X 2

0 Q f

[

ν2

4 (ω0 − ω)2 + ν2

]

, (55)

which is the same as Equation (2.59) (in the book).

2.10 Consider the driven undamped harmonic oscillator equation

m
..
x + k x = F0 sin(ω t). (56)

Let us search for a “time-asymptotic” solution of the form

x(t) = a sin(ω t − φ). (57)
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Substitution into Equation (56) yields

−mω2 a sin(ω t − φ) + k a sin(ω t − φ) = F0 sin(ω t). (58)

This equation is satisfied whenφ = 0, and

a =
F0

m (ω2
0 − ω2)

, (59)

whereω0 =
√

k/m. Thus, the “time-asymptotic” solution is

x(t) =
F0 sin(ω t)

m (ω2
0 − ω2)

. (60)

The preceding figure shows the “time-asymptotic” solution calculated for
ω = 0.8ω0 (solid curve) andω = 1.2ω0 (dashed curve).

The “transient” solution (i.e., the solution that would be transient were a small
amount of damping added to the system) satisfies Equation (56) with the
right-hand side set to zero: that is,

m
..
x + k x = 0. (61)

Hence,
x(t) = A cos(ω0 t) + B sin(ω0 t), (62)

whereA and B are constants. The most general solution is the sum of the
“time-asymptotic” and the “transient” solutions. In otherwords,

x(t) =
F0 sin(ω t)

m (ω2
0 − ω2)

+ A cos(ω0 t) + B sin(ω0 t). (63)
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Thus,
x(0) = A, (64)

and
.
x(0) =

ω F0

m (ω2
0 − ω2)

+ ω0 B. (65)

Sincex(0) =
.
x(0) = 0, we have

A = 0, (66)

and

B = − F0 (ω/ω0)

m (ω2
0 − ω2)

. (67)

Hence,

x(t) =
F0

m (ω2
0 − ω2)

[

sin(ω t) − ω

ω0
sin(ω0 t)

]

. (68)

Taking the limitω→ ω0, we haveω2
0 − ω2 ≃ 2ω0 (ω0 − ω), and

sin(ω t) ≃ sin(ω0 t) + (ω t − ω0 t) cos(ω0 t) + · · · . (69)

Thus,

x(t) ≃ F0

2mω0 (ω0 − ω)
[sin(ω0 t) + (ω − ω0) t cos(ω0 t)

−
(

1+
ω − ω0

ω0

)

sin(ω0 t)

]

, (70)
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which yields

x(t) ≃ F0

2mω2
0

[sin(ω0 t) − ω0 t cos(ω0 t)] . (71)

This solution is plotted in the preceding figure.


