Osclillations and Waves

1 Simple Harmonic Oscillation



FIGURE 1.1
Mass on a spring.
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Simple harmonic oscillation.




t /T

Simple harmonic oscillation. The solid, short-dashed, and long-dashed curves corre-

FIGURE 1.3

0, +m/4, and —n/4, respectively.
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FIGURE 1.4
An LC circuit.
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FIGURE 1.5
A simple pendulum.
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FIGURE 1.6
A compound pendulum.
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2 Damped and Driven Harmonic Oscillation
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FIGURE 2.1

Damped harmonic oscillation.



FIGURE 2.2
An LCR circuit.
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A driven oscillatory system



FIGURE 2.4
Driven harmonic motion.
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FIGURE 2.5
A driven LCR circuit.
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FIGURE 2.6
Resonant response of a driven damped harmonic oscillator.
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FIGURE 2.7

Off-resonant response of a driven undamped harmonic oscillator.
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FIGURE 2.8
Nonresonant response of a driven damped harmonic oscillator.
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3 Coupled Oscilllations
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FIGURE 3.1
Two degree of freedom mass-spring system.




Coupled oscillations in a two degree of freedom mass-spring system.

FIGURE 3.2
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FIGURE 3.3
A two degree of freedom LC circuit.
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FIGURE 3.4
Coupled oscillations in a two degree of freedom LC circuit.
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4 Transverse Standing Waves
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FIGURE 4.1
A beaded string.



FIGURE 4.2
A short section of a beaded string.
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FIGURE 4.3
Time evolution of the n = 2 normal mode of a beaded string with eight equally
spaced beads.
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FIGURE 4.4
Normal modes of a beaded string with eight equally spaced beads.
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FIGURE 4.5
Normal frequencies of a beaded string with eight equally spaced beads.
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FIGURE 4.6
First eight normal modes of a uniform string.
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FIGURE 4.7
Time evolution of the n = 4 normal mode of a uniform string.
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FIGURE 4.8
Normal frequencies of the first eight normal modes of a uniform string.
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FIGURE 4.9

Relative amplitudes of the overtone harmonics of a uniform guitar string plucked at

its midpoint.
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FIGURE 4.10

Reconstruction of the initial displacement of a uniform guitar string plucked at its
midpoint.
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5 Longitudinal Standing Waves
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FIGURE 5.1

Detail of a system of spring-coupled masses.
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Normal modes of a system of eight spring-coupled masses.

FIGURE 5.2
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FIGURE 5.3
Normal frequencies of a system of eight spring-coupled masses.
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FIGURE 5.4
Time evolution of the normalized longitudinal displacement of a thin elastic rod.
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FIGURE 5.5
First three normal modes of an organ pipe (schematic).
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FIGURE 5.6

Fourier reconstruction of a periodic sawtooth waveform.
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FIGURE 5.7
Fourier reconstruction of a periodic “tent” waveform.
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6 Traveling Waves
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FIGURE 6.1

A section of a transmission line.
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7/ Multi-Dimensional Waves
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FIGURE 7.1
The solution of n - r = d is a plane.



FIGURE 7.2
Wave maxima associated with a plane wave.
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FIGURE 7.3
A cylindrical wave.
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FIGURE 7.4
Density plot illustrating the spatial variation of the m = 2, n = 3 normal mode of a

rectangular elastic sheet with a = 2 b. Dark/light regions indicate positive/negative
displacements.



FIGURE 7.5
The Bessel function Jy(z).
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FIGURE 7.6

Density plot illustrating the spatial variation of the j = 5 normal mode of a circular
elastic sheet of radius a. Dark/light regions indicate large/small displacement ampli-
tudes.



-

FIGURE 7.7
Reflection and refraction of a plane wave at a plane boundary.
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FIGURE 7.8

Coeflicients of reflection (solid curves) and transmission (dashed curves) for oblique
incidence from air (n; = 1.0) to glass (n, = 1.5). The left-hand panel shows the
wave polarization for which the electric field is parallel to the boundary, whereas the
right-hand panel shows the wave polarization for which the magnetic field is parallel
to the boundary. The Brewster angle is 56.3°.
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FIGURE 7.9

Coeflicients of reflection (solid curves) and transmission (dashed curves) for oblique
incidence from water (n; = 1.33) to air (n, = 1.0). The left-hand panel shows the
wave polarization for which the electric field is parallel to the interface, whereas the

right-hand panel shows the wave polarization for which the magnetic field is parallel
to the interface. The critical angle is 48.8°.
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FIGURE 7.10
Frustrated total internal reflection.
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FIGURE 7.11
Phase advance introduced between the two different wave polarizations by total in-
ternal reflection at an interface between glass (n; = 1.52) and air (n, = 1.0).
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FIGURE 7.12
Path of light ray through Fresnel romb (schematic).
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8 Wave Pulses
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FIGURE 8.1
Fourier transform of a top-hat function.
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FIGURE 8.2
A Gaussian function.
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FIGURE 8.3
Fourier transform of a triangular wave pulse.

0.08
0.06
0.04

0.02

0 20 40



carrier frequency

lower Si@\)and uppe)r/sideband
L |
C'(w) ‘ | | ‘ -
N ‘ I
S(w) | ‘ H N o
FIGURE 8.4

Frequency spectrum of an AM radio signal.



FIGURE 8.5
A digital bit transmitted over AM radio.
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9 Dispersive Waves
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FIGURE 9.1
Reflection and transmission of radio waves by the ionosphere.
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FIGURE 9.2
Variation of wave drag, D, with Froude number for a ship traveling through deep
water.
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FIGURE 9.3
An oblique plane wave generated on the surface of the water by a moving ship.



FIGURE 94
A shallow water wake.



FIGURE 9.5
Formation of an interference maximum in a deep water wake.

Y



0.3

—0.3

T
|

0o 01 02 03 04 05 0.6
CB/XO

FIGURE 9.6
Locus of an interference maximum in a deep water wake.
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FIGURE 9.7

A deep water wake.
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10 Wave Optics
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FIGURE 10.1

Two-slit interference at normal incidence.
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FIGURE 10.2
Two-slit far-field interference pattern calculated for d/A4 = 5 with normal incidence
and narrow slits.
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FIGURE 10.3

Two-slit far-field interference pattern calculated for d/A = 1 with normal incidence
and narrow slits.



FIGURE 10.4
Two-slit far-field interference pattern calculated for d/A = 0.1 with normal incidence
and narrow slits.
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FIGURE 10.5
Two-slit interference at oblique incidence.
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FIGURE 10.6

Two-slit interference with two line sources.
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FIGURE 10.7
Visibility of a two-slit far-field interference pattern generated by an extended inco-
herent light source.
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FIGURE 10.8
Multi-slit far-field interference pattern calculated for N = 10 and d/4 = 5 with
normal incidence and narrow slits.
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FIGURE 10.9
Interference of light due to a thin film of air trapped between two pieces of glass.
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FIGURE 10.10
Single-slit far-field diffraction pattern calculated for 6/4 = 20.
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FIGURE 10.11
Single-slit diffraction at oblique incidence.
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FIGURE 10.12
Multi-slit far-field interference pattern calculated for N = 10,d/A = 10,and 6/1 = 2,
assuming normal incidence.
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FIGURE 10.13

Far-field interference/diffraction pattern produced by a rectangular aperture for which
b = 2 a. Darker regions indicate higher light intensity.
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FIGURE 10.14
The function 2 J(2)/z.
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FIGURE 10.15
Far-field interference/diffraction pattern produced by a circular aperture of radius a.
Darker regions indicate higher light intensity.
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11 Wave Mechanics
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FIGURE 11.1
Variation of the kinetic energy K of photoelectrons with the wave angular frequency
w.
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FIGURE 11.2
Representation of a complex number as a point in a plane.
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FIGURE 11.3
A one-dimensional Gaussian probability distribution.
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FIGURE 114
Collapse of the wavefunction upon measurement of x.
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FIGURE 11.5

First four stationary wavefunctions for a particle trapped in a one-dimensional square

potential well of infinite depth.
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FIGURE 11.6
The curves tan y (solid) and /1 — y?/y (dashed), calculated for A = 1.5 7% The latter
curve takes the value 0 when y > VA.
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FIGURE 11.7
The curves tan y (solid) and —y/ 4/A — y? (dashed), calculated for A = 1.5 7.



