
Chapter 2

Perfectly Secret Encryption –
Solutions

2.1 Prove that, by redefining the key space, we may assume that the key-
generation algorithm Gen chooses a key uniformly at random from the
key space, without changing Pr[C = c | M = m] for any m, c.

Solution: If Gen is a randomized algorithm, we may view it as a deter-
ministic algorithm that takes as input a random tape ω of some length;
the distribution on the output of Gen is, by definition, the distribution
obtained by choosing uniform ω and then running Gen(ω). So, rather
than letting the key be the output of Gen, we can simply let the key be
ω itself (and redefine the key space accordingly).

Formally, given a scheme (Gen,Enc,Dec) in which Gen is randomized,
construct a new scheme (Enc′,Dec′) where the key is a uniform ω. Then
define Enc′ω(m) to compute k := Gen(ω) followed by Enck(m), and define
decryption analogously.

2.2 Prove that, by redefining the key space, we may assume that Enc is
deterministic without changing Pr[C = c | M = m] for any m, c.

Solution: As in the previous exercise, if Enc is a randomized algorithm
then we may view it as being a deterministic algorithm that also takes
a random tape ω as additional input. The distribution on the output
of Enck(m) is then, by definition, the distribution obtained by choosing
uniform ω and then computing Enck(m;ω). We then define key genera-
tion to include ω as well as k (and redefine the key space accordingly).

Formally, given a scheme (Gen,Enc,Dec) in which Enc is randomized,
construct a new scheme (Gen′,Enc′,Dec′ = Dec) as follows. Gen′ com-
putes k ← Gen and also chooses uniform ω; the key is (k, ω). Then
define Enc′(k,ω)(m) to be Enck(m;ω).

2.3 Prove or refute: An encryption scheme with message space M is per-
fectly secret if and only if for every probability distribution over M and
every c0, c1 ∈ C we have Pr[C = c0] = Pr[C = c1].

Solution: This is not true. Consider modifying the one-time pad so
encryption appends a bit that is 0 with probability 1/4 and 1 with prob-
ability 3/4. This scheme will still be perfectly secret, but ciphertexts
ending in 1 are more likely than ciphertexts ending in 0.
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8 Introduction to Modern Cryptography – 2nd Edition Solutions Manual

2.4 Prove the second direction of Lemma 2.4.

Solution: Say (Gen,Enc,Dec) is perfectly secret. Fix two messages
m,m′ and a ciphertext c that occurs with nozero probability, and con-
sider the uniform distribution over {m,m′}. Perfect secrecy implies that
Pr[M = m | C = c] = 1/2 = Pr[M = m′ | C = c]. But

1

2
= Pr[M = m | C = c] =

Pr[C = c | M = m] · Pr[M = m]

Pr[C = c]

=
1
2 Pr[C = c | M = m]

Pr[C = c]
,

and so Pr[C = c | M = m] = Pr[EncK(m) = c] = Pr[C = c].
Since an analogous calculation holds for m′ as well, we conclude that
Pr[EncK(m) = c] = Pr[EncK(m′) = c].

2.5 Prove Lemma 2.6.

Solution: We begin by proving that any encryption scheme that is
perfectly secret is perfectly indistinguishable. Every adversary A par-
ticipating in PrivKeav

A,Π defines a fixed pair of plaintext messages m0,m1

that it outputs in the first step of the experiment. (Note that since A
is a deterministic algorithm, it always outputs the same pair of mes-
sages.) Fix A and fix m0,m1 output by A. By Lemma 2.4, for every
m0,m1 ∈ M′ and every c ∈ C,

Pr[EncK(m0) = c] = Pr[EncK(m1) = c]. (2.1)

In particular, the above holds for m0,m1 output by A and for any c.
Let C0 (resp., C1) denote the set of ciphertexts for which A outputs 0
(resp., 1) at the conclusion of experiment PrivKeav

A,Π; since A is determin-
istic these sets are well-defined. Note that since A must output either 0
or 1, it follows that C = C0 ∪ C1. We have:

Pr[PrivKeav
A,Π = 1] =

1

2
· Pr[A outputs 0 | b = 0] +

1

2
· Pr[A outputs 1 | b = 1]

=
1

2
·
∑
c∈C0

Pr[c = EncK(m0)] +
1

2
·
∑
c∈C1

Pr[c = EncK(m1)]

=
1

2
·
∑
c∈C0

Pr[c = EncK(m0)] +
1

2
·
∑
c∈C1

Pr[c = EncK(m0)]

=
1

2
·
∑
c∈C

Pr[c = EncK(m0)] =
1

2
· (1) = 1

2
.

where the second last equality is due to Equation (2.1).

We now proceed to the other direction, that any perfectly indistinguish-
able encryption scheme is also perfectly secret. We prove the contrapos-
itive. Assume encryption scheme Π is not perfectly secret with respect
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to Definition 2.1. Then by Lemma 2.4, there must exist two messages
m0,m1 ∈ M and a ciphertext c̃ ∈ C for which

Pr[EncK(m0) = c̃] ̸= Pr[EncK(m1) = c̃]. (2.2)

Let A be an adversary who outputs m0,m1 in the first step of PrivKeav
A,Π.

Then if A receives any ciphertext c′ ̸= c̃ it outputs a random bit b′; if it
receives the ciphertext c̃, it outputs b′ = 0.

Since each message is chosen with probability 1/2 in the experiment, we
have

Pr[PrivKeav
A,Π = 1]

=
1

2
· Pr[PrivKeav

A,Π = 1 | M = m0] +
1

2
· Pr[PrivKeav

A,Π = 1 | M = m1].

Next,

Pr[PrivKeav
A,Π = 1 | M = m0]

= Pr[PrivKeav
A,Π = 1 ∧ c̃ = EncK(m0)]

+ Pr[PrivKeav
A,Π = 1 ∧ c̃ ̸= EncK(m0)]

= Pr[c̃ = EncK(m0)] + Pr[PrivKeav
A,Π = 1 ∧ c̃ ̸= EncK(m0)]

= Pr[c̃ = EncK(m0)] +
1

2
· Pr[c̃ ̸= EncK(m0)]

where the second-to-last equality is because A always outputs 0 when
receiving c̃ (and when M = m0 this means that PrivKeav

A,Π = 1), and the
last equality is because A outputs a random bit when given a ciphertext
c′ ̸= c̃. A similar analysis for the case that M = m1 (the only difference
is that now Pr[PrivKeav

A,Π = 1 ∧ c̃ ̸= EncK(m1)] = 0) gives

Pr[PrivKeav
A,Π = 1 | M = m1] =

1

2
· Pr[c̃ ̸= EncK(m1)].

Putting this all together we have:

Pr[PrivKeav
A,Π = 1] =

1

2
·
(
Pr[c̃ = EncK(m0)] +

1

2
· Pr[c̃ ̸= EncK(m0)]

)

+
1

2
· 1
2
· Pr[c̃ ̸= EncK(m1)]

=
1

2
·
(
Pr[c̃ = EncK(m0)] +

1

2
· (1− Pr[c̃ = EncK(m0)])

)

+
1

2
· 1
2
· Pr[c̃ ̸= EncK(m1)]

=
1

4
+

1

4
· Pr[c̃ = EncK(m0)] +

1

4
· Pr[c̃ ̸= EncK(m1)]

̸= 1

4
+

1

4
· Pr[c̃ = EncK(m1)] +

1

4
· Pr[c̃ ̸= EncK(m1)]

=
1

4
+

1

4
=

1

2
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where the inequality is by Equation (2.2). Since Pr[PrivKeav
A,Π = 1] ̸= 1/2

we have that Π is not perfectly indistinguishable.

2.6 For each of the following encryption schemes, state whether the scheme
is perfectly secret. Justify your answer in each case.

(a) The message space is M = {0, . . . , 4}. Algorithm Gen chooses
a uniform key from the key space {0, . . . , 5}. Enck(m) returns
[k +m mod 5], and Deck(c) returns [c− k mod 5].

(b) The message space is M = {m ∈ {0, 1}ℓ | the last bit of m is 0}.
Gen chooses a uniform key from {0, 1}ℓ−1. Enck(m) returns cipher-
text m⊕ (k∥0), and Deck(c) returns c⊕ (k∥0).

Solution:

(a) The scheme is not perfectly secret. To see this, we can use the
equivalent definition of perfect secrecy given by Equation (2.1). If
the message is 0, then the ciphertext is 0 if and only if k ∈ {0, 5}.
So Pr[EncK(0) = 0] = 2/5. On the other hand, if the message is 1,
then the ciphertext is 0 if and only if k = 4. So

Pr[EncK(1) = 0] = 1/5 ̸= Pr[EncK(0) = 0].

(b) One can prove that this is perfectly secret by analogy with the one-
time pad. (Essentially the final bit of the message is being ignored
here, since it is always 0.)

2.7 When using the one-time pad with the key k = 0ℓ, we have Enck(m) =
k ⊕m = m and the message is sent in the clear! It has therefore been
suggested to modify the one-time pad by only encrypting with k ̸= 0ℓ

(i.e., to have Gen choose k uniformly from the set of nonzero keys of
length ℓ). Is this modified scheme still perfectly secret? Explain.

Solution: The modified scheme is not perfectly secret. To see this
formally, consider the uniform distribution over M = {0, 1}ℓ. For any
fixed message α ∈ {0, 1}ℓ, we have

Pr[M = α | C = α] = 0 ̸= Pr[M = α].

This contradicts perfect secrecy.

We conclude that in order to obtain perfect secrecy, it must be possible
to encrypt using the key 0ℓ. This may seem counter-intuitive, since this
key does not change the plaintext. However, note that an eavesdropper
has no way of knowing if the key is 0ℓ, so the fact that the ciphertext is
the same as the plaintext in this case is really of no help to the adversary.
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Perfectly Secret Encryption 11

2.8 Let Π denote the Vigenère cipher where the message space consists of all
3-character strings (over the English alphabet), and the key is generated
by first choosing the period t uniformly from {1, 2, 3} and then letting
the key be a uniform string of length t.

(a) Define A as follows: A outputs m0 = aab and m1 = abb. When
given a ciphertext c, it outputs 0 if the first character of c is the
same as the second character of c, and outputs 1 otherwise. Com-
pute Pr[PrivKeav

A,Π = 1].

(b) Construct and analyze an adversary A′ for which Pr[PrivKeav
A′,Π = 1]

is greater than your answer from part (a).

Solution:

(a) Say aab is encrypted to give ciphertext c. What is the probability
that the first and second characters of c are equal? When t = 1
(which occurs 1/3 of the time) this always happens. But when
t ∈ {2, 3} this happens only if the first and second characters of
the key are equal, which occurs with probability 1/26. So

Pr[A outputs 0 | m0 is encrypted] =
1

3
+

2

3
· 1

26
≈ 0.359.

If instead abb is encrypted, then the first and second characters
of c can never be equal when t = 1, but are equal with probability
1/26 when t ∈ {2, 3}. Thus,

Pr[A outputs 0 | m1 is encrypted] =
2

3
· 1

26
≈ 0.026.

We therefore have

Pr[PrivKeav
A,Π = 1]

=
1

2
· Pr[A outputs 0 | m0 is encrypted]

+
1

2
· Pr[A outputs 1 | m1 is encrypted]

≈ 1

2
· 0.359 + 1

2
· 0.974 ≈ 0.667.

(b) There are many possible solutions; we present one. Consider the
adversary A′ who outputs m0 = aaa and m1 = abc and outputs
‘0’ iff the first and second characters in the ciphertext c are the
same, or if the first and last characters in the ciphertext are the
same. Call this event E.

Say aaa is encrypted. If t ∈ {1, 2} then E always happens. When
t = 3 all characters in the ciphertext are uniform and independent;
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rather than calculate the probability of E in this case, we just let p
denote that probability.

Say abc is encrypted. If t = 1 then E never happens. When t = 2
the first and last characters of c are never equal, but the first and
second characters are equal with probability 1/26. When t = 3
then all characters in the ciphertext are random and so E occurs
with probability p.

Putting everything together gives:

Pr[PrivKeav
A′,Π = 1]

=
1

2
· Pr[A′ outputs 0 | m0 is encrypted]

+
1

2
· Pr[A′ outputs 1 | m1 is encrypted]

=
1

2
·
(
2

3
+

1

3
· p

)
+

1

2
·
(
1−

(
1

3
· 1

26
+

1

3
· p

))
≈ 0.827.

2.9 In this exercise, we look at different conditions under which the shift,
mono-alphabetic substitution, and Vigenère ciphers are perfectly secret:

(a) Prove that if only a single character is encrypted, then the shift
cipher is perfectly secret.

(b) What is the largest message spaceM for which the mono-alphabetic
substitution cipher provides perfect secrecy?

(c) Prove that the Vigenère cipher using (fixed) period t is perfectly
secret when used to encrypt messages of length t.

Reconcile this with the attacks shown in the previous chapter.

Solution:

(a) This can be proved directly (as in the case of the one-time pad) or
using Shannon’s theorem.

(b) LetM be the set of all permutations of the alphabet (i.e., all strings
of length 26 with no repeated letter). One can prove directly that
the mono-alphabetic substitution cipher is perfectly secret for this
message space; we prove it using Shannon’s theorem. Briefly, we
have |M| = |K| = |C| = 26!, where the size of C follows from the
fact that the composition of two permutations is a permutation
(and furthermore all permutations can be obtained in this way).
This latter fact also proves the second requirement of Shannon’s
theorem: for every two permutations (namely, plaintext and cipher-
text) there exists only one permutation π that maps the plaintext
to the ciphertext. This is the largest possible plaintext space, be-
cause by Theorem 2.7 we must have |M| ≤ |K| for any perfectly
secret encryption scheme.
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(c) This can be proved directly (as in the case of the one-time pad) or
using Shannon’s theorem.

The attacks in Chapter 1 rely on longer plaintexts being encrypted.

2.10 Prove that a scheme satisfying Definition 2.5 must have |K| ≥ |M|
without using Lemma 2.6. Specifically, let Π be an arbitrary encryption
scheme with |K| < |M|. Show an A for which Pr

[
PrivKeav

A,Π = 1
]
> 1

2 .

Solution: Consider the following A: output uniform m0,m1 ∈ M.
Upon receiving ciphertext c, check (by exhaustive search) whether there
exists a key k such that Deck(c) = m0. If so, output 0; else output 1.

When m0 is encrypted then A always outputs 0. On the other hand,
when m1 is encrypted then there are at most |K| possible messages that
c can decrypt to; since m0 is uniform and independent of m1 the proba-
bility that m0 is equal to one of those messages, and so the probability
that A outputs 0 in this case, is at most |K|/|M| < 1. We conclude that

Pr
[
PrivKeav

A,Π = 1
]
=

1

2
· Pr[A(EncK(m0)) = 0] +

1

2
· Pr[A(EncK(m1)) = 1]

=
1

2
+

1

2
· (1− Pr[A(EncK(m1)) = 0]) >

1

2
.

2.11 Assume we require only that an encryption scheme (Gen,Enc,Dec) with
message space M satisfy the following: For all m ∈ M, we have
Pr[DecK(EncK(m)) = m] ≥ 2−t. (This probability is taken over choice
of the key as well as any randomness used during encryption.) Show
that perfect secrecy can be achieved with |K| < |M| when t ≥ 1. Prove
a lower bound on the size of K in terms of t.

Solution: Let K = {0, 1}ℓ and M = {0, 1}ℓ+t. The key-generation al-
gorithm chooses a uniform string from K. To encrypt a message m ∈ M
using key k, let m′ denote the first ℓ bits of m and output c := m′ ⊕ k
(both m′ and k have length ℓ). To decrypt a ciphertext c using key k,
choose a random string r ← {0, 1}t and output m := (c ⊕ k)∥r. Note
that Pr[Deck(Enck(m)) = m] = 2−t because decryption is correct if and
only if the random string r chosen during decryption happens to equal
the last t bits of m (and this occurs with probability 2−t). Perfect se-
crecy of this scheme follows from the proof of the one-time pad (indeed,
this is exactly a one-time pad on the first ℓ bits of the message).

We now prove the following lower bound:

THEOREM Let (Gen,Enc,Dec) be a perfectly secret encryption scheme
over message space M with Pr[Deck(Enck(m)) = m] ≥ 2−t. Then
|K| ≥ |M| · 2−t.
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PROOF Let Pr∗ denote the maximum probability with which an
unbounded algorithm can cause the stated event to occur. Consider an
experiment in which a messagem is chosen uniformly fromM and we are
interested in the maximum probability of correctly guessing m. Clearly,
Pr∗[guess m] = |M|−1. Now consider an extension of this experiment
where a key k is generated using Gen and a ciphertext c ← Enck(m) is
computed. Perfect secrecy implies that

|M|−1 = Pr∗[guess m] = Pr∗[guess m given c].

Continuing, we have

Pr∗[guess m given c] ≥ Pr∗[guess m and k given c]

= Pr∗[guess k given c] · Pr∗[guess m given k and c]

≥ |K|−1 · Pr∗[guess m given k and c]

≥ |K|−1 · 2−t,

by the correctness guarantee, and using the fact that m and k are inde-
pendent. We conclude that |K| ≥ |M| · 2−t.

2.12 Let ε ≥ 0 be a constant. Say an encryption scheme is ε-perfectly secret
if for every adversary A it holds that

Pr
[
PrivKeav

A,Π = 1
]
≤ 1

2
+ ε .

(Compare to Definition 2.5.) Show that ε-perfect secrecy can be achieved
with |K| < |M| when ε > 0. Prove a lower bound on the size of K in
terms of ε.

Solution: (See http://eprint.iacr.org/2012/053 for further de-
tails.) We first show that ε-perfect secrecy can be achieved in this case.
Let the message space be M = {0, 1}ℓ for some ℓ, and let K ⊂ {0, 1}ℓ
be an arbitrary set of size (1 − ε) · 2ℓ. One can check that for any A
we have Pr

[
PrivKeav

A,Π = 1
]
≤ 1

2 + ε. One can show that this scheme is
optimal, in the sense that any scheme that is ε-perfectly secret must
have |K| ≥ (1− ε) · |M|.

2.13 In this problem we consider definitions of perfect secrecy for the en-
cryption of two messages (using the same key). Here we consider dis-
tributions over pairs of messages from the message space M; we let
M1,M2 be random variables denoting the first and second message, re-
spectively. (We stress that these random variables are not assumed to
be independent.) We generate a (single) key k, sample a pair of mes-
sages (m1,m2) according to the given distribution, and then compute
ciphertexts c1 ← Enck(m1) and c2 ← Enck(m2); this induces a distri-
bution over pairs of ciphertexts and we let C1, C2 be the corresponding
random variables.
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(a) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
messages if for all distributions over M×M, all m1,m2 ∈ M,
and all ciphertexts c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr [M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Prove that no encryption scheme can satisfy this definition.

(b) Say encryption scheme (Gen,Enc,Dec) is perfectly secret for two
distinct messages if for all distributions over M × M where the
first and second messages are guaranteed to be different (i.e., dis-
tributions over pairs of distinct messages), all m1,m2 ∈ M, and
all c1, c2 ∈ C with Pr[C1 = c1 ∧ C2 = c2] > 0:

Pr[M1 = m1 ∧M2 = m2 | C1 = c1 ∧ C2 = c2]

= Pr[M1 = m1 ∧M2 = m2].

Show an encryption scheme that provably satisfies this definition.

Solution:

(a) The definition requires the equation to hold for all pairs of plain-
texts m,m′ and ciphertexts c, c′, even when c = c′ but m ̸= m′. We
show that this is impossible. Take the uniform distribution over
M and any c such that Pr[C = c∧C ′ = c] > 0. Let m,m′ ∈ M be
distinct. For any scheme with no decryption error, and any key k,
we must have

Pr[C = c ∧ C ′ = c | M = m ∧M ′ = m′ ∧K = k] = 0.

(If not, then decryption of the ciphertext c using the key k gives
an error some of the time.) The above implies

Pr[C = c ∧ C ′ = c | M = m ∧M ′ = m′] = 0.

So Pr[M = m ∧M ′ = m′ | C = c ∧ C ′ = c] = 0 but on the other
hand Pr[M = m ∧ M ′ = m′] > 0. This holds for any encryption
scheme, and so no scheme can satisfy the given definition.

(b) Let K be the set of all permutations on M, and let Gen choose
a random permutation from K. (Note that Gen is not necessarily
efficient; nevertheless, this is allowed in this exercise.) Encryption
is carried out by applying the permutation specified by the key to
the plaintext, and decryption is carried out by applying the inverse
of the permutation to the ciphertext. This scheme satisfies the
definition; details omitted.

Note: An efficient scheme meeting this definition can be con-
structed using pairwise-independent permutations (a topic not cov-
ered in the book).
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