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Image Statistics

Exercise 1

From the definition of variance,

var(G) = (G = (G))*)
= (G* = 2G(G) + (G)?)
=(G?) —2(G)* +(G)?
=(G*) - (G)?

Using this result,

var(ag + a1G) = var(a1G) = (a2G?) — (a1 G)?
ai((G*) — (G)?) = afvar(G).

Exercise 2

Let Y = |X| where X has the distribution ®(z). For y > 0 we have
P(y) = Pr(Y <y) = Pr(|X]| < y) = Pr(-y < X <y) = &(y) — &(~y).

Hence

and clearly for y <0, p(y) =

Exercise 3

Let X be standard normally distributed, i.e. with density function

pl) = b(w) = e 12,

We can’t apply Theorem 2.1 directly to get the density function for X2 because
the function u(z) = z? is not monotonic wherever p(z) # 0. But consider the
random variable

Y =272 where Z=|X|.
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We saw in the previous exercise that Z has the density function

_ [2¢(z) forz>0
1(z) = {0 elsewhere.

The function y = u(z) = 22 is monotonic wherever f(z) > 0, so Theorem 2.1

holds. Inverting, z = w(y) = y'/2. So for y > 0

ie—yﬂl —i2 - L —1/2¢-u/2

V2T 2Y \/27ry

which is the chi-square distribution, Equation (2.44), for n = 1.

Lyl
2Y -

9() = f(y'"?

Exercise 4

Given X; and X3 independent and ~ A(0, 1), we want the distribution of Y =
X1 + X3. The joint density function for the random vector X = (X1, X2)"
is, from independence,

1 —x2/2 1 —x2/2 1 —x2/2—x2/2
= — 1/ — 2 = — 1 2
USRS r o Ven 2r°
or 1
_ L —(m+z2)? /243170
flx1,x2) 271_6 .

For fixed X7, we can write zo = w(y) = y — 1. Applying Theorem 2.1, YV
has the density

6_w 1 y2/2+(y—x1)z1

9y, z1) = f(z1,y — x1) 9y |~ om

The complete density for Y is then obtained by integrating over x;. Dropping
the subscript on z1, this is

o0 1 5 (o]
b= [ ot are = e [ o
. T oo

The integral is

/Oo c—0)T g /OO eTy—2 +y? [A—y? /4 g P /4 /Oo e~ (@=y/2)° g0

— 00

Let u = ﬂ(m —1y/2). Then the last expression above is
y2/4 /OO —az L ot g
e e —du=ce .

e V2

Therefore 1

p(y) = \/2_Tx/§

a2
ey/4’

that is, Y ~ N(0, 2).



Exercise 5

We have, with Theorem 2.2,

and

Exercise 6

The gamma function is

o0
I‘(a):/ e % dg.
0

Integrating by parts ([ vdu = uv — [ udv) with

v=x""", du=e "dr=u=—e 7,

we have -
o0
Ia) = —efzwo‘fllo +/ e (a— 1)z 2dz
0

=(a—1) /Ooo 727" = (a— DI'(a — 1).

Exercise 7

(a) From Equation (2.33)

_ > 1 a—1_—z/B
<X>_/0 xﬁaf(a)x e dzx.

Let y = 2/8. Then

(X) = /0 By— gyl gy

BT (o)
= Bﬁ /OOO y“e Vdy = BﬁF(a +1) =af.
Similarly
(X% = /Ooo(ﬁy)zﬂar(a) By eV Bdy
= @ﬂﬁ /OOO y* e vdy
_ ﬁzﬁr(a +2) = Bzﬁ(a +1D(a+1) = oo+ 1)5%
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Therefore
var(X?) = (X?) — (X)? = a(a + 1) — (af)? = af>.

(b) For exponentially distributed Z; and Zs, let Z = Z; + Z>. Then the
distribution function for Z is

4 Z—22 1
P(z) =Pr(Z1 + 22 < 2) = / / Eezl/'gez?/'gdzldzz
o Jo

1 4 zZ—22
= ﬁ/ 622/’8/ e*/Bdzy dzo
0 0

1 Z z—z
=g [ e [ e
0

1 z
/ e?2/B {—Be*'z/ﬁe@/ﬁ +ﬁ} dzo
0

B
= L : — —z/B —z2/B
_52/0 { fe + Be ]dzz
1 . . .
] [—Bze P4+ [—Be /,ﬂo}
N % |—Bze/ + B |-B(e™*/7 —1)]|
- _%ZE_Z/B — e_Z/B + 1.
Differentiating,
p(z) - %P(Z) = —% |:eZ/5 _ %ez/ﬁ:| + %e*'z/ﬁ
2y N S/
- 3¢ = BQF(Q)ze

since I'(2) = 1.

Exercise 8
For two dimensions, the covariance is
cov(a' G, bTG) = cov(a1Gy + a2Ga,b1G1 + baG2)
= a1byvar(Gy) + a1bacov(G1Gs2) + azbicov(Ga, G1) + azbavar(Ga),

which by inspection is the same as

(a1, a2) (Coz?gfgl) COX;S’EE;S”) (Z;) —a b,

More generally,

cov(ia'G,b'G)=(a"Gb'G)T) =a"(GGT)b=a'Xb.
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Exercise 9

For ¥ = 021, |2| = (¢2?)", and the multivariate density simplifies as follows

1 1 1
p(g) = Wexp <—§(Q - H)TE (g9 — H))

- W exp (—lg — p]2/20%)

A
= H N exp (—(gi — ui)2/202) .

For N = 1, therefore,

The mean of G is given by

210 J -

which we can write in the form

1 Cg—p _l(u)Q " /Oo _l(gﬂL)2
G)=— 2\ ) dg + 2(%) dg.
@ m/_oo ‘ ! ‘ !

o 210 J -

The second term is just u ffooop(g)dg = p. The first term vanishes. That is,
making the change of variable substitution

y:} g— i
2 o ’

we have

and similarly

Thus (G) = u.

Exercise 10

The covariance matrix estimate can be written as



12 Image Statistics

Expanding,

m 1 __ 1 _
s = —— [EZzZzI —2zz" + o ~mzzT]
?

1
=" {—ZTZ — zzT]
m—1|m

With Equation (2.52) we can write

1 1
s=—" |—2Tz- —2"1,1' =2
m—1|m m?2
1 T LT T
=——|2'2-=-2"1,1] 2
m—1 m
1 1 1
=—Z" |Im——1,1) | Z2=——ZHZ.
m—1 m m—1

Clearly, H' = H, so H is symmetric. Also

1 1
HH = |:Imm - Elml;rn:| |:Imm - Elml;rn:|

1 T 1 T 1 T T

1
m

since 1;21m = m. Let & be any m-component vector. Then with the above

result
1 1
x'se=——a' ZTHHZx = ——y 'y >0,
1 m—1

where y = H Zx. Therefore s is positive semi-definite.

Exercise 11

With s; = \/s;; Equation (2.54) is

1/81 0 S11 S1m 1/81
d71/23d71/2: . : . .
0 ]-/sm Sm1 cer Smm 0
s11/87 -+ S1m/S1Sm
= =r.

Sm1/SmS1 *** Smm/S%

1/8m
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Exercise 12

Let A; represent the situation “auto is behind door i”. The a priori proba-
bilities are Pr(A4;) = 1/3, i = 1,2,3. Let O; be the observation “quizmaster
opens door i”. Suppose the contestant chooses door 2 and the quizmaster
opens door 1. Then we have the following conditional probabilities:

Pr(Oy | A1) =0 quizmaster won'’t give the car away.
Pr(Oy | A2) =1/2 quizmaster is indifferent.
Pr(O1 | As] =1 quizmaster has no choice.

Now apply Bayes’ Theorem to find the a posteriori probability that the auto
is behind door 2, given the observation:
PI‘(O1 ‘ AQ)PI‘(AQ)
PI‘(Ol | AQ)PI‘(A2) + PI‘(Ol ‘ Ag)PI‘(Ag)
(1/2)(1/3)

OB RO s

whereas, with the same argument,

PI‘(AQ ‘ 01) =

PI‘(A3 | 01) = 2/3

The contestant would therefore be well-advised to switch to door 3.

Exercise 13

X randomu (seed ,1000,/normal)
Y randomu (seed ,1000,/normal)
tm = tm_test (X,Y)

PRINT, ’p-valuey=y’, tm[1]

fv = fv_test (X,Y)

PRINT, ’p-valuey=y’, fv[1]

p-value = 0.246175
p-value 0.477225

Exercise 14
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Exercise 15

Differentiating Equation (2.84):
0= _a = Z —a—bx;)

0= % =—= Z:xz(yz —a — bx;).

From the first equation we get immediately
a=7y—bx,

where T and § are given by Equation (2.86). Substituting for a in the second
equation, we have

O:inyi—(gj—ba_@)Zwi—wa?.

Re-arranging:

SPOEEE W B SR ot
The expression in brackets on the left is just
szz — mi‘2 = Z(Z‘Z — i’)z = MSygy,
i i
as can easily be seen by expansion. Similarly the right hand side is
z:(acZ —Z)(Yi — §) = MSay.
i

Hence
b=
S(E(E
To show that these values minimize Equation (2.84), we require the Hessian

matrix:
0%z  2m

Bt = 0T

2z 2 9

92 = 7
i

0%z 0%z 2
obda _ Dadb o2 Zf”



Listing 2.1: Solution to Exercise 18.
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PRO solution2_18

envi_select, title=’Choose multispectral image’, $
fid=fid, dims=dims,pos=pos
IF (fid EQ -1) THEN BEGIN
PRINT, ’cancelled’

RETURN
ENDIF
envi_file_query, fid, fname=fname
num_cols = dims [2]-dims [1]+1
num_rows = dims[4]-dims [3]+1
num_pixels = num_cols*num_rows
image = fltarr(2,num_pixels)

FOR i=0,1 DO imagel[i,*] = $
envi_get_data (fid=fid,dims=dims ,pos=pos[i])

X image [0, *]

Y image [1,*]

result = regress(X[*],Y[*],const=a)

b = result [0]

; plot results to postcript file

thisDevice =!D.Name

set_plot, ’PS’

Device ,Filename=’c:\temp\fig_sol_2.eps’,xsize=6,ysize=4,$
/inches ,/encapsulated

PLOT, image [0,*], image[1,*], psym=3

oplot, [min(X),max(X)], [a+b*min(X),a+b*max(X)]

device,/close_file

set_plot, thisDevice

END

The Hessian matrix is thus

2m (1 T
H_?<:f sm+:f2>'

For any vector y # 0 we then have
y Hy = (y1 +7y2)” + szays > 0,

so H is positive definite and (a,b) is a minimum of Equation (2.84).

Exercise 16

We require the derivative of a with respect to y;, where

1 Say
a=9—bT=— — —27.
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FIGURE 2.1
Regression of band 2 on band 1.
We have
da 1 Z 0Sgy
and
05y 1 .0y
s=—|a;—T— T — I)——
6yi m zj:( ! )6:’/2
1
= E(%‘ — )
Hence 5 ) ~
Ga _ 1 <1_L($i_@)
6yz m Sxx
and )
da 1 2% z2
) = (1= - )+ (- D)2
<8yi> m? ( Sz (w = 2)+ 534 (@i ~2) >
Summing over i gives
5 () =m0+ o)
= — m —ms
1 (see T\ Yl
S m Szx B m23ww,



from which the expression for o2 in Equation (2.87) readily follows.

Exercise 17

From Equation (2.94),
1

z(w) = —2(yTy —y Xw-—w Xy+w' X' Xw),
o

so that 5 )
2W) o C L Ty xTy 4o Aw)
ow o2

from which Equation (2.95) follows.

Exercise 18

17

An IDL routine for the regression is shown in Listing 2.1, see also Figure 2.1.

Exercise 19

The numerator of right hand side of Equation (2.90) becomes

D W) +9) = 5) = PEHW) —9)
=Y @) —9W)E@) -9+ G1v) —9)?
= () =)

since the term ) (y(v)—4(v))(9(v) — ) vanishes, see Section 2.6.2. Including

the denominator then gives the desired result.

Exercise 20

From Equations (2.103) and (2.104),

ﬁ}:

(XTy—x"xw)

> =

Solving for w gives Equation (2.105).

Exercise 21

We want to show that
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when ¢(z) # p(z). From Jensen’s inequality, Equation (2.117), identify f(x)
with the convex function — In(x) and g(z) with the ratio g(z)/p(x) to get

- / p(@)In {%} dz > —In ( / q(m)dm) .

But, since g(x) is also a probability density function, the integral on the right
hand side is one, and its logarithm vanishes.



