
Chapter 2

Basic Probability Theory

2.1 Solutions to Even-Numbered Exercises

Solution 2.2.

(a)

pr(Ā ∩ B̄) = pr[A ∪ B] = 1 − pr(A ∪ B)

= 1 − pr(A) − pr(B) + pr(A ∩ B) = 1 − pr(A) − pr(B) + pr(A)pr(B)

= [1 − pr(A)] − pr(B)[1 − pr(A)]

= [1 − pr(A)][1 − pr(B)] = pr(Ā)pr(B̄),

which completes the proof.

(b)

pr(A ∩ B) = pr(A)pr(B) = pr(A)[1 − pr(B̄)] = pr(A) − pr(A)pr(B̄).

Hence,
pr(A)pr(B̄) = pr(A) − pr(A ∩ B) = pr(A ∩ B̄),

since pr(A) = pr(A ∩ B) + pr(A ∩ B̄).

The second result follows in a completely analogous manner.

Solution 2.4.

(a)

pr(lot is purchased) =
C5

0C
95
10

C100
10

= 0.5838.
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(b) Let k denote the smallest number of defective kidney dialysis machines
that can be in the lot of 100 machines so that the probability is no more
than 0.20 that the hospital will purchase the entire lot of 100 machines.
Then, we need to find smallest positive integer k such that

Ck
0C100−k

10

C100
10

=
C100−k

10

C100
10

≤ 0.20.

By computer, or by trial-and-error, we obtain k = 15.

Solution 2.6.

(a) pr(car door breaks during the 1,000-th trial)=pr[(car door does not break
during any of the first 999 trials)∩(car door breaks during the 1,000-th
trial)]= (0.9995)999(0.0005) = 0.0003.

(b) pr(car door breaks before the 1,001-th trial starts)=1-pr(car door does
not break during the first 1,000 trials)= 1− (0.9995)1,000 = 1 − 0.6065 =
0.3935.

(c) The assumption that the probability of the car door breaking does not
change from trial-to-trial is probably an unrealistic one. As the number of
trials increases, the probability of breakage would be expected to slowly
increase, negating the assumption of mutually independent trials.

Solution 2.8. First,

pr(A) = pr(A|C)pr(C) + pr(A|C̄)pr(C̄)

= (0.90)(0.01) + (0.06)(0.99) = 0.0684.

And,

pr(B) = pr(B|C)pr(C) + pr(B|C̄)pr(C̄)

= (0.95)(0.01) + (0.08)(0.99) = 0.0887.

Also,

pr(A ∩ B) = pr(A ∩ B|C)pr(C) + pr(A ∩ B|C̄)pr(C̄)

= pr(A|C)pr(B|C)pr(C) + pr(A|C̄)pr(B|C̄)pr(C̄)

= (0.90)(0.95)(0.01) + (0.06)(0.08)(0.99) = 0.0134.

Finally,

pr(A ∩ B) = 0.0134 6= pr(A)pr(B) = (0.0684)(0.0887) = 0.0061,
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so that events A and B are unconditionally dependent.

This simple numerical example illustrates the general principle that condi-
tional independence between two events does not imply unconditional inde-
pendence between these same two events.

Solution 2.10. Now,

pr(A) = 1 − pr(no heads among the n tosses) − pr(no tails among the n tosses)

= 1 −
(

1

2

)n

−
(

1

2

)n

= 1 −
(

1

2

)(n−1)

.

And,

pr(B) = pr(no tails among the n tosses) + pr(exactly one tail among the n tosses)

=

(
1

2

)n

+ n

(
1

2

)n

= (n+ 1)

(
1

2

)n

.

Also,

pr(A ∩ B) = pr(exactly one tail among the n tosses) = n

(
1

2

)n

.

Finally, for A and B to be independent events, we require pr(A ∩ B) =
pr(A)pr(B), or

n

(
1

2

)n

=

[
1 −

(
1

2

)(n−1)
] [

(n+ 1)

(
1

2

)n]
,

or equivalently,
(

n
n+1

)
= 1 −

(
1
2

)(n−1)
, giving n = 3.

Solution 2.12.

(a) pr(all four are the same race) = pr(all four are C) + pr(all four are H)
+ pr(all four are A) + pr(all four are N) = (0.45)4 + (0.25)4 + (0.20)4 +
(0.10)4 = 0.0466.

(b) pr[exactly 2 (and only 2) are the same race] = pr(2 C’s and any two other
races) + pr(2 H’s and any two other races) + pr(2 A’s and any two
other races) + pr(2 N’s and any two other races) = 6(0.45)2(0.55)2 +
6(0.25)2(0.75)2 + 6(0.20)2(0.80)2 + 6(0.10)2(0.90)2 = 0.7806.
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(c) pr(at least 2 are not Caucasian) =
∑4

j=2 C4
j(0.55)j(0.45)4−j = 0.7585.

(d) Let E1 ≡ “exactly 2 of 4 are C”, and let E2 ≡ “all 4 are each either C or
H”. So,

pr(E1|E2) =
pr(E1 ∩ E2)

pr(E2)
=

pr[2C’s and 2H’s]

pr(E2)

=
6(0.45)2(0.25)2

(0.45 + 0.25)4
= 0.3161.

Solution 2.14.

(a) pr(C|H ∩ D) = 100/150 = 2/3; or,

pr(C|H ∩ D) =
pr(C ∩ H ∩ D)

pr(H ∩ D)
=

100/300

150/300
=

2

3
.

(b)

pr(C ∪ D|H̄) = pr(C|H̄) + pr(D|H̄) − pr(C ∩ D|H̄)

=
50

100
+

60

100
− 40

100
= 0.70;

or,

pr(C ∪ D|H̄) = 1 − pr(C̄ ∩ D̄|H̄) = 1 − 30

100
= 0.70.

(c) pr(H|C̄) = 90/(90 + 50) = 9/14; or,

pr(H|C̄) =
pr(H ∩ C̄)

pr(C̄)
=

90/300

140/300
= 9/14.

(d)

pr(C ∩ H|D) = 1−pr(C∩H|D) = 1− pr(C ∩ H ∩ D)

pr(D)
= 1− 100/300

210/300
=

11

21
.

(e)

pr(C ∪ D ∪ H) = pr(C) + pr(D) + pr(H) −
pr(C ∩ D) − pr(C ∩ H) − pr(D ∩ H) + pr(C ∩ D ∩ H)

=
160

300
+

210

300
+

200

300
− 140

300
− 110

300
− 150

300
+

100

300
= 0.90;

or,

pr(C∪D∪H) = 1− pr(C ∪ D ∪ H) = 1− pr(C̄ ∩ D̄∩ H̄) = 1− 30

300
= 0.90.
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(f)

pr[C ∪ (H ∩ D)] = pr(C) + pr(H ∩ D) − pr(C ∩ H ∩ D)

=
160

300
+

150

300
− 100

300
= 0.70

Solution 2.16.

(a) πn + (1 − π)n.

(b) πr(1 − π)n−r, 0 ≤ r ≤ n.

(c)
∑r

j=0 Cn
j π

j(1 − π)n−j , 0 ≤ r ≤ n.

(d) (πs)[Cn−s
r−sπ

r−s(1 − π)n−r] = Cn−s
r−sπ

r(1 − π)n−r, 0 ≤ s ≤ r ≤ n.

(e) (πs)[
∑n−s

j=r−s Cn−s
j πj(1 − π)(n−s)−j ] =

∑n−s
j=r−s Cn−s

j πj+s(1 − π)(n−s)−j ,
0 ≤ s ≤ r ≤ n.

Solution 2.18.

(a) First,

pr(A ∩ B|C) = pr(A|C)pr(B|C) ⇔ pr(A ∩ B ∩ C)

pr(C)
= pr(A|C)

[
pr(B ∩ C)

pr(C)

]

⇔ pr(A ∩ B ∩ C)

pr(B ∩ C)
= pr(A|C) ⇔ pr(A|B ∩ C) = pr(A|C).

And,

pr(A|B ∩ C) = pr(A|C) ⇔ pr(A ∩ B ∩ C)

pr(B ∩ C)
=

pr(A ∩ C)

pr(C)

⇔ pr(A ∩ B ∩ C)

pr(A ∩ C)
=

pr(B ∩ C)

pr(C)
⇔ pr(B|A ∩ C) = pr(B|C),

which completes the proof that the three equalities are equivalent.

(b) For i = 1, 2, . . . , 6, let Ei be the event that “the number i is rolled”;
clearly, pr(Ei) = 1/6 and the events E1,E2, . . . ,E6 are pairwise mutually
exclusive. Then,

pr(A|B ∩ C) =
pr(A ∩ B ∩ C)

pr(B ∩ C)
=

pr(E6)

pr(E5 ∪ E6)
=

1/6

2/6
=

1

2
,

and

pr(A|C) =
pr(A ∩ C)

pr(C)
=

pr(E6)

pr(E5 ∪ E6)
=

1/6

2/6
=

1

2
,
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so that events A and B are conditionally independent given that event C
has occurred.

However,

pr(A|B ∩ C̄) =
pr(A ∩ B ∩ C̄)

pr(B ∩ C̄)
=

pr(E4)

pr(E4)
= 1,

and

pr(A|C̄) =
pr(A ∩ C̄)

pr(C̄)
=

pr(E2 ∪ E4)

pr(E1 ∪ E2 ∪ E3 ∪ E4)
=

2/6

4/6
=

1

2
,

so that events A and B are conditionally dependent given that event C
has not occurred.

Solution 2.20. Let A be the event that Joe gets at least one hit during each
of the 13 games in which he had 3 official at bats, let B be the event that Joe
gets at least one hit during each of the 31 games in which he had 4 official at
bats, and let C be the event that Joe gets at least one hit during each of the
12 games in which he had 5 official at bats.

Now, under the stated assumptions, the probability that Joe does not get a hit
in a game where he has 3 official at bats is equal to (1− 0.408)3 = (0.592)3 =
0.2075, so that

pr(A) = (1 − 0.2075)13 = 0.0486.

Using this same strategy to compute pr(B) and pr(C), we have

π = pr (A ∩ B ∩ C) = pr(A)pr(B)pr(C)

= (0.0486)
[
1 − (0.592)4

]31 [
1 − (0.592)5

]12

= (0.0486)(0.0172)(0.4042) = 0.0003.

This approximate calculation provides strong evidence for why a hitting streak
of 56 games has occurred only once during the entire history of major league
baseball.

Solution 2.22. Let H be the event that heads is observed on the coin that
is randomly selected, and let A be the event that the other side of this coin is
also heads. Further, let C1 be the event that the coin selected has heads on
both sides, and let C2 be the event that the coin selected has heads on one
side and tails on the other.
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So, we wish to compute the numerical value of pr(A|H) = pr(A ∩ H)/pr(H).
Now,

pr(A ∩ H) = pr(A ∩ H|C1)pr(C1) + pr(A ∩ H|C2)pr(C2)

= (1)

(
1

2

)
+ (0)

(
1

2

)
=

1

2
.

And,

pr(H) = pr(H|C1)pr(C1) + pr(H|C2)pr(C2)

= (1)

(
1

2

)
+

(
1

2

)(
1

2

)
=

3

4
.

Finally,

pr(A|H) =
pr(A ∩ H)

pr(H)
=

(1/2)

(3/4)
=

2

3
.

Solution 2.24.

(a) For i = 1, 2, 3, let Ai be the event that this randomly chosen adult resident
plays course #i. Then, if C is the event that this randomly chosen adult
plays none of these three courses, we have

pr(C) = pr
(
A1 ∩ A2 ∩ A3

)
= pr

(
∪3

i=1Ai

)

= 1 − pr
(
∪3

i=1Ai

)

= 1 − pr(A1) − pr(A2) − pr(A3) + pr(A1 ∩ A2)

+ pr(A1 ∩ A3) + pr(A2 ∩ A3) − pr(A1 ∩ A2 ∩ A3)

= 1 − 0.18 − 0.15 − 0.12 + 0.09 + 0.06 + 0.05 − 0.02

= 0.73.

(b) Now, let B be the event that this randomly chosen adult resident plays ex-
actly one of these three courses, and let D be the event that this randomly
chosen resident plays at least two of these three courses. Then,

pr(B) = 1 − pr(C) − pr(D) = 1 − 0.73 − pr(D).

Now,

pr(D) = pr [(A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A2 ∩ A3)]

= pr(A1 ∩ A2) + pr(A1 ∩ A3) + pr(A2 ∩ A3)

− 3pr(A1 ∩ A2 ∩ A3) + pr(A1 ∩ A2 ∩ A3)

= 0.09 + 0.06 + 0.05 − 2(0.02) = 0.16.

Finally, pr(B) = 1 − 0.73 − 0.16 = 0.11.
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(c) Let E be the event that this randomly chosen adult resident plays only
#1 and #2. Then,

pr(E|C̄) =
pr(E ∩ C̄)

pr(C̄)

=
pr(C̄|E)pr(E)

C̄

=
(1)pr(A1 ∩ A2 ∩ A3)

(1 − 0.73)
.

Now, since

pr(A1 ∩ A2) = pr(A1 ∩ A2 ∩ A3) + pr(A1 ∩ A2 ∩ A3),

it follows that pr(A1 ∩ A2 ∩ A3) = 0.09 − 0.02 = 0.07.

Finally, pr(E|C̄) = (1)(0.07)/0.27 = 0.26.

Solution 2.26. The probability that no two of these k dice show the same
number (i.e., that all k numbers showing are different) is equal to

αk =

(
6

6

)(
5

6

)(
4

6

)
· · ·
(

6 − k + 1

6

)
, 2 ≤ k ≤ 6.

And, the probability that no two of these k dice show the same number and

that one of these k dice shows the number 6 is equal to

βk = k

[(
1

6

)(
5

6

)(
4

6

)
· · ·
(

6 − k + 1

6

)]
, 2 ≤ k ≤ 6.

Thus,

θk =
βk

αk
=
k

6
, 2 ≤ k ≤ 6.

Solution 2.28.

(a) Since each of the k balls can end up in any one of the n urns, the total
number of possible configurations of k balls and n urns is nk, and each
of these possible configurations has probability n−k of occurring. And,
among these nk equally likely configurations, there are n(n − 1) · · · (n −
k + 1) = n!/(n− k)! configurations for which no urn contains more than
one ball. Hence,

θ(n, k) =
n(n− 1) · · · (n− k + 1)

nk
=

n!

(n− k)!nk
, 1 ≤ k ≤ n.
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(b) If we think of the 12 months as 12 urns and the 5 people as 5 balls, then

γ = 1 − θ(12, 5) = 1 − (12)!

(12 − 5)!(12)5

= 1 − 0.382 = 0.618.

Solution 2.30∗. For 1 ≤ i < j, the event A(i, j) of interest can be written
as
A(i, j) = ∩4

k=1Ak, where A1 is the event that the first (i − 1) tosses do not
produce either the number 1 or the number 2, where A2 is the event that
the i-th toss produces the number 1, where A3 is the event that the next
[(j − i) − 1] tosses do not produce the number 2, and event A4 is the event
that the j-th toss produces the number 2. Since the events A1,A2,A3, and
A4 are mutually independent, it follows that

pr[A(i, j)] = pr
(
∩4

k=1Ak

)
=

4∏

k=1

pr(Ak)

=

[(
4

6

)(i−1)
](

1

6

)[(
5

6

)(j−i−1)
](

1

6

)

=
1

20

(
4

5

)i(
5

6

)j

.

By symmetry, it follows that

pr[A(j, i)] =
1

20

(
4

5

)j (
5

6

)i

.

Thus, the probability of either of the two scenarios i < j and j < i can be
written succinctly as

1

20

(
4

5

)min{i,j} (
5

6

)max{i,j}
.

Solution 2.32∗. For i = 1, 2, . . . , 6, let Ei be the event that the number i
appears on exactly two of the three dice when the experiment is conducted.
Then,

pr(A) = pr
(
∪6

i=1Ei

)
=

6∑

i=1

pr(Ei)

= 6

[
3

(
1

6

)2 (
5

6

)]
=

5

12
= 0.4167.
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Let Cn be the event that event A occurs at least twice during n repetitions of
the experiment. Then,

pr(Cn) = 1 − pr
(
Cn

)

= 1 − pr(event A occurs at most once during n repetitions of the experiment)

= 1 −
[
(0.5833)n + n(0.5833)n−1(0.4167)

]
.

By trial-and-error, the smallest value of n, say n∗, such that

pr(Cn) = 1 −
[
(0.5833)n + n(0.5833)n−1(0.4167)

]
≥ 0.90

is equal to n∗ = 8.

Solution 2.34∗. First, note that θ2 = α given that the first repetition
results in outcome A, and that θ2 = (1 − β) given that the first repetition
results in outcome B.

Now,

θ3 = αθ2 + (1 − β)(1 − θ2) = k0 + k1θ2,

where k0 = (1 − β) and k1 = (α+ β − 1).

Next,

θ4 = αθ3 + (1 − β)(1 − θ3) = k0 + k1θ3

= k0 + k1(k0 + k1θ2)

= k0(1 + k1) + k2
1θ2.

Using a similar strategy, we have

θ5 = αθ4 + (1 − β)(1 − θ4) = k0 + k1θ4

= k0 + k1

[
k0(1 + k1) + k2

1θ2
]

= k0(1 + k1 + k2
1) + k3

1θ2.
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So, in general, for n = 3, 4, . . ., we have

θn = k0




n−3∑

j=0

kj
1


+ kn−2

1 θ2

=
k0

(
1 − kn−2

1

)

(1 − k1)
+ kn−2

1 θ2,

where k0 = (1 − β), k1 = (α + β − 1), and where θ2 equals α if the first rep-
etition of the experiment results in outcome A and equals (1 − β) if the first
repetition of the experiment results in outcome B.

Finally, since 0 < k1 < 1, we have

limn→∞θn =
k0

(1 − k1)

=
(1 − β)

(2 − α− β)
=

(1 − β)

(1 − α) + (1 − β)
.

Note that this limiting value is the same regardless of the outcome on the first
repetition of the experiment.

Solution 2.36∗.

(a) In words, the event that Player A is ruined with x dollars remaining is
the union of two mutually exclusive events, namely, the event that Player
A wins the next game and then is ruined with (x + 1) dollars remaining
and the event that Player A loses the next game and then is ruined with
(x− 1) dollars remaining. This leads to the desired difference equation

θx = πθx+1 + (1 − π)θx−1, x = 1, 2, . . . , (a+ b− 1);

clearly, θ0 = 1 since Player A has no money, and θa+b = 0 since Player A
has all of Player B’s money.
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(b) Using the difference equation given in part (a), we have

α+ β

(
1 − π

π

)x

= π

[
α+ β

(
1 − π

π

)x+1
]

+ (1 − π)

[
α+ β

(
1 − π

π

)x−1
]

= α+ β

[
(1 − π)x+1

πx
+

(1 − π)x

πx−1

]

= α+ β

(
1 − π

π

)x

[(1 − π) + π]

= α+ β

(
1 − π

π

)x

.

(c) Now,

θ0 = 1 = α+ β

(
1 − π

π

)0

= α+ β,

so that α = 1 − β.

And,

θa+b = 0 = α+ β

(
1 − π

π

)a+b

= (1 − β) + β

(
1 − π

π

)a+b

so that

β =

[
1 −

(
1 − π

π

)a+b
]−1

,

and

α = 1 −
[
1 −

(
1 − π

π

)a+b
]−1

.

Using these expressions for α and β, we obtain

θx = 1 −
[
1 −

(
1 − π

π

)a+b
]−1

+

[
1 −

(
1 − π

π

)a+b
]−1(

1 − π

π

)x

=

(
1−π

π

)x −
(

1−π
π

)a+b

1 −
(

1−π
π

)a+b
.

(d) Based on the expression for θx derived in part (c), it follows that the
probability that Player A is ruined when Player A begins the competition
with a dollars is

θa =

(
1−π

π

)a −
(

1−π
π

)a+b

1 −
(

1−π
π

)a+b
.
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And, by symmetry,

pr(Player B is ruined) =

(
π

1−π

)b

−
(

π
1−π

)a+b

1 −
(

π
1−π

)a+b

=
1 −

(
1−π

π

)a

1 −
(

1−π
π

)a+b
= (1 − θa).

Since pr(Player A is ruined)+pr(Player B is ruined)=1, it is certain that
either Player A or Player B will eventually lose all of his or her money.

When π = 1/2, one can use L’Hôpital’s Rule to show that θa = b/(a+ b)
and (1 − θa) = a/(a+ b).

(e) If π ≤ 0.50, so that the house has no worse than an even chance of win-
ning each game, then limb→∞θa = 1, so that Player A will eventually lose
all of his or her money if Player A continues to play. If π > 0.50, then
limb→∞θa =

(
1−π

π

)a
. As a word of caution, π is always less than 0.50 for

any casino game.

Solution 2.38∗.

(a) Let Axy be the event that a person matches winning pair (x, y). Then,

πx0 = pr(Ax0) =

[
C5

xC51
5−x

C56
5

](
45

46

)
, x = 3, 4, 5;

and,

πx1 = pr(Ax1) =

[
C5

xC51
5−x

C56
5

](
1

46

)
, x = 0, 1, 2, 3, 4, 5.

Then, it follows directly that π30 = 0.0033, π40 = 0.0001, π50 = 2.5610x10−7,
π01 = 0.0134, π11 = 0.0071, π21 = 0.0012, π31 = 0.0001, π41 = 1.4512x10−6,
and π51 = 5.6911x10−9.

(b) Let θ be the overall probability of winning if a person plays this Mega
Millions lottery game one time. Then,

θ = 1 − pr(A00) − pr(A10) − pr(A20)

= 1 − 0.9749 = 0.0251.

(c) We want to choose the smallest positive integer value of n, say n∗, that
satisfies the inequality

1 − (1 − 0.0251)n = 1 − (0.9749)n ≥ 0.90,
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or equivalently that

nln(0.9749) ≤ ln(0.10).

It then follows easily that n∗ = 91.

Solution 2.40∗.

(a) There are two possible equally likely outcomes (namely, “evens” and
“odds”) for each game, and the total number of games played is equal
to Ck

2 = k(k − 1)/2. So, there are 2k(k−1)/2 total possible outcomes for
all Ck

2 games that are played. Of these 2k(k−1)/2 outcomes, there are k!
outcomes that produce the outcome of interest. So, since all outcomes
are equally likely to occur, the desired probability is equal to

θk =
k!

2k(k−1)/2
.

Note that θ2 = 1, as expected, and that θ6 = 6!/215 = 0.0220.

(b) Appealing to Stirling’s approximation to k! for large k, we have

θk ≈
√

2πk
(

k
e

)k

2k(k−1)/2

≈
√

2πk
(

k
e

)k

2k2/2

≈
(√

2πk

ek

)(
k

2k/2

)k

,

which converges to the value 0 as k → ∞.

Solution 2.42∗.

(a) Let A be the event that the gambler has a dollars to bet, let B be the
event that the gambler accumulates b dollars, and let W be the event that
the gambler wins the next play of the game. Then, we have

θa = pr(B|A) = pr(B ∩ W|A) + pr(B ∩ W|A)

= pr(W|A)pr(B|W ∩ A) + pr(W|A)pr(B|W ∩ A)

= pr(W)pr(B|W ∩ A) + pr(W)pr(B|W ∩ A)

= πθa+1 + (1 − π)θa−1, a = 1, 2, . . . , (b− 1).

(b) Using direct substitution and simple algebra, it is straightforward to show
that the stated solutions satisfy the difference equations given in part (a).
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(c) For Scenario I, we have

θ100 =
100

10, 000
= 0.01.

For Scenario II, we have

θ100 =

(
0.52
0.48

)100 − 1
(

0.52
0.48

)200 − 1
= 0.0003.

This result is clearly counterintuitive, since it is over 33(≈ 0.01/0.0003)
times more likely that the gambler will accumulate b dollars under Sce-
nario I than under Scenario II.


