Problem Set 2.1

In Problems 1-4,
(a) Perform z, /z, and express the result in rectangular form,

(b) Verify that |2,/ z,| =|z|/|z,|
(© i Repeat Part (a) in MATLAB.
_3_J

Solution
-3—-] - -1+3j —1 3.
(@) J J i_-t

—3—j

>> z1 = -3-J; z2 = 2*j; z1/z22
ans =
-0.5000 + 1.5000i

5 2+l

1-2j
Solution

2+ ]
a =
()1_2
®) | 2+ V5 _

-2 5
© 4
>> 71 = 2+j; z2 = 1-2*j; z1/z72
ans =
0 + 1.0000i

-3j
©2+3j
Solution

3j -9 6.
@ A=

2+3j 13 13
o |2 _ 7 33 |8 3 38

13 13 169 13 ' [2+3j 13 13
© 4
>> z1 = -3*j; z2 = 2+3*j; z1/z2
ans =

-0.6923 - 0.4615i

4. -
—4+3]j

11



12

Solution
(@ 4 T4-8i_-16-12j -16 12,
-4+3j 4- 3j 25 25 25
o[22 (ﬂj(ﬁj [0 _4 14 _4
25 25 625 5 ' |-4+3j| 5
© 4
>> z1 = 4; z2 = -4+3*); z1/z2
ans =

-0.6400 - 0.4800i

In Problems 5-8 express each complex number in its polar form.

5. —/3-3j
Solution
To calculate phase, we first find tan™ V3= s7. Since —/3-3] islocated in the 3" quadrant, the phase is taken as

either ~ +%7r in the positive sense (counterclockwise) or +7 ++7 =27 in the negative (clockwise). In summary,

3rd quadrant

_J3-3j =  2Be @i

6. 1——]
Solution

1_§ i 4t q”:adram V13 o—0.9828]
2 2

7. 3+ j\3

Solution
1st quadrant

3+ j\3 2./3 1716

8. —1+1]j

Solution

_1+£j 2nd qfdrant £92-6779j
2 2

In Problems 9 — 16 perform using polar form and express the result in rectangular form.

3+2]j
C 143
Solution
3+2) \/Ee0.5880j B \/E 1 30s5]
~1+3j \/Eel.8925j @

=0.3-1.1j

\/§+3j
3- V3

10.



Solution
V3+3j _ 23 e(”/S)J_ ENCDI
3 V3 2/3e

11, 3231
2j
Solution

Y ~1.0304j _
3 ?J _ \/34e - 34 e 28012 _ _p5_1 5
2j 2e(7/2) ] 2

12. 31
1-j
Solution

: (x12)] .
3] _ 3 _ 3 BT _ 15,1 5]

- - NSCRING)

13. (4+3j)°
Solution

(4+3i) = [5e1(0-6435) T =5%eIA90%) _ 44,117

14. (0.9511+0.3090j)*
Solution

. 10 .
(0.9511+0.3090j)"° =[ e} " —eJ* =1

1+3j)°
C(-1+2j)?
Solution

\3
(1+3j)3 _( 10 e1_24901) 10 HO 37470 o fiGe- 0521
— N2 2 aoeeg  cViYe
(-1+2j) (\/g e2.03441) 5e

5]
C(1+4j)°
Solution
5j 5e(7/2)] 5

_ _ ~2.4066] _ .
= = e =-0.0529-0.0478
1+4j)° ( N )3 1717 .

16

In Problems 17-20, find all possible values for each expression.
17. (-1ve
Solution

-6-2j

13

The goal is to find w= 8z where z=-1. Noting that z = -1 is located on the negative real axis, one unit from the



origin, we have r=1 and =, hence z=-1= el . Then,

§-1=%1 cos”+62kﬂ+jsinﬂ+:kﬂ) ,  k=0,12,34,5

Therefore, the six roots are + j, gi% i —TSi%j , located on the unit circle, the vertices of a six-sided polygon.

18. (-1+ j)¥®
Solution

] %7[+2k7r
in—1|, k=012

3 +2k
-1+ Y3 =2 {cos%+ jsin

The three values are obtained as 0.7937 +0.7937j , —1.0842+0.2905), 0.2905-1.0842;j .

19. (\3-3j)¥2
Solution

—Lry2kx —Lr42kx
(x/§—3j)l’2=(2\/§)1’{cos 3 ; + jsin—3 ; } k=0,1

The two values are 1.6119-0.9306j , —1.6119+0.9306j .

20. \1+i/3
Solution
The goal is to find w=+/z where z=1+i+/3. Since z=1+iv/3 =2e/"'®, we have

Lr+2k Lr+2k
\/1+i«/§:\/§[cos¥+jsin¥], k=0,1

Therefore, the two roots are iﬁ(§+%i) , located on the circle of radius ~/2 and centered at the origin.

Problem Set 2.2

In Problems 1-10 solve the initial-value problem.
1. x+x=sint, x(0)=-1

Solution

Since g(t)=1, we have h(t) =t and

x(t)=e™ Uet sintdt +c] —e™ [%e‘ (sint —cost) +c] =1(sint—cost)+ce™
Using the initial condition ¢ = -2 so that x(t) :%[sint—cost—e“]
1y _ _1
2. 3x+x=0, x(0)=3

Solution
Writing the ODE in standard form yields g(t) =3 so that h(t) =3t and
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x(t) =e™ U e®0odt+ c] =ce ™

By the initial condition ¢ =% and the solution is obtained as x(t) = %e‘st .

3. 2y+ty=t, y(0)=2
Solution
Writing the ODE in standard form yields g(t) =3t = f(t) so that h(t) =1t* and

y(t)y=et" Uetz“‘ Ltdt +C:| =gt/ [etz"‘ + c} =1+ce

By the initial condition we have ¢ =1, hence y(t) =1+ et
4. u=(1-u)sint, u($z)=2

Solution
Writing the ODE in standard form yields g(t) =sint = f(t) so that h(t) =—cost and

u(t) = @oost |:J‘e—cost sintdt +C:| — geost |:e—cost n C:| — 14 cetost

By the initial condition we have ¢ =1, hence u(t) =1+e".

5. (t-1)y+ty=2t, y(0)=1
Solution

Writing the ODE in standard form yields g(t) :tt_l and f(t) :tz—tl so that h(t):jtt—ldt =t+In(t-1) and

~t

y(t) _ e—t—ln(t—l) |:J‘et+|n(’[—1) t2t1 it +Cj| _ e—t—ln(t—l) [Z(t _l)et +C:| —24 (;e .

—t
By the initial condition we have ¢ =1, hence y(t) =2 +te_1'

6. X+2x+x=e2, x(0)=1, x(0)=1

Solution

Case (2) ,
Characteristic equation is A% +21+1=0 sothat A=-1,-1and x, = (c,+¢C,t)e™". Basedon f(t)=e we
pick x, = Ke %', no special case, and insert into the ODE to get K =1 hence Xp = e 2. A general solution is

X(t) = (¢, +c,t)e”t +e7>" . Initial conditions yield ¢, =0,c, =3, and the solution is x(t) =3te™ +e72' .

7. X+4%x=17cost, x(0)=—1, x(0)=0

Solution
o Case (1) ] . . o
Characteristic values are A =0,-4 hence x, = ¢ +c,e . Pick X, = Acost+Bsint and insert into the original

ODE to find (4B— A)cost—(B+4A)sint=17cost. Thisimplies A=-1, B =4 so that a general solution is

X =, +Cye ™ —cost+4sint. By the initial conditions, ¢, =1, ¢, =1 and thus x =—1+e % —cost +4sint .
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8. ti+u=sin2t, u(0)=1, u(0)=0

Solution
Case (3)
Characteristic valuesare A =+j sothat u, = ¢ cost+c,sint. Based on the nature of f(t) we pick

u, = Acos 2t +Bsin 2t , no special case, and insert into the ODE to get A=0, B= —% hence u, = —%sin 2t. A
general solution is u(t) = ¢, cost+c, sint—%sin 2t. By initial conditions, ¢; =1,c, =% , and the solution is

u(t) =cost+Zsint—<sin2t.

9. +4u+3u=4e" u(0)=0, u(0)=-1
Solution
Characteristic values are A =—1,—3 so that u, =ce”' +c,e ™. Because e ' coincides with an independent

solution we pick u, = Kte™ and insert into the ODE to get K =2, hence up = 2te™". A general solution is

u=ce ' +ce” +2te™. By initial conditions, ¢ =—2,c, =2 and the solutionis u=-3e™" + 3™ + 2te”".

10. 2§+3y+y=0, y(0)=0, y(0) :%
Solution
Characteristic values are 1 = —1,—% so that y, = (:le’”2 +c2e’t . Since the ODE is homogeneous, y(t) =y, (t). By

—t/2 _ -t

initial conditions, ¢; =1,¢, =—1, and the solution is y(t) =e e

In Problems 11-14 write the expression in the form Dsin(wt + ¢) .

11. cost+3sint
Solution
Write cost+3sint = Dsin(t+¢) = Dsintcos¢+ Dcostsing and compare the two sides to find

Dsing=1 D=V10  sin $>0 1st quadrant
= = tang=% =  $=03218rad
Dcos¢g =3 cos¢ >0

Therefore, cost+3sint = \/1—Osin(t+0.3218) .

12. cos2t —sin 2t
Solution
Write cos2t —sin 2t = Dsin(2t + ¢) = Dsin 2tcos ¢+ D cos2tsing . Comparing the two sides,

Dsin¢ =1 D=+2 sin¢ >0 2nd quadrant
= = tang=-1 = ¢ = 2.3562 rad
Dcosg=-1 cos¢g <0

Therefore cos2t—sin2t = x/isin(Zt +2.3562) .

13. —sin2t —%cos 2t

Solution
Write —sin 2t —%cos 2t = Dsin(2t + ¢) = Dsin 2t cos ¢+ D cos 2tsin ¢ . Comparing the two sides,
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Dsing=-1 D=1V sind <0 3rd quadrant
"t g ’ = tang=73 = ¢ =-2.6779 rad
Dcos¢g=-1 cos¢g <0

Therefore, —sin 2t —$.cos2t = %\/gsin(Zt —-2.6779) .

14. 3sin wt —cos wt
Solution
Expand 3sin wt —cos wt = Dsin(wt + ¢) = Dsin wt cosg+ D coswtsing . Comparison gives

Dsin p=-1 D=V10  sin $<0 4th quadrant
= = tang=-1 =  $=-0.3218rad
Dcos¢g=3 cos¢ >0

Therefore 3sin wt —cos wt = +/10 sin(et —0.3218) .

In Problems 15-16 write the expression in the form D cos(wt + @) .

15. Zcost—sint

Solution

Write %cost—sint = Dcos(t+¢) = Dcostcosg— Dsintsing and compare the two sides to find

Dsing =1 D=i13  sjp $>0 1st quadrant
, = tang=3 = ¢ =0.9828 rad
Dcosg =% cos¢ >0

Therefore, Zcost —sint = 2+/13 cos(t +0.9828) .

16. 4cost +3sint
Solution
Write 4cost+3sint = Dcos(t + ¢) = Dcostcosg— Dsintsing and compare the two sides to find

Dsin ¢p=-3 D=5 sin $<0 4th quadrant
tang=-3 = ¢ =-0.6435 rad
Dcosg =4 cos¢ >0

Therefore, 4cost+3sint =5cos(t —0.6435) .

Problem Set 2.3

In Problems 1-8,
(a) Find the Laplace transform of the given function. Use Table 2.2 when applicable.

(b) £l Confirm the result in MATLAB.
1. e ab=const

Solution
(@) g{eat—b} _ ecf{eate_b}Imeamyg{eat}e—b _%
(o) 4\

> syms ab t
>> laplace(exp(a*t-b))



ans =
-1/(exp(b)*(a - s))

242
2. 2t°-1
Solution

(a) {221 =§3_1=i_%

(o) 4\
>> syms t
>> laplace(2/3*t"2-1)

ans =
4/(3*s™3) - 1/s

3. sin(wt+¢), o,¢ =const

Solution
(a) Using trigonometric expansion, we find

< {sin(at +§)} = £ {sin wt cos ¢+ cos wtsin ¢} = £ {sin wt} cos g+ £ {cos wt}sin ¢

w S . wCOS @+ 5Sin
== 2cos¢+ 5 2sm¢5= 2¢ 5 ¢
S“+w S“+w S“+w

(b) 4\

>> syms w t p
>> laplace(sin(w*t+p))

ans =
(w*cos(p) + s*sin(p))/(s™2 + wr2)

4. cos(wt—¢), w,¢=const

Solution
(a) Using trigonometric expansion, we find

Z{cos(wt — @)} = L{cos wt}cos ¢ + LLsin wt}sin ¢

SCOS¢+wsing

S
= CoS ¢+ 5

sing =
s2 +w? s2 +w? s+

(b) 4

>> syms w t p
>> laplace(cos(w*t-p))

ans =

(s*cos(p) + w*sin(p))/(s™2 + wr2)

5. cos’t
Solution

(a) Noting that cos?t = %(1+ cos 2t) , we find

1 11 s
< lcos?t) == Pf1+cos2ty==| =+
{ } 2 ¢ } ZL s2+4

|

Simplify SZ +2
(2 +4)

18



(o) 4\
>> syms t
>> laplace(cos(t)"2)
ans =
(s™2 + 2)/(s*(s"™2 + 4))

6. tcost

Solution
(a) Following Eq. (2.16),

d( s s2-1
tcost} =—— =

A } ds(sz+1j (s® +1)*
()
>> syms t
>> simple(laplace(t*cos(t)))
ans =

(™2 - 1)/(s"2 + 1)N2

7. t?sinot
Solution
(a) Following the general form of Eq. (2.16) with g(t) =sinwt and n=2,

. d? ( ® j 20(35% — 0?)
2t sinwt! =— =
{ } ds? \ s? + »? (s% + 0°)®

()
>> syms t w
>> simple(laplace(t"2*sin(w*t)))
ans =
@*w*(3*s™2 - wN2))/(s"N2 + wA2)N3

8. tsinht
Solution
(a) Comparing with Eq. (2.16), we have g(t) =sinht so that

G@Fﬁﬂﬁquég&g€w=1[l 1}m@m .

2|s-1 s+1 521
Then,
. d 1 2s
ZLitsinht! = —— =
(o) 4\
>> syms t
>> laplace(t*sinh(t))
ans =

(2*s)/(s™2 - 172

In Problems 9-12
(a) Express the signal in terms of unit-step functions.
(b) Find the Laplace transform of the expression in (a) using the shift on t —axis.

-1 if O0<t<l
9. g(t)=41 if 1<t<?2
0 otherwise
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Solution
@ gt)=-u(®)+2u(t-)—-u(t-2)

~1+2e°-e® —(1-e®)?

(b) G(s) =
S
t if O<t<1
10. 1) =
o0 {O otherwise
Solution

(a) We construct g(t) using the strategy outlined in Figure PS2-3 No10, resulting in

g(t) =tu(t)-tu(t-1)

. 1 .
(b) We will take the Laplace transform term-by-term. For the 1% term gﬂ{tu(t)} =—. For the 2" term, comparison
s
1

52

with Eq. (2.18) reveals f(t—1) =t , which implies f(t)=t+1. Therefore F(s)=—+— and

(7N

Z{tut-1)} = (Siz+%j e~°. Combining the two results, we find
G(s) = %—[%+£Je‘s
s

tu(t) - tu(t - 1)

) (©)
Figure PS2-3 No10

0 if t<0
11. g(t)=4qt if O<t<l
1 if t>1

Solution
simplify

@ git)=tu@®)-tut-D+u(t-1) = tu(t)-(t-Du(t-1)

1 e® 1-¢°
(b) G(s) ===
®) s? g2 s
0 if t<0
12. g(t)=41-t if O<t<l
0 if t>1

Solution
(a) Construct g(t) using the strategy shown in Figure PS2-3 No12, leading to g(t) = @—t)u(t)— (L-t)u(t-1).
(b) Rewrite the expression obtained in (a) as g(t) =u(t) —tu(t) + (t —Lu(t—1). Then



-S

2

G(s)=2-2+8
S s S

A (D)) A (1-Du(t-1) A (1-Du) - (1-)u(-1)

N N

> !
0 1 1 0 1
\\ 0 \\
(@ ® (©)

Figure PS2-3 No12

In Problems 13-16 find the Laplace transform of each periodic function whose definition in one period is given.
1 if O<t<l
13. f(t) =

-1 if 1<t<2
Solution
Noting P =2, we find

Fs)=—— j e'Stdt—J%e‘S‘dt _l-2et 4™ (1-e)? I 1-e
- -2s - A28y of1_a=28y -s
1 0 1 s(l—e™) s(l—-e™) s(l+e™)

14, f(t)=2(1-t), 0<t<1
Solution
The period is P =1. Using the description of f(t), we have

1 —s _
F(s)=— [ e-5‘2(1—t)dt=w
1-e° 3 s°(1-¢e7%)

t if O<t<l1
15. f(t)= .
1-t  if 1<t<2
Solution
The period is P =2. Using the description of f(t), we have
2
[et £yt
0

F(s)=

1_ e*ZS

But
2 1 2 e
j e S f (t)dt = j e tdt + j e (L-t)dt =
0 0 1

2

-, 1)
S S

Therefore,
ef(e*-1)  (1-e®)® 1-(s+le

Fs)= s(l—e™°) +52(1—e‘25) Cs2(1+e)




16. (1) = 1 if O<t<1
' Cl2-t if 1<t<?2

Solution
The period is P =2. Using the description of f(t), we have

2

1 _ 1 |F 2 1 e (e -1
F(s)= e f(t)dt = e dt+ |e S (2-t)dt} = +
&) 1—e‘25'([ ® 1-e% {'([ J; (2= s(l-e2%) s?(1-e™)

This simplifies to
1 e

Fe)= sl—e %) s2(Lre™)

17. Find the Laplace transform of the periodic function f (t) in Figure 2.14.

Solution
The period is P =1. Using the description of f(t), we have

2
F(S)—l_e_s Z')‘e s f(t)dt_ﬁ{z'; e Sdt_l-/[ze sdt}— s(l—efs) - s(1+e75/2)

S@®

1 —

0

1
1
1
! t
I
1
1

|—
N |w

—_

-1
Figure 2.14

18. Find the Laplace transform of the periodic function f(t) in Figure 2.15.

Solution
The period is P =2b. Using the description of f(t), we have

1 t 1 b t 2b t (1—e5)?2
- —sf - ) ) _ _ % )
F(s)—l_e_st { e f(t)dt—l_e_ZbS .([e tdt+.l[ et (2b—t)dt = e

This can be rewritten as
1_ e*bS 1 ebS/Z _ e—bs/Z 1 bS
=— =—tanh—
e 2

52(1+e—bs) SZ bs/2+e—bs/2 S2

F(s)

f(©

Y

I

1

|

b 2b 3b 4b
Figure 2.15



In Problems 19-24,
(a) Find the inverse Laplace transform using the partial-fraction expansion method.
(b) 4\ Repeat in MATLAB.
3s+4
" s(s+1)
Solution
(a) Expand as

3544 A B _(A+B)s+tA | A+B=3
s(s+1) s s+1 s(s+1) A=4
Therefore,
7
3s+4 4 1 L4t
s(s+1) s s+1
()

>> syms s
>> ilaplace((3*s+4)/s/(s+1))

ans =
4 - 1/exp(t)
352 +25+2

S (52 +)(s+2)

Solution
(a) Partial-fraction expansion leads to

352 +25+2 _As+B C _ (A+C)s® +(2A+B)s+2B+C
(s2+1)(s+2) s?+1 s+2 (s2+1)(s+2)

Simultaneous solution gives A=1,B =0,C =2 so that

352 +25+2 S 2 < ot
. =——+ = cost+2e
(s +1)(s+2) s°+1 s+2

(o) 4\

>> syms s

>> ilaplace((3*s"2+2*s+2)/(s"2+1)/(s+2))
ans =

2/exp(2*t) + cos(t)

s+10
" s(s? +25+5)

Solution
(a) Using partial fractions,

A=4

B=-1
A+C=3
2A+B=2
2B+C =2

23
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s+10 _ A Bs+C _ (A+B)s® +(2A+C)s+5A
s(s>+25+5) S s?+25+5 s(s® +25+5)

Subsequently,

A+B=0 A=2

solve

2A+C=1 = B=-2

5A=10 C=-3
Then

gt
s+10 2 25+3 2_ 2+l = 2—2e“0052t—%e“sin2t

s(s2+25+45) S (s+1)%+22 5 (s+1)2+22

() 4

>> syms s
ilaplace((s+10)/s/(s"2+2*s+5))

ans =

2 - (2*(cos(2*t) + sin(2*t)/4))/exp(t)

4s+5
s?(s? +4s+5)

Solution
(a) Forming partial fractions,

22.

4s+5 _ A B  Cs+D _ (B+C)s®+(A+4B+D)s” +(4A+5B)s+5A
s?(s?+4s+5) s> S s?+45+5 s%(s? +4s+5)
Then
B+C=0 A=1
A+4B+D=0 e B =0
4A+5B =4 C=0
5A=5 D=-1
Therefore
gt
. 3S+5 :iz— 12 ~ = t-esint
s°(s“+4s+5) s° (s+2)°+1
(o) 4\
>> syms s

>> ilaplace((4*s+5)/s"2/(s"N2+4*s+5))
ans =
t-exp(-2*t)*sin(t)

s-8

s(s+2)°

Solution
(a) Forming partial fractions,

23.

58 A A A A+’ +AStASSH2) (A+A)S +(4A+A +2A)s+4A

2= 2 - 2 2
s(s+2)° s (s+2)° s+2 s(s+2) s(s+2)
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Then,
A+A =0 A=-2
4A+ A, +2A =1 = A, =5
4A=-8 A =2
Therefore,
_ _ s
S 825_E > 2+—E— =  —2+5te2 127
s(s+2) S (s+2)° s+2
(o) 4\

>> syms s
ilaplace((s-8)/s/(s+2)"2)

ans =
2/exp(2*t) + (5*t)/exp(2*t) - 2
s?+s-1

C(s+3)(s2+25+2)

Solution
(a) Partial-fraction expansion gives

s?+s-1 A . Bs+C  (A+B)s’+(2A+3B+C)s+2A+3C
(s+3)(s*+25+2) s+3 s*+25+2 (s+3)(s* +25+2)
Then
A+B=1 A=1
2A+3B+C=1 = B=0
2A+3C =-1 C=-1
Finally,
2 _ gt
> ts t 1 i > et —etsint
(s+3)(s“+2s+2) S+3 (s+1)° +1
()
>> syms s

>> 1laplace((s"2+s-1)/(s+3)/(s"2+2*s+2))
ans =
—exp(-t)*sin(t)+exp(-3*t)

In Problems 25-30,
(a) Solve the initial-value problem.

(b) ﬂWEMmHMWmeMAHAR

25. X+2x=2u(t)-u(t-1), x(0)=0

Solution
(a) Taking the Laplace transform and using the zero initial condition, yields
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(s+2)X(s) :5_% = XE)= 5(52+ 2) s(sl+ 2) e

Let G(s) = so that by partial-fraction expansion we have g(t) = %(l—e‘zr) . Next,

s(s+2)

— gl 2 _ ol 1 -s  _ 1 _plfa-s
X(t) =& {s(s+2)} e {s(s+2)e }_2§F (GG) -« {e G(s)}

Using the shift on the t—axis for the second term, we find x(t) =2g(t)—g(t-Du(t-1). But g(t) was defined
earlier, hence

x(t)=1-e™* —%[1— e At Ju(t -1

(b) 4\

>> x = dsolve("Dx+2*x=2*heaviside(t)-heaviside(t-1)", "x(0)=0")

(heaviside(t)*(exp(2*t) - 1) - (heaviside(t - 1)*(exp(2*t) -
exp(2)))/2)/exp(2*t)

NI ; 1 if 1<t<2
26. X+2x+x=g(t), x(0)=0, x(0) =0, g(t) = .
0  otherwise

Solution
-s -2s

(a) We first write g(t) =u(t—1)—u(t—2) so that G(s) e Laplace transformation of the ODE and using
s

the zero initial conditions, yields

-S _ 428
(+D2X(5) =" o Xt
S s(s+1) s(s+1)
Let H(s) = 5117 so that by partial-fraction expansion we have h(t) =1—(t+1)e™'. Next,
s(s+

1 1
xt)y=<" e - e b= e H(s)| -« e H(s
0= b = ) o)
By the shift on the t—axis, we find x(t) =h(t-Du(t-1) —h(t—2)u(t—2) . Using the expression for h(t) defined
earlier, we have

x(t) = [1—te-<t-1>]u(t ~1)- [1— (t-1)e 2 ] u(t—2)
(o) 4\

>> x = simple(dsolve("D2x+2*Dx+x=heaviside(t-1)-heaviside(t-2)", "x(0)=0,
Dx(0)=07))

X =

heaviside(t - 1) - heaviside(t - 2) - heaviside(t - 2)*exp(2 - t) -
t*heaviside(t - D *exp(1l - t) + t*heaviside(t - 2)*exp(2 - t)



27. 3%+%=e", x(0)=0, x(0)=1

Solution
(a) Laplace transformation of the ODE and using the initial conditions leads to

S+2

2 -1 - S*te
(3 +S)X(S)_l_s+1 = X6 S(3s+1)(s+1)

Finally, using partial-fraction expansion, we find

5+2 1 5
xt)=gH—— et _Zetyp
® {5(35 +1)(s +1)} 2 2

(o) 4\
>> x = simple(dsolve("3*D2x + Dx = exp(-t)", "x(0)=0, Dx(0)=1/3%))

X =
1/(2%exp(t)) - 5/(2*exp(t/3)) + 2

28. ¥+9x =sint, x(0)=1, x(0)=0

Solution
(a) Laplace transform of the ODE and using the initial conditions, we find

B 1 LS
(s> +1)(s?+9) s2+9

$2X(s)—S+9X(s) = = X(s)

s2+1

It is then readily seen that x(t) = %sin t —2—14$in 3t+cos3t .

(b) 4\

>> x = simple(dsolve("D2x + 9*x = sin(t)", "x(0)=1,Dx(0)=0%))

cos(3*t) + sin(t)"3/6

This expression simplifies to agree with Part (a).

29. X+x%—2x=¢e', x(0)=0, x(0) =1
Solution
(a) Taking the Laplace transform of the ODE and using the given initial conditions, yields

, 1 - S
(s +5-2)X(9) 5_1+1 = X (s) (5_1)2(S+2)

f-Ze? 1 2¢',

By partial-fraction expansion we find x(t) = %te 5

(b) 4

>> x = simple(dsolve("D2x + Dx - 2*x = exp(t)", "x(0)=0,Dx(0)=1%))

27



X =

*exp(t))/9 - 2/(9*exp(2*t)) + (t*exp(t))/3

30. K+3%=1 x(0) =2, X(0) =0

Solution
(a) Taking the Laplace transform of the ODE and using the given initial conditions, yields

@2+3$X@)=1+23+6 = X(s)= 21 +2
S s°(s+3) s

By partial-fraction expansion we find x(t) = +1it+1e™.

(o) 4\
>> x = simple(dsolve("D2x + 3*Dx = 17, "x(0)=2,Dx(0)=0"))

t/3 + 1/(9*exp(3*t)) + 17/9

In Problems 31-36 decide whether the final-value theorem is applicable, and if so, find x .
1
2s(s+3)

31. X(s)

Solution
The poles are at 0,—3 hence the FVT applies.

X = li_rg{sx (s)} = Iim{

s—0

_1
2(s+3)| 6

S+2
(s+4)(s® +4s5+5)

32. X(s)=

Solution
The poles are at —4,-2+ j hence the FVT applies.

xﬁzn%@xanznm{ 5(5+2) }:o

520 | (s+4)(s® +4s5+5)

s+1

Solution
The poles are at 0,0,—3,—2. Since the pole at the origin is repeated, the FVT does not apply.

s+3

Solution
The poles are at —2,-2,-1, hence the FVT applies.

28



Xgs = Ilm{sX (s)} =lim

2
3. X(s)=— L
s(s+1)

Solution
The poles are at 0,—1,—1 hence the FVT applies.

X = Ilm{sX (s)} =lim

s?+1
s—0 (S +1)

S+5
36. X(s)=—7—"—
S(s“+s+1)

Solution

The poles are at O,—% % j hence the FVT applies.

s(s+3) 0
-0 | (s+2)%(s+1)

Xss = |Im{SX(S)}— |Im{ S+% }:%

-0 |52 +5+1

In Problems 37-40 evaluate x(0") using the initial-value theorem.

}—o

s +1
37 X()= (25 +5+3)
Solution
N s?+1 1
X(0) = lim {sX (5)} = JLTO{%TZH}:E
3842
3. X()= (s +1)(s+2)>
Solution
Y _ i S(35+2)
<0 )_SITJ"{SX (S)} SII”n°]°{(5+1)(s+2)
39. X(5) = —>+4)
(s+D(s+2)(s+3)
Solution
+ _ s°(s+4)
X(07) = fim {sX ()} = Lm{(s+1)(s+2)(s+3)}
40, X(s)=— 32
(Bs+1)(s" +9)
Solution

x(0") = I|m {SX (s)} = { S(s°+2)

(3s+1)(s% +9)

K
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Review Problems
In Problems 1-4 perform the operations and express the result in rectangular form.

@-3j)°
2+ ]
Solution
@-3j)> -8-6j 2-j -22-4j 22 4.
2+j  2+] 2=j 5 5%
1+1]
2j(3-2j)
Solution
1+4j =1+%jx4—6j:6—%j=i_lj
2j(3-2j) 4+6j 4-6j 52 26 78
3. (0.6-0.8j)°
Solution

Since 0.6—0.8j =e %% we have

\b .
(0.6-0.8))° = (e’°'92731 ) =035 _ _0,0758+0.9971j

a+3j)*
GB+j)°
Solution

2490 \* 4
(1+3j)4 ) (\/ﬁel 49 J) J10e*9962 Jio

- _ — /106" %% — 19921 2.4559]
@+ (@eo.szlaj )3 0-9653] i

5. Find all possible values of (—3—% j)lls.

Solution
Let z=-3-2j=25¢2579 sothat r =35 and 6=-2.6779rad. With n=3, Eq. (2.9) yields

3/7=i‘/?[cosg+§k”+jsin9+jk”} , k=012

Substituting for r and @, we find the three roots as
0.9390-1.1656j , 0.5400+1.3961j , —1.4790-0.2305j
6. Find all possible values of /1-0.3] .

Solution
Let z =1-0.3j =1.0440e % 50 that r =1.0440 and & = -0.2915 rad . With n =2, Eq. (2.9) gives

\/_=\/F[0050+22k”+j5in6+22k”} , k=01
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Substituting for r and @, we find the two roots as 1.0109—0.1484j, —1.0109 + 0.1484j .

7. Solve the initial-value problem 3y+y =2t , y(0)=-4.
Solution
Rewrite in standard form as y+%y = %t so that by Eq. (2.12),

yt)y=e"? Uem 2t dt+ c} —e 3 [Ze”g(t -3)+ c] =2(t—3)+ce®

Initial condition gives y(0) =—6-+c =—4 sothat ¢ =2. Therefore, y(t)=2(t—3)+2e"%.

8. Express cost—2sint inthe form Dcos(t+¢) for suitable amplitude D and phase ¢ .

Solution
Expand D cos(t +¢) = Dcostcosg— Dsintsing . Comparing with cost—2sint, we find

D cos ¢ =1 ¢ is in the 1st quadrant
. = tang=2 = ¢=11071rad
Dsing =2

The amplitude is D =+1% +22 =/5 . Therefore cost—2sint = /5 cos(t +1.1071) .

9. Solve the initial-value problem %+ 3% =3e™', x(0) =0, X(0) = 2 using
(a) the method of undetermined coefficients,

(b) Laplace transformation.

Solution

(a) The characteristic equation A2 +31 =0 vyields .. so that Xy (1) = A+ Be~®'. Because the function on the right

side of the ODE matches a homogeneous solution, pick X, = kte™ and insert into the ODE to find —3K =3, hence

K =-1and x, =—te™. Therefore
X(t) = A+Be ¥ —te™

Using the initial conditions, we find A=1 and B=-1, and x(t) =1-e —te™' =1—(t+1)e™".
(b) Taking the Laplace transform of the ODE and using the initial conditions, we arrive at

2s+9
s(s+3)?

SZX(s)—2+3sX(s):i = X(s)=
s+3

By partial-fraction expansion,

2s+9 A B C (A+B)s? +(6A+3B+C)s+9A
X(S)= 2 =—+ + 7 = 7
s(s+3) S s+3 (s+3) s(s+3)

Equating the coefficients of like powers of S yields A=1,B=-1,C =-1 so that

_ _ !
x(s)=1+_l+—12 = x(t)=1-e¥ -t
S s$+3 (s+3)



32

10. Solve the initial-value problem X+ 2% =5(t-1), x(0) =0, x(0) =1.

Solution
Taking the Laplace transform of the ODE and using the initial conditions, we find

1 1

2 =e° =
$X(s)-1+2sX(s)=e” = X(S)_S(s+2)e +s(s+2)

Let G(s) = 1 so that g(t):%( e2) . Then, using the shift on the t — axis, we have
s(s+2)

X(t) = < {G(s)e™ |+ 27 {G(s)} = g(t-Du(t-1) + g 1)
Taking into account the description of g(t) given earlier, we find the solution as
x(t) = %[1_e-2<‘-1>]u(t ~n+la-e?)

11. Find the Laplace transform of the periodic function in Figure 2.16.

Q)

I

I

I

‘ / Sl
0] b 2 7
Figure 2.16 Problem 11.

Solution
The period is P =b. Using the description of f(t), we have

b b

1 _ 1 g a
F(s) = e S f (t)dt = e Ztdt
( ) 1_e—bs 0 () 1_e—bs Z')‘ b
But
b -bs  afe™®™ -1
J’e—stitdt__ae _ ( . )
0 b S bs
Therefore,
—bs
ae a al 1 1
oo ]
s(l—e ) bs s bs e”®-1

12. Find the Laplace transform of the periodic function whose definition in one period is

ft)=t? 0<t<1
Solution
The period is P =1. Using the description of f(t), we have

1 _aS(e2
F(s)= 1 J'e’“tzdtzz e3(s +25+2)
1-e°y s’(1-e7%)

13. Evaluate the convolution u(t—a)*t.



Solution

uﬂ—aﬁ%=jﬁ—rﬂr=%@—02

14. Find the convolution u(t—1)=e™".
Solution

t
ut-1)=e™" = je‘(“f)dr =1-¢*t
1

15. Using partial-fraction expansion, find

25 +1
1
L2 2
{s (4s +1)}
Solution
Partial-fraction expansion results in
28°+1 _ 1 3
s?(4s’+1) s* P41
2
Therefore ¢ % =t-sin(t/2).
s°(4s° +1)
16. Using convolution, find
gﬂ‘l 2s
(s+1)(s* +1)
Solution
Writing the transform function as the product of 2 and ———, and noting that their inverse Laplace transforms

s+1 s°+1
are 2e' and cost , we have

1 2s ‘ —(t-7) —tt T
LH——a—t=]2e cosrdr =2e™ [e cosrdr
0

(s+1)(s* +1)

But

t t

[e” coszdr = [%ef(cow +sin z'):| = %[et (cost +sint) —1}

0 0
Therefore

gt Lz =2 %[et (cost +sint) —l] =cost+sint—e™
(s+1)(s” +1)
17. Consider
1
XO)=—"—3
s(s+1)

(a) Using the final-value theorem, if applicable, evaluate X .
(b) Confirm the result of Part (a) by evaluating lim {x(t)} .
t—owo



Solution
(a) Poles of X (s) are at 0,—1,—1 so that the FVT is applicable:

. . 1
o=l (9] =l

(b) Since x(t) =1—(t+1)e™", we find lim x(t) =1, confirming the earlier result.
t—o

s+0.1
s(s? +0.25+25.01)

18. Repeat Problem 17 for X(s) =

Solution
(a) Poles of X (s) areat 0,-0.1+5j so that the FVT is applicable:

. . s+0.1
X = lim{sX(s)! = lim———————=0.0040
* Ho{ ©} -0 §% +0.25 + 25.01

(b) Using either convolution or partial-fraction expansion, it is readily verified that

X(t) = 0.0040 — 0.0040e %" cos5t +0.02e ™" sin 5t

The steady-state value is then calculated as lim x(t) = 0.0040, confirming Part (a).
t—>o

19. Consider
X(5)=— 3s
2(s“ +0.45+1.04)
(a) Using the initial-value theorem, evaluate x(0).
(b) Confirm the result of Part (a) by evaluating lim {x(t)} .
t—0"
Solution
: : 3s? 3
(@) x(0%) = lim {sX(s)!} = lim ==
@) Hw{ ) s> 2(s® +0.45+1.04) 2
(b) Rewrite
3s 3 s+0.2 1
X(s) = 5 =— >——0. 5
2[(s+o.2) +1] 2| (s+02)%+1  (s+0.2)%+1

Therefore x(t) = %[e‘o'zt cost—0.2e 0% sint] so that lim {x(t)} =3, as asserted.
t—>0"

0.45+0.3

20. Assuming X(s) =
®) 5(3s? +1)

, evaluate x(0") using the initial-value theorem.

Solution

U . s%(0.45+0.3) 0.4
KO = fim (o[ X @ = m = e s
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