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Figure 2.1  A typical open channel flowing at depth, y, with velocity, v. The channel bottom 
shows the datum of the system.
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Figure 2.2  E-y diagram for q = 3 m2/s. The dashed line shows the E = y asymptote.
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Figure 2.3  A family of E-y curves for q = {2, 3, 4, 5} m2/s. Note that the dashed line for 2/3E 
= y crosses each curve at its mimimum energy value.
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Figure 2.4  Specific discharge (q) normalized by the maximum specific discharge (qmax) as it 
varies with depth (y) normalized by a fixed specific energy, E*.
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Figure 2.5  Propagation of shallow waves (ripples) from an object thrown into subcritical, 
critical, and supercritical flows. At v1 (subcritical), some ripples propagate upstream. At v2 = vc 
(critical) the upstream edge of the ripple forms a standing wave at the location of observer. At v3 
(supercritical) all ripples are washed downstream.
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Figure 2.6  A sluice gate introduced to a flow imposes subcritical flow upstream of the gate 
and supercritical flow downstream of the gate. Depths y1 and y2 make up an alternate depth pair.
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Figure 2.7  Definition sketch for flow encountering an upward step of height, Δz.
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Figure 2.8  E-y diagram showing solutions to Example 2.2.
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Figure 2.9  Definition sketch for flow encountering a downward step of height, Δz.
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Figure 2.10  Summary of energy shifts on E-y diagram for Examples 2.2, 2.3, and 2.4.
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Figure 2.11  Screen capture from step.avi animation. Capture shows a step height dz 
that is large enough to act as a choke. Upper subplot shows physical system. Lower subplot 
shows E-y diagram.
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Figure 2.12  Definition sketch for flow encountering a constriction in flow width.
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Figure 2.13  E-y diagram showing solutions to Example 2.5.
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Figure 2.14  Screen capture from constriction.avi animation. Capture shows a con-
striction in width (top subplot) that is severe enough to act as a choke. Middle subplot shows 
flow depth upstream of, within, and downstream of the constriction. Lower left subplot 
shows overall E-y diagram, while lower right subplot shows enlargement of a portion of the 
E-y diagram.
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Figure 2.15  Screen capture from step_transient.avi animation. Capture shows a step 
height of 2 ft, that appears instantaneously at time = 2 hours. Upper subplot shows physical 
system with the right/lower dashed trace showing the initial water surface at the introduc-
tion of the step and right/upper dashed trace shows the final, steady-state water surface. The 
solid trace shows the water surface at the current place in the evolution. Dashed lines on right 
side indicate that both subcritical and supercritical flow are accessible downstream. Lower-left 
subplot shows depth-storage relationship upstream of step with the lowest square marking 
the initial condition, the middle square marking the current condition, and the highest square 
marking the ultimate, steady-state condition. Lower-middle subplot shows the discharge pass-
ing the step as a function of time. Lower-right subplot shows the transient E-y diagram in the 
dashed curve and the ultimate, steady-state E-y diagram in the solid curve.
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Figure 2.16  Mental experiment: A ball is placed at the exact top of a perfectly symmetrical 
hill. Which way does it roll down?
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Figure 2.17  Definition sketch for water surface shapes discussion.

002x017.eps



Courtesy of CRC Press/Taylor & Francis Group

Steep
channel

y
yc

dz/dx = 0

dy/dx < 0

q

Lake

x

Figure 2.18  Flow depth transitioning through critical depth, yc, at the outfall from a lake.

002x018.eps



Courtesy of CRC Press/Taylor & Francis Group

m
1

b

y

B

Figure 2.19  Definition sketch for trapezoidal section geometry.
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Figure 2.20  Definition sketch for a circular section geometry.
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Figure 2.21  Initial programming of spreadsheet for Goal Seek root-finding exer-
cise to determine the alternate depth, y2, in a trapezoidal section that produces a desired 
specific energy.
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Figure 2.22  The Excel “Goal Seek” dialog with entries populated to solve for the 
alternate depth to y1 = 2 m in Example 2.7.
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Figure 2.23  Final programming of spreadsheet for Goal Seek root-finding exercise. Note 
that the depth indicated for y2, approximately 0.62 m, produces an energy of 2.03 m which was 
the goal indicated in the “Goal Seek” dialog shown in Figure 2.22.
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Figure 2.24  Critical depth, yc, in trapezoidal and circular cross-sections.
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Figure 2.25  Critical energy, Ec, in trapezoidal and circular cross-sections.
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Figure 2.26  Flow conditions at lake outlet structure for Examples 2.8a and 2.8b.
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