
Chapter 2

Sequences

2.1 Convergence of Sequences

2. If not then there is an ε > 0 such that the interval (t − ε, t] contains
no element of S. But then t − ε/2 is an upper bound for S, and that
contradicts the hypothesis that t is the least upper bound of S.

3. If the sequence does not converge to α then, for some ε > 0, it is the
case that no element of the sequence enters the interval (α − ε, α+ ε).
But that would imply that no subsequence has a subsequence that
converges to α. Contradiction.

4. First of all notice that the Cauchy criterion can be stated as

lim
N,M→∞

|aN − aM | = 0. (∗)

Indeed, (∗) is equivalent to saying that, for any ε > 0, there exists Nε

such that if N,M > Nε then

|aN − aM | < ε.

Seeking a contradiction suppose that (∗) does not hold for the sequence
in the statement of the exercise. Then there exist {Nj,Mj}∞j=1 such that

|aNj
− aMj

| > δ

for some δ > 0. We can arrange for this double sequence to satisfy

Nj+1 > Mj

11
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for all j. Let k > 1/δ. Then

1 < k · δ < |aN1 − aM1| + |aN2 − aM2|+ · · · +
|aNk

− aMk
|

= |aN1 − aN1+1 + aN1+1 − · · · − aM1| + · · · +
|aNk

− aNk+1 + aNk+1 − · · · − aMk
|

≤ |aN1 − aN1+1| + |aN1+1 − aN1+2| + · · · +
|aM1−1 − aM1| + · · · + |aMk−1 − aMk

|
≤ |aN1 − aN1+1| + · · · + |aMk−1 − aMk

|
≤ 1,

a contradiction.

6. The answer is no. We can even construct a sequence with arbitrarily
long repetitive strings and with subsequences that converges to any real
number α. Indeed, order Q into a sequence {qn}. Consider the following
sequence

{q1, q2, q2, q1, q1, q1, q2, q2, q2, q2, q3, q3, q3, q3, q3, q1, q1, q1, q1, q1, q1, · · · }.

In this way we have repeated each rational number infinitely many
times, and with arbitrarily long strings. From the above sequence we
can find subsequences that converge to any real number.

7. If it is not the case that βj tend to infinity then there is a positive
integer N such that |βj| ≤ N for every j. But then there is a subse-
quence βjk

that converges to some β0 that is less than or equal to N in
absolute value. It follows then that the αj are bounded and they have
a subsubsequence αjk`

that converge to some α0. It follows then that
αjk`

/βjk`
→ α0/β0 = α. So α is rational, and that is a contradiction.

10. Write

Tan−1(1) =

∫ 1

0

1

1 + t2
dt

or
π

4
=

∫ 1

0

1

1 + t2
dt .
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Now we may approximate the integral on the right by the Riemann
sum

k∑

j=1

1

1 + [j/k]2
· 1

k
.

2.2 Subsequences

1. Clearly any increasing sequence {aj} that is bounded above is bounded.
By Bolzano-Weierstrass it has a convergent subsequence {ajk

}. But
the same argument shows that any subsequence has a convergent sub-
sequence with the same limit α. By Exercise 3 of the last section, the
full sequence converges to α. In fact α is simply the least upper bound
of the sequence.

3. For any positive integer set

φ(n) = n− kπ,

where k is the (unique) integer such that

kπ < n < (k + 1)π.

By the pigeonhole principle, the set of all φ(n) will contain arbitrarily
small elements. So {φ(n)} is dense in [0, π].

By calculus we know that cos x is one-to-one on [0, π] with values in
[−1, 1]. Let cos−1 be the inverse. For α ∈ [−1, 1] we have cos−1 α ∈
[0, π]. Thus there exists a sequence

φ(jk) −→ cos−1 α as k → ∞.

By the continuity of the cosine function,

cos(jk) = cos(φ(jk)) −→ α as k → ∞ .

4. This problem is equivalent to Exercise 3 above.

6. Certainly Proposition 2.13 shows that the bj converge to some limit β
(see also Exercise 1 above). But the limit of the bj is also the lim inf of
the original sequence aj. It follows then that there is a subsequence of
the aj that converges to β.
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7. Let q1, q2, . . . be an enumeration of the rational numbers. Now consider
the sequence

q1, q1, q2, q1, q2, q3, q1, q2, q3, q4, . . . . (∗)
If α is any real number, then let r1, r2, . . . be a sequence of rationals
that converges to α (say the decimal expansion of α). Then we may
find a subsequence of (∗) that is identical to r1, r2, . . . . That does the
job.

9. If instead {aj} converges then {aj} is bounded. This contradicts the
property of having a subsequence that diverges to ±∞.

2.3 Limsup and Liminf

1. Consider the sequence

0, 1, 2, 3,
1

2
,
1

3
,
1

4
, . . . .

The the supremum of this set of numbers is 3, while the limsup is 0. A
similar example applies to the inf and liminf.

2. Let α ≡ lim sup aj and β ≡ lim inf aj. Let Aj = sup{aj, aj+1, aj+2, . . .}
and Bj = inf{aj, aj+1, aj+2, . . . }. Then

sup{1/aj , 1/aj+1, 1/aj+2, · · · } = 1/ inf{aj, aj+1, aj+2, · · · }
= 1/Bj .

Thus lim sup 1/aj = 1/β.

Analogously one shows that lim infj→∞ 1/aj = 1/α.

4. We write
(| sin j|)sin j = esin j log | sin j|.

Now we look at the function

f(x) = x log |x|

when x ∈ [−1, 1]. We have

f ′(x) = log |x|+ 1.
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Thus f has a maximun when x = −e−1 and a minimum when x = e−1.
Moreover

f(−e−1) = e−1

and
f(e−1) = −e−1.

We know that {sin j} is dense in [−1, 1]. Thus there exist sequences
{jk} and {j`} such that sin jk → 1/e and sin j` → −1/e. Then

lim sup
j→∞

| sin j|sin j = e1/e

and
lim inf

j→∞
| sin j|sin j = e−1/e .

6. Let α = lim inf aj = lim sup aj. Seeking a contradiction suppose that
{aj} does not converge. Then there exist ε > 0 and a subsequence
{ajk

} such that for all k
|ajk

− α| > ε.

Let β = lim sup ajk
( 6= α) and ajk`

be a subsequence such that lim`→∞ ajk`
=

β. But {ajk`
} is a subsequence of the original sequence. By Corollary

2.33,
lim inf aj ≤ lim

`→∞
ajk`

≤ lim supaj

and by the Pinching Principle

lim
`→∞

ajkl
= α.

This contradiction shows that {aj} converges to α.

7. Let
αj = b− 1/2j if j is even

and
αj = a + 1/2j if jis odd .

Then it is clear that the limsup is b and the liminf is a.

8. The complex numbers cannot be ordered (see Exercise 8 in Section 1.2).
So the concepts of limsup and liminf make no sense.
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9. Consider the sequence {aj + bj} ≡ {cj}. Let α = lim supj→∞ aj , β =
lim supj→∞ bj and γ = lim supj→∞ cj. Then there exist subsequences
{ajk

}, {bjl
}, and {cjm} such that

α = lim
k→∞

ajk
,

β = lim
l→∞

bjl
,

γ = lim
m→∞

cjm.

Then

γ = lim
m→∞

ajm + bjm

= lim sup
m→∞

ajm + lim sup
m→∞

bjm

≤ α+ β.

It can be proved in the same fashion that

lim inf(aj + bj) ≥ lim inf aj + lim inf bj.

When dealing with lim sup(aj · bj) we have to be careful of the signs.
If aj and bj are all non-negative numbers, then

lim sup(aj · bj) = lim
k→∞

(ajk
· bjk

)

= lim
k→∞

ajk
· lim

k→∞
bjk

≤ α · β.

Notice that in the inequality we have used that fact that all the quan-
tities involved are non-negative (x1 < y1 and x2 < y2 implies x1 · x2 ≤
y1 · y2 only if x1, x2, y1, y2 are non-negative). Using this comment, it
is easy to construct sequences {aj} and {bj} of negative numbers for
which

lim sup(aj · bj) > lim sup aj · lim sup bj.



2.4. SOME SPECIAL SEQUENCES 17

2.4 Some Special Sequences

1. Let r = p/q = m/n be two representations of the rational number r.
Recall that for any real α, the number αr is defined as the real number
β for which

αm = βn.

Let β ′ satisfy

αp = β ′q.

We want to show that β = β ′. we have

βn·q = αm·q

= αp·n

= β ′q·n.

By the uniqueness of the (n · q)th root of a real number it follows that

β = β ′,

proving the desired equality. The second equality follows in the same
way. Let

α = γn.

Then

αm = γn·m.

Therefore, if we take the nth root on both sides of the above inequality,
we obtain

γm = (αm)1/n.

Recall that γ is the nth root of α. Then we find that

(α1/n)m = (αm)1/n.

Using similar arguments, one can show that for all real numbers α and
β and q ∈ Q

(α · β)q = αq · βq.
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Finally, let α, β, and γ be positive real numbers. Then

(α · β)γ = sup{(α · β)q : q ∈ Q, q ≤ γ}
= sup{αqβq : q ∈ Q, q ≤ γ}
= sup{αq : q ∈ Q, q ≤ γ} · sup{βq : q ∈ Q, q ≤ γ}
= αγ · βγ.

2. It suffices to notice that, for any fixed x,

lim
j→∞

(
1 +

x

j

)j

= lim
j→∞

{(
1 +

x

j

)j/x
}x

=

{
lim

j/x→∞

{
1 +

x

j

}j/x
}x

= ex.

4. Write

jj

(2j)!
=

j · · · j
1 · · · j · j + 1 · · · 2j

≤ 1

1 · · · j
=

1

j!
.

Then

lim
j→∞

jj

(2j)!
≤ lim

j→∞

1

j!
= 0.

6. We write F (x) = a0 + a1x+ a2x
2 + · · · . Here the aj’s are the terms of

the Fibonacci sequence and the letter x denotes an unspecified variable.
What is curious here is that we do not care about what x is. We intend
to manipulate the function F in such a fashion that we will be able to
solve for the coefficients aj. Just think of F (x) as a polynomial with a
lot of coefficients.
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Notice that

xF (x) = a0x+ a1x
2 + a2x

3 + a3x
4 + · · ·

and
x2F (x) = a0x

2 + a1x
3 + a2x

4 + a3x
5 + · · · .

Thus, grouping like powers of x, we see that

F (x)− xF (x)− x2F (x)

= a0 + (a1 − a0)x+ (a2 − a1 − a0)x
2

+(a3 − a2 − a1)x
3 + (a4 − a3 − a2)x

4 + · · · .

But the basic property that defines the Fibonacci sequence is that
a2 − a1 − a0 = 0, a3 − a2 − a1 = 0, etc. Thus our equation simplifies
drastically to

F (x)− xF (x)− x2F (x) = a0 + (a1 − a0)x.

We also know that a0 = a1 = 1. Thus the equation becomes

(1 − x− x2)F (x) = 1

or

F (x) =
1

1 − x− x2
. (∗)

It is convenient to factor the denominator as follows:

F (x) =
1[

1 − −2
1−

√
5
x
]
·
[
1 − −2

1+
√

5
x
]

(just simplify the right hand side to see that it equals (∗).
A little more algebraic manipulation yields that

F (x) =
5 +

√
5

10

[
1

1 + 2
1−

√
5
x

]
+

5 −
√

5

10

[
1

1 + 2
1+

√
5
x

]
.

Now we want to apply the formula for the sum of a geometric series to
each of the fractions in brackets ([ ]). For the first fraction, we think
of − 2

1−
√

5
x as λ. Thus the first expression in brackets equals

∞∑

j=0

(
− 2

1 −
√

5
x

)j

.
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Likewise the second sum equals

∞∑

j=0

(
− 2

1 +
√

5
x

)j

.

All told, we find that

F (x) =
5 +

√
5

10

∞∑

j=0

(
− 2

1 −
√

5
x

)j

+
5 −

√
5

10

∞∑

j=0

(
− 2

1 +
√

5
x

)j

.

Grouping terms with like powers of x, we finally conclude that

F (x) =
∞∑

j=0

[
5 +

√
5

10

(
− 2

1 −
√

5
x

)j

+
5 −

√
5

10

(
− 2

1 +
√

5
x

)j
]
xj.

But we began our solution of this problem with the formula

F (x) = a0 + a1x+ a2x
2 + · · · .

The two different formulas for F (x) must agree. In particular, the
coefficients of the different powers of x must match up. We conclude
that

aj =
5 +

√
5

10

(
− 2

1 −
√

5

)j

+
5 −

√
5

10

(
− 2

1 +
√

5

)j

.

We rewrite

5 +
√

5

10
=

1√
5
· 1 +

√
5

2

5 −
√

5

10
= − 1√

5
· 1 −

√
5

2

and

− 2

1 −
√

5
=

1 +
√

5

2
− 2

1 +
√

5
=

1 −
√

5

2
.

Making these four substitutions into our formula for aj, and doing a
few algebraic simplifications, yields

aj =

(
1+

√
5

2

)j

−
(

1−
√

5
2

)j

√
5

as desired.
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9. We see that

(ab)c = sup{(ab)γ : γ < c and γ rational}

= sup{(sup{aβ : β < b and β rational})γ : γ < c and γ rational}
= sup{aβγ : β < b and β rational, γ < c and γ rational} .

But this last is abc.

The proof of the other identity is similar.


