
Courtesy of CRC Press/Taylor & Francis Group

002x001.eps

f1(x – υ0t1) f2(x+ υ0t1)

f2(x + υ0t2)

t = t1

(a) (b)

t = –t1

t = –t2

xx

x

t1 – t2

t = t2

t2 – t1

f1(x – υ0t2)

Figure 2.1
Two forms of wave. (a) Forward wave. (b) Backward wave.
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Figure 2.2
Wave in lossless media. (a) Travelling wave. (b) Standing wave.
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Figure 2.3
Travelling waves in lossy media.
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Figure 2.4
Dielectrics and conductors.
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Figure 2.5
Linear polarisation.
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If an envelope is traced by joining the tips of rotating vectors the resultant will appear to be a circle

Figure 2.6
Circular polarisation.



Courtesy of CRC Press/Taylor & Francis Group

002x007.eps

Ex

Ex

x

x

Ey

T/4
T/8 3T/8 5T/8 7T/8

T/2 T t3T/2

Ey

y

y

0

0

0

φ = 45°

φ = 225°

z

z

t = 0 T/8 T/4 T/23T/4 5T/8 3T/2 7T/8 T

t = 0 T/8 T/4 T/23T/4 5T/8 3T/2 7T/8 T

|Ex| = |Ey| E =   Ex
2 + Ey

2

Magnitude and angular orientation of vector E,
at different time instants

If an envelope is traced joining the tips of these rotating vectors the
resultant will appear to be an ellipse (shown by dotted lines)

Figure 2.7
Elliptical polarisation.
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Figure 2.8
Components of Poynting vector.
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Figure 2.9
Direction cosines, wavelength and phase velocity. (a) Direction cosines. (b) Wavelength and 
velocity components.
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Figure 2.10
Classification of cases of reflection.



Courtesy of CRC Press/Taylor & Francis Group

002x011.eps

E perpendicular to
plane of incidence

E parallel to
plane of incidence

E coming out

E going in

Medium-2

Medium-1Plane of incidence

Boundary surface

Figure 2.11
Illustration of E-field on the plane of incidence.
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Figure 2.12
Normal incidence—perfect conductor.
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Figure 2.13
Standing waves for (a) E and (b) H fields.
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Figure 2.14
Normal incidence—perfect dielectric.
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Figure 2.15
Illustration of two forms of polarisation. (a) Perpendicular or horizontal polarisation. (b) 
Parallel or vertical polarisation.
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Figure 2.16
Perpendicular polarisation case. (a) Orientation of E and H field. (b) Resulting standing wave 
pattern along z-axis.
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Figure 2.17
E in parallel polarisation.
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Figure 2.18
Incident, reflected and transmitted rays in case of oblique incident.
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Figure 2.19
Configuration of two parallel planes.
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Figure 2.20
Field configuration for TE1,0 mode. (a) Field distribution in x–z plane. (b) Field distribution in 
x–y plane.
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Figure 2.21
Field configuration for TM1,0 mode. (a) Field distribution in x–z plane. (b) Field distribution in 
x–y plane.
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Figure 2.22
Field distribution for TEM wave. (a) In x–z plane. (b) In y–z plane. (c) In x–y plane.
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Figure 2.23
Zig-zag paths and field components of (a) TE and (b) TM waves.
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Figure 2.24
Variation of impedances with frequency.
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Figure 2.25
Variation of attenuation with frequency.
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Figure 2.26
Configuration of transmission line and field distribution.
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Figure 2.27
Circuit representation of transmission line.
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Figure 2.28
Voltage and current distribution for different terminations. (a) Line short circuited. (b) Line 
open circuited. (c) Line terminated in characteristic impedance. (d) Terminated impedance is 
not equal to characteristic impedance.
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Figure 2.29
Voltage and current distributions for termination in complex impedance Z = R ± X. (a) Z is 
located at x = 0, (b) Z is replaced by R at a distance L1 from termination, (c) X is inductive and 
(d) X is capacitive.
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Figure 2.30
Resonance phenomenon. (a) Quarter-wave section and (b) voltage buildup.
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Figure 2.31
Line sections with equivalent elements for different lengths and terminations.
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Figure 2.32
Circuit elements for different electrical lengths and terminations. (a) Short-circuited lines. 
(b) Open-circuited lines.



Courtesy of CRC Press/Taylor & Francis Group

002x033.eps

SC
x

– x
λ/4

OC
Vx

XLXC
Vs

Rx

Rs

λ
4

Figure 2.33
Transmission line as a tuned circuit.
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Figure 2.34
Impedance transformation.
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Figure 2.35
Suppression of (a) third harmonic and (b) even harmonics.
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Figure 2.36
Single-stub matching.
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Figure 2.37
Double stub matching.
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Figure 2.38
Coaxial cable. (a) Geometry, (b) cross section, (c) TEM mode and (d) TE11 mode.
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Figure 2.39
End views and field distributions. (a) Two-wire Tx line. (b) Coaxial cable.
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Figure 2.40
Relative spacing in coaxial cable and circular waveguide. (a) Coaxial cable. (b) Circular 
waveguide.


