
Electomagnetic Waves and Materials
Week 2

Instructor:
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What will be covered today

• Uniform plane waves

• Good conductor approximation

• Skin effect

• Boundary condition between PEC and 
dielectric medium

• AC resistance of round wires

• Bounded transmission line
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Uniform plane waves
What is a sourceless medium:

v = 0 and

Jsource = 0

. . . . . . (2.1)

. . . (2.2)

. . . . . . (2.3)

. . . . . . (2.4)
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r r One-dimensional solution for a simple lossy medium with parameters
in Cartesian coordinates :
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Uniform plane waves
The characteristic impedance is also  complex

. . . . . . (2.5)

. . . (2.6)

. . . . . . (2.7)

. . . . . . (2.8)
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Define:

where loss tangent T is defined as
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where, 
 is the attenuation constant (Np/m) 
 is the phase constant (rad/m),

which can be obtained by solving the equation (2.4), 
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Uniform plane waves

For a low-loss dielectric, the loss tangent  T << 1 and

. . . . . . (2.9)

. . . . . . (2.10)

. . . . . . (2.11)
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Good conductor approximation

Definition for good conductor

. . . . . . (2.12)

. . . . . . (2.13)

6

1T 

1,
1




 Tf

1,54
2




 T

sZ






2
)1( jjXRZ sss

 is called the skin depth. The characteristic impedance      or surface impedance 

. . . . . . (2.14)

We can get



Skin effect
When waves go through the good conductor, they will be attenuated exponentially as

. . . . . . (2.15)

. . . . . . (2.16)
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For DC, f = 0, current density is uniform inside the good conductor

. . . . . . (2.17)

where

)/cos(),( /
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00 EJ 

for the time-harmonic AC case (f  0), we define skin depth

 f/1

• The amplitude of the current density drops to e-1 (38.8%) for a distance of . 

• It will drop to zero (practically) for a distance of 4.

• At high frequencies the current is practically confined to the skin of the conductor 

and the phenomenon is hence described as skin effect.



B.C. between PEC and dielectric medium
For a perfect conductor,  =  =>  = 0, we can get E = 0 Inside the conductor

. . . . . . (2.19)
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. . . . . . (2.20)

If medium 1 is a perfect conductor and medium 2 is a dielectric, 
we can get the boundary conditions as

sn  212
ˆ D

0ˆ
212 Bn

0ˆ
212 En

KH  212n̂

. . . . . . (2.21)

. . . . . . (2.22)

n̂ is the normal unit vector on the boundary.



B.C. between PEC and dielectric medium
Since E = 0 Inside the conductor, we get: (2.24) and (2.26) see problem P2.2 

. . . . . . (2.13)
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. . . . . . (2.24)

. . . . . . (2.25)

. . . . . . (2.26)

0tE

0




n

En

0nH

0




n

H t

n is the normal direction and t is the tangential direction.



AC resistance

For an infinitely deep good conductor of conductivity  defined by the half-space 0 < x < , 

shown in the figure, E and H can be expressed as in next slide:
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AC resistance
E and H inside half-space conductor

. . . . . . (2.27)
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. . . . . . (2.28)

. . . . . . (2.29)

. . . . . . (2.30)
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AC resistance

Total phasor current entering the conductor of width b

. . . . . . (2.33)

12

. . . . . . (2.35)

. . . . . . (2.32)

. . . . . . (2.36)

Define an AC equivalent resistance which consumes the same power  as

After integrating, substituting the limits and transferring to time domain, we get
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AC resistance

When AC waves go through an infinitely deep good conductor of conductivity  defined by 

the half-space 0 < x < , shown in the figure 2.1, the equivalent DC conductor has d depth.
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. . . . . . (2.38)

Finally, we get the AC equivalent resistance
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AC resistance of round wires

The AC resistance of a round wire of 

radius a and length l.
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Transmission lines
A transmission line is modeled by distributed circuit theory,
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where, 

R’: The resistance due to imperfect conductors

L’: The inductance due to magnetic flux generated by the currents in the 

conductors

G’: The conductance due to an imperfect dielectric

C’: The capacitance due to the surface charges on the conductors

V(z,t) V(z+z,t)

I(z,t) Rz Lz

CzGz

I(z+z,t)

z



Transmission lines
The parameters are computed as though the fields are static. For a coaxial cable shown (slide 

14), the parameters are
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. . . . . . (2.42)

. . . . . . (2.43)

. . . . . . (2.44)

. . . . . . (2.45)
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Transmission lines
L’ including the correction due to the internal inductance (inductance due to the magnetic flux in 

the conductors) is given
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. . . . . . (2.46)

. . . . . . (2.48)

. . . . . . (2.49)

where

For a two-port network shown in Figure 2.4, the following equations can be obtained
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Transmission lines
For a the lossless transmission line 
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. . . . . . (2.52)

. . . . . . (2.54)

. . . . . . (2.57)

where

If the source is harmonic

where
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Transmission lines
The relation between the voltages and the current

19

. . . . . . (2.58)

. . . . . . (2.62)

where
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Bounded Transmission lines
For a bounded transmission line,
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where, 

d: transmission line of length

Vg: Voltage source 

Zg: internal impedance 

ZL: External load
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Bounded Transmission lines
The voltages and the current
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. . . . . . (2.63)

. . . . . . (2.66)

where

Defined 0 as the reflection coefficient at the load

. . . . . . (2.64)
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By substituting (2.66) in (2.65), the input impedance can be obtained
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Bounded Transmission lines: see 
Apendices 2B and 2C for Smith Chart etc.

From 2.67, we get input impedance for special length
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. . . . . . (2.68)

. . . . . . (2.71)

Two special cases

For a matched line, ZL = Z0 , 0 = 0

. . . . . . (2.69)

. . . . . . (2.70)
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A lossfree nonuniform transmission line  has 

L’ = L’(z)
C’ = C’(z)
where L’ and C’ are per meter values of the series inductance and 
parallel capacitance of the transmission line.

Determine the partial differential equation  for the instantaneous 
voltage V(z,t).
For an exponential transmission line
L’(z ) = L0 exp(qz)
C’(z) = C0 exp( - qz),

assuming V(z,t) = V0 exp [j(wt – kz)],
determine the relation between w and k.  

Question (for answer and additional information read Appendix 2D


