Electomagnetic Waves and Materials
Week 2



What will be covered today

Uniform plane waves
Good conductor approximation
Skin effect

Boundary condition between PEC and
dielectric medium

AC resistance of round wires
Bounded transmission line



Uniform plane waves

What is a sourceless medium:
p,=0and
J =0

source

One-dimensional solution for a simple lossy medium with parameters & Hr c

in Cartesian coordinates :

E,=H,=0
nH=2xE

e+jkz
E=E,

e—jkz

where
k2 2 :
= UE — ja),uc

IS complex.



Uniform plane waves

The characteristic impedance is also complex

0 z( jou jm ...... (2.5)
o+ jog
Define: k = B — ja

where,
a is the attenuation constant (Np/m)
B is the phase constant (rad/m),
which can be obtained by solving the equation (2.4),

a=w@{%[ﬁ—l]}m .. (2.6)
N e e 2

where loss tangent T is defined as

T-S (2.8)

e



Uniform plane waves

For a low-loss dielectric, the loss tangent T << 1 and

ocz% ule, T<<1l ... (2.9)



Good conductor approximation

Definition for good conductor

T>>1
We can get
asz\/nqu=%, T>1 .. (2.12)
n= %4450, T>1 ... (2.13)
c

d is called the skin depth. The characteristic impedancez, or surface impedance



Skin effect

When waves go through the good conductor, they will be attenuated exponentially as

E(z,t)=Ee *°cos(wt—2/8) - (2.15)
J(z,t)=J,e "’ cos(wt—2/8) - (2.16)

where
J,=0E, .. (2.17)

For DC, f = 0, current density is uniform inside the good conductor

for the time-harmonic AC case (f # 0), we define skin depth

0=1/\nfuc

e The amplitude of the current density drops to e1 (38.8%) for a distance of 3.
» It will drop to zero (practically) for a distance of 4.

» At high frequencies the current is practically confined to the skin of the conductor

and the phenomenon is hence described as skin effect.



B.C. between PEC and dielectric medium

For a perfect conductor, c = o => 3 = 0, we can get E = 0 Inside the conductor

If medium 1 is a perfect conductor and medium 2 is a dielectric,
we can get the boundary conditions as

n,-D,=p, ... (2.19)
A,-B,=0 ... (2.20)
ﬁlZ xE, =0 ... (2.21)
ﬁlZXHZZK ...... (2.22)

A is the normal unit vector on the boundary.



B.C. between PEC and dielectric medium

Since E = 0 Inside the conductor, we get: (2.24) and (2.26) see problem P2.2

E=0 ... (2.13)

o, =0 ... (2.24)
on

|_|n -0 (2.25)
oH, 0 (2.26)
on

n is the normal direction and t is the tangential direction.



AC resistance

X

\

For an infinitely deep good conductor of conductivity o defined by the half-space 0 < x < o,

shown in the figure, E and H can be expressed as in next slide:
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AC resistance

E and H inside half-space conductor

E(X) _ 2E0e—x/6—jx/6

~ e OO0 /s —ix/5.—i45°
H(X) =—yE0—e x/6e Jx/éSe j45

V2

Real parts of the fields are

E(x,t) = 2E,e°cos(mt —g)

H(x,t) = YE, XISCOS(mt—§—45°)

f

The time averaged power density

(S) =% - Ez—e‘zx’8 c0s45° = xél1 Elode™°

e



AC resistance

Total power entering the conductor of width b and length | is given by

1

P=(S) bl= 7 EjoSbl T

Total phasor current entering the conductor of width b

I=[[3-ds=[[oE ds=[ [ "cEe ™ dxdy .....

After integrating, substituting the limits and transferring to time domain, we get
oE,bd
(t) =
J2

Define an AC equivalent resistance which consumes the same power as

T2
RMS RAC — POWEF ConsumEd = P

~ oE,bd

where laus =——

5 Is the AC RMS equivalent current.

cos(mt—45%°) e



AC resistance

Finally, we get the AC equivalent resistance
P (2.38)
Rac =
chd

When AC waves go through an infinitely deep good conductor of conductivity o defined by

the half-space 0 < x < o, shown in the figure 2.1, the equivalent DC conductor has & depth.

<
<

\

\ J

I 5 | uniform

distribution
GC

nonuniform
distribution




AC resistance of round wires

1. 6>>a, we get

The AC resistance of a round wire of

radius a and length I.



Transmission lines

A transmission line is modeled by distributed circuit theory,

I(z,t) R'Az L'Az [(z+Az,1)

>/ NVNVNV——0000" Q
A A

V(z,t) G'Az CAz — V(z+Az,t)

<

Vg—

\J

“O

Az
where,

R’: The resistance due to imperfect conductors

L: The inductance due to magnetic flux generated by the currents in the
conductors

G’: The conductance due to an imperfect dielectric

C’: The capacitance due to the surface charges on the conductors



Transmission lines

The parameters are computed as though the fields are static. For a coaxial cable shown (slide

14), the parameters are

G- 2re (2.42)
In(b/a)

U= Yoy L. (2.43)
2T

o 2mE (2.44)
In(b/a)

For high frequencies, 6 << a

, 1 1
R' = b e
{27’56083 2n608b}



Transmission lines

L’ including the correction due to the internal inductance (inductance due to the magnetic flux in

the conductors) is given

Ll — iln(b/a) + L” ...... (2-46)
21

where olL"=R

For a two-port network shown in Figure 2.4, the following equations can be obtained

V(z,t)-V(z+Az,t) = R'Azl (z,t) + L'Az ozt ... (2.48)
When Az -> 0
_oV(z,Y) _RI(z) + L,al (z,¢y L. (2.49)
0z ot
Similarly
ol (z,1) :G\/(Z,_t)JrC'aV(Z’t) ...... (2.51)

0z ot



Transmission lines

For a the lossless transmission line
oV 10V
o0z v? ot

1

where V= m
If the source is harmonic

o

00 R=G'=0 ...

+ 2\7 :0 ......
0z° P
where Bzg
\Y

Solution

V=VSe v e



Transmission lines

The relation between the voltages and the current
Parameters Comparison between

e = (2.58) TEM wave and transmission
V=2,
TEM wave Transmission wave
/I =——_7 1" ... 2.59
V™ =-Z, (2.59) - y
' ' H |
where ZOZ«/L/C
€ C
For a lossy transmission line, we get L
1l

, _ |Rtjol” (2.62) i %o
° VG'+ joC’ B=oyne B=w/LC'



Bounded Transmission lines

For a bounded transmission line,

T A d C
g n: >
B’ Zo N A
IL
Zg
Z(d) 2, I%:I v =V,
V2 A
Vg
B D
o O

where,
d: transmission line of length
V,: Voltage source
Z,: internal impedance

Z,: External load



Bounded Transmission lines

The voltages and the current

V)=V e yve e (2.63)
~ 1 [+, ~
@)= pe Ve (2.64)
0
where
V (d) {1+r eizﬁd}
Zd)=—=-"=Z ezl I (2.65)
1 (d) °|1-T,e 2
Defined I, as the reflection coefficient at the load
1_, :\{to_ _ ZL _ZO ...... (2.66)
VARV N3

By substituting (2.66) in (2.65), the input impedance can be obtained

Z, cosBd + jZ,sin3d
°z.cospd +jzZ sinpd e (2.67)

Z(d)=2



Bounded Transmission lines: see
Apendices 2B and 2C for Smith Chart etc.

From 2.67, we get input impedance for special length

Z\I4y=2z1z, L. (2.68)
ZW2)y=2 (2.69)
Z(d)=ZL,%<<1 ...... (2.70)

For a matched line, Z, = Z,, I, =0

Zd)y=2. .. (2.71)

Two special cases
Z(d) = jZ,tanpd, (Z, =0)

Z(d)=—-jZ,cotpBd, (Z, =x)

22



Question (for answer and additional information read Appendix 2D

A lossfree nonuniform transmission line has

L' =L(z)

C’'=C'(z2)

where L' and C’ are per meter values of the series inductance and
parallel capacitance of the transmission line.

Determine the partial differential equation for the instantaneous
voltage V(z,t).

For an exponential transmission line

L'(z ) = L, exp(qz)

C’'(2) = Cy exp( - q2),

assuming V(z,t) = V, exp [j(wt —kz)],
determine the relation between w and k.



