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@ Develop the notion of a continuous-time system.

@ Learn simplifying assumptions made in the analysis of systems. Discuss the
concepts of linearity and time-invariance, and their significance.

@ Explore the use of differential equations for representing continuous-time systems.

@ Develop methods for solving differential equations to compute the output signal
of a system in response to a specified input signal.

@ Learn to represent a differential equation in the form of a block diagram that can
be used as the basis for simulating a system.

@ Discuss the significance of the impulse response as an alternative description form
for linear and time-invariant systems.

@ Learn how to compute the output signal for a linear and time-invariant system
using convolution.

@ Learn the concepts of causality and stability as they relate to physically realizable
and usable systems.
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Introduction

In general, a system is any physical entity that takes in a set of one or more physical
signals and, in response, produces a new set of one or more physical signals.

A system can be viewed as any
physical entity that defines the
cause-effect relationships between a
x(t) y(t) set of signals known as inputs and
another set of signals known as
outputs.

Mathematical modeling

The mathematical model of a system is a function, formula or algorithm (or a set of
functions, formulas, algorithms) to approximately recreate the same cause-effect
relationship between the mathematical models of the input and the output signals.




Some examples:

x(t) o

y(t) = Sys {z(t)}

y(t) = Ke()

y(t)zz(t_T)
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Chapter 2
Linearity and Time-Invariance

Linearity in continuous-time systems

Conditions for linearity

Sys{z1 (t) + 22 (t)} = Sys {z1 (¢)} + Sys {2 (¢)}

Sys{a1 z1 (t)} = o1 Sys{z1 (¢)}

z1 (), z2 (t): Any two input signals; a1 Arbitrary constant gain factor.

v
Superposition principle (combine the two conditions into one)

Sys {a1 z1 (t) + a2 z2 ()} = a1 Sys{z1 (t)} + a2 Sys{z2 ()}

z1 (t), @2 (t): Any two input signals; a1, ag: Arbitrary constant gain factors.

(e} o
() —D—l ) —{syst 3 —>

GO—=|sys{.-} y(t) = H— )

aalt) — 1> e




Chapter 2
Linearity and Time-Invariance

Linearity in continuous-time systems (continued)

If superposition works for the weighted sum of any two input signals, it also works for
an arbitrary number of input signals.

N
Z a; z; (t) Z a; Sys{zi(t Z o yi (t
=1

(1) $; y(t)

(1)
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Example 2.1

Testing linearity of continuous-time
systems

Four different systems are described
below. For each, determine if the system
is linear or not:

a. y(t)=5z(t)

b. y(t)=5z(t)+3
¢ y(t)=3 @)
d.  y(t) =cos(z(t))
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systems

Four different systems are described
below. For each, determine if the system

is linear or not:

a. y(t)=5z(t)

b. y(t)=5z(t)+3
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d.  y(t) =cos(z(t))

Solution:
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y(t) =5z (t)
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Example 2.1

Testing linearity of continuous-time
systems

Four different systems are described
below. For each, determine if the system

is linear or not:

a. y(t)=5z(t)

b. y(t)=5z(t)+3

¢ y(t)=3 @)

d.  y(t) =cos(z(t))
b.

y(t) =5z (t)+3

:5a1m1(t)+5a2m2(t)+3

Superposition principle does not hold

true. The system in part (b) is not
linear.

Solution:

a.

y(t) =5z ()
=5 [a1 z1 (t) + a2 z2 (t)]
=a1 [5z1(t)] + a2 [Bz2(2)]
=a1y1 (t) + a2 y2 (¢)

Superposition principle holds; therefore
this system is linear.
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Example 2.1

Testing linearity of continuous-time
systems

Four different systems are described
below. For each, determine if the system
is linear or not:

a. y(t)=5z(t)

b. y(t)=5z(t)+3

¢ y(t)=3 @)

d.  y(t) =cos(z(t))
b.

y(t) =5z (t)+3
=ba1 z1 (t) +5azz2 (t) +3
Superposition principle does not hold

true. The system in part (b) is not
linear.

Solution:

a.
y(t) =5z (¢)
=5 [al 1 (t) + az T2 (t)]
=a1 Bz (¢)] + a2 [5z2 (8)]
=a1 y1 (t) + a2 y2 (¢)

Superposition principle holds; therefore
this system is linear.

c.
y(t) =3 a1 21 (t) + az 22 (1))
=3a? [z1 (¢)]2 + 6arcazy () 22 (2)
+ 302 [ea (8))°

Superposition principle does not hold
true. The system in part (c) is not
linear.



y(t) =cos|ar z1 (t) + azz2 (t)]

Superposition principle does not hold true. The system in part (d) is not linear.

> MATLAB Exercise 2.1
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Chapter 2
Linearity and Time-Invariance

Time-invariance in continuous-time systems

Condition for time-invariance

Sys{z (t)} =y (t) impliesthat Sys{z(t—7)}=y(t—7)

0 y(t)
a(t—71) ot =)
i o Lot L
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Linearity and Time-Invariance

Time-invariance in continuous-time systems (continued)

Alternatively, time invariance can be explained by the equivalence of the two system

configurations shown:
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Linearity and Time-Invariance

Example 2.2

Testing time-invariance of continuous-time systems

Three different systems are described below. For each, determine if the system is
time-invariant or not:

a. y(t)=5z(¢)
b. y(t) =3 cos(z(t))
c.  y(t)=3cos(t) z(t)




Chapter 2
Linearity and Time-Invariance

Example 2.2

Testing time-invariance of continuous-time systems

Three different systems are described below. For each, determine if the system is
time-invariant or not:

a. y(t)=5z(¢)
b. y(t) =3 cos(z(t))
c.  y(t)=3cos(t) z(t)

Solution:

a. Sys{fz(t—7)}=5z(t—T7)=y(t—7) Time-invariant.
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Example 2.2

Testing time-invariance of continuous-time systems

Three different systems are described below. For each, determine if the system is
time-invariant or not:

a. y(t)=5z(¢)
b. y(t) =3 cos(z(t))
c.  y(t)=3cos(t) z(t)

Solution:
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Linearity and Time-Invariance

Example 2.2

Testing time-invariance of continuous-time systems

Three different systems are described below. For each, determine if the system is
time-invariant or not:

a. y(t)=5z(¢)
b. y(t) =3 cos(z(t))
c.  y(t)=3cos(t) z(t)

Solution:

a. Sys{fz(t—7)}=5z(t—T7)=y(t—7) Time-invariant.

b. Sys{z(t—7)}=3cos(z(t—7))=y(t—7) Time-invariant.

c. Sys{z(t—T7)}=3cos(t)z(t—7)#y(t—T) Not time-invariant.

» MATLAB Exercise 2.2
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Linearity and Time-Invariance

Example 2.3

Using linearity property

A continuous-time system is known to be linear. Whether the system is time-invariant
or not is not known. Assume that the responses of the system to four input signals
z1 (), z2 (t) z3 (t) and z4 (t) shown below are known. Discuss how the information
provided can be used for finding the response of this system to the signal z (¢) shown.

w1(t)

1




1.5

2.5

T

Solution:

z(t) =0.6z2(t) + 0.8z4 (t)

=

y(t)

y(t) =0.6y2 () + 0.8ya (t)
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Diff ial E for C Time

Differential equations for continuous-time systems

Example:
d2y
dt?

+ 3xz(t) j_?; + y(t) —2z(t) =0

Many physical components have mathematical models that involve integral and

differential relationships between

i (t) L
(900

vr, (1) -

Ideal inductor:

signals:
iy C
— |{
[\
i ve (t) -
Ideal capacitor:
. dvg (t
ic(t)=C dvc (t)

dt
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Diff ial E i for Conti Time

Example 2.4

Differential equation for simple RC

circuit

Find a differential equation to describe
the input-output relationship for the _
first-order RC circuit shown.




Chapter 2

Diff ial E i for Conti Time S
Example 2.4
Differential equation for simple RC N
ifferential equation for simple
circuit * i\_/-\-/}/
Find a differential equation to describe z(t) i c
the input-output relationship for the _ - T
first-order RC circuit shown. L
Solution:
We know that d
t
vr(t)=Ri(t) and i(t)= %

Use KVL to obtain

dy (t) wt) | L o= Lag

RC —— t)==z(t —_—
Ty =e) > e
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Example 2.5

Find a differential equation to describe 2 (0) Tam )
the input-output relationship for the .
first-order RC circuit shown.

R () ) 10

Another RC circuit NN § "
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Example 2.5

Another RC circuit ’\/\/\/
Find a differential equation to describe . () ; g C
the input-output relationship for the
first-order RC circuit shown. 1
Solution: =
Apply KVL:
—z (t) + R (t) + Re [41 (t) — 42 ()] =
Ry [i2(t) =41 (t)] +y(t) =0
. dy (t) ) dy(¢) 1
t)=C—— 4+ —y(t
) =cHd,  w@=cTLZ+ v
dy (t Ri+R
o)+ mo @ BtE
Ra
Rearrange terms
dy (t Ri+R 1
W) Pt Re z (t)

it | RiR.Cc '\ T RiC

y(t)
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Example 2.6

Differential equation for RLC circuit

Find a differential equation to describe
the input-output relationship for the
RLC circuit shown.
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Diff ial E i for Conti Time S
Example 2.6
R ir(t)
Differential equation for RLC circuit ANN— +QRYSY)\7
/‘—‘\\ UL
Find a differential equation to describe 2 (1) T
the input-output relationship for the -
RLC circuit shown. _I
Solution: B
Apply KVL:
—o(£) + Ri(t) + vz () +y(t) =0
) dy (t) di (t) d?y (t)
t) =C —= t)=1L =LC
i) L) dt dt?
dy (t) d?y (t)
—z (t) + RC ——= + LC t) =0
e(t)+RCZEE 10T 1y ()

Rearrange terms:

d?y (t)

dt? +

R dy(t) 1 1
[ A R t) = — t
L a o'W =150
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Constant-coefficient ordinary differential equations

General constant-coefficient differential equation for a CTLTI system:

dVy (t) d¥ 1y (¢) dy ()
an Y +GN71W‘F---+0-17+GOZI@):
dMz (t) (f) dm()
bMdt—M—'_bM_l M1 o+ b + bo z (t)

Constant-coefficient ordinary differential equation in closed summation form
N M
Z dky (t) Z b dkz (t)
ap ———— —
T T atk
k=0 k=0

Initial conditions:

y(to) , 7 M
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Constant-Coefficient Ordinary Differential Equations

Example 2.7

Checking linearity and time-invariance of a differential equation

Determine whether the first-order constant-coefficient differential equation

dy (t)

B +aoy(t) =boz(t)

represents a CTLTI system.
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Constant-Coefficient Ordinary Differential Equations

Example 2.7

Checking linearity and time-invariance of a differential equation

Determine whether the first-order constant-coefficient differential equation

dy (t)

B +aoy(t) =boz(t)

represents a CTLTI system.

Solution:
Let input signals z1 (¢) and z2 (t) produce the responses y1 (¢) and y2 (t) respectively:

d t dys (t
yl—() + apy1 (t) =boz1(t) and %()

o +aoy2 (t) = bo z2 (t)

Construct a new input signal
T3 (t) = a1 o1 (t) + as zo (t)

For linearity we need
Y3 (t) = a1 y1 (t) + @292 (t)
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Constant-Coefficient Ordinary Differential Equations

Example 2.7 (continued)

It can be shown that dys (£)
3
5 4 aoys (t) = bows ()
dt
Is this sufficient?
What happens at t = tp, the time instant at which the initial conditions are specified?

Suppose the initial value of y (t) is given as y (to) = yo. We must have
y1(to) =vo, y2(to) =%0, u3(to)=v0
but we also need
y3 (to) = a1 y1 (to) + a2 y2 (to)
For linearity:  yo = 0. J

Check for time-invariance:

dy(t — 1)

o +aoy(t—7)=boz(t—T)

The system is time-invariant.
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Constant-Coefficient Ordinary Differential Equations

Constant-coefficient ordinary differential equations (continued)

Constant-coefficient differential equation for a CTLTI system

The differential equation

N dhy() s, dha(t)

’_l[ . T
Dok = b
k=0 k=

represents a CTLTI| system provided that all initial conditions are equal to zero:

dy (t) dV 1y (¢)
) =0, ==Y =0, ooey —td =0
y( 0) dt t=tg dtN-1
t=to

It is typical, but not required, to have to = 0.
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Solving Differential Equations

Solution of the first-order differential equation

Solution of the first-order differential equation

Solution of the first-order differential equation

The differential equation

dydit) tay(t)=r(t), y (to) : specified

is solved as .
y(#) =y () + [ e (r) ar
to

Even though this result is only applicable to a first-order differential equation, it is also
useful for working with higher order systems through the use of state-space models.
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Solving Differential Equations
Solution of the first-order differential equation

Example 2.8

Unit-step response of the simple RC circuit

For the RC circuit shown, assume the initial value of the output at time ¢ =0 is
y (0) = 0. Determine the response of the system to a unit-step function, i.e.,
z (t) = u(t).

(t) = u(t)
N VMV N

C=1/4F y(t)

x(t) J_ T
f T t
-
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Solving Differential Equations
Solution of the first-order differential equation

Example 2.8

Unit-step response of the simple RC circuit

For the RC circuit shown, assume the initial value of the output at time ¢ =0 is
y (0) = 0. Determine the response of the system to a unit-step function, i.e.,
z (t) = u(t).

R=1Q

(t) = u(t)
N A4 N

C=1/4F y(t)

- t

M)

Solution:
dy (¢
% +ay(t) = 4u(?)

t t
y(t) = / e 4T gy (t) dr =4e / etTdr=1—e% fort >0
0 0
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.8 (continued)

In compact form:

y(t)=(1-e*) u()
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.9

Pulse response of the simple RC circuit

Determine the response of the RC circuit shown to a rectangular pulse signal

z(t) = ATl (t/w)

z(t) = ATl (t/w)

— _ t
—w/2 w/2
T A
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.9

Pulse response of the simple RC circuit

Determine the response of the RC circuit shown to a rectangular pulse signal

z(t) = ATl (t/w)

Re10 2 (t) = ATI(t/w)
+ MV L + _
a(t) C=1/4F y(t) A
T - —w/2 w2 !
Solution:
Differential equation: d%d—it) + 4y (t) = 4ATI(t/w)

Initial value: y(—w/2) =0.



Chapter 2
Solving Differential Equations
Solution of the first-order differential equation

Example 2.9 (continued)

Output signal:
't
y(t) = / e =T 4 ATI (7/w) dT
J—w/2

Case 1: —

e
A
&+
IA

Vg

t
y(t) =4Ade / erTdr=A [1 —eT2w e_4t]
J—w/2
w
Case 2: t> —
> 2

w/2
y(t) =44e % / e*Tdr = Ae® [52“’ — e_zw]
—w/2
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.9 (continued)

Complete response:

w
A [1 —e 2w e*‘”] , 5 <

y(t) = w
> J—
2

Ae—4t [e2w _ efzw] , ¢

The signal y (¢) is shown for A=1and w = 1.
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.10

Pulse response of the simple RC circuit revisited

Rework the problem in Example 2.9 by making use of the unit-step response found in
Example 2.8 along with linearity and time-invariance properties of the RC circuit.
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.10

Pulse response of the simple RC circuit revisited

Rework the problem in Example 2.9 by making use of the unit-step response found in
Example 2.8 along with linearity and time-invariance properties of the RC circuit.

Solution: Express the pulse signal as the difference of two unit-step signals:
2(t) = ATL(t/w) = Au (t+ %) —Au (t— %)
Au(t+w/2)
@ A
1 ¢ z(t)=Afu(t+w/2) —u(t—w/2)]
-3 A
? ©
Au(t —w/2)
w w t
(®) A — 3 2
t

SIS
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.10 (continued)

zy (1) = Au(t+w/2) y (t) = A Sys{u(t+w/2)}
A A
e
w/2 w/2
() (b)
o (1) = Au(t —w/2) Yo (t) = A Sys{u (t —w/2)}
A
A ”**”**’**'**”7
t t
w/2 w/2
() (d)
1 (t) = s (1) v (1) = (t)
A A
t / 1 |
—w/2 w/2 —w/2 w/2
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Solving Differential Equations

Solution of the first-order differential equation

Example 2.10 (continued)

Unit-step response:

Sys{u(t)} = (1-e %) u(t)

Response to the pulse input:

sys{o} = asys{u(t+3)} ~asys{u(t-3)}

Sys{o(8)} = 4 [1— e 4EHwid)] 4 (t + g) C Ao etwd] (t _ g)
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Solving Differential Equations
Solution of the first-order differential equation

Interactive demo: rc_demol.m

Experiment with the superposition principle by varying the circuit parameters R and C
as well as the pulse width w.

B RC Circuit Demo 1 - (:)OklayAlkm [Signals and Systems: A MATLAB-Integrated App
= @ ~
Finding the Pulse Response of the Simple RC Circuit Using Superposition
Input signals: 4 (), =2(t). and =1 () =2 () Refer to Pages 115 through 118, Examples
1 2.9 and 210, Eqns. (260) through (2.68),
& Figs. 214 through 2.17
=
Lo
H R (Ohms) 1 C (Farads) 025
s d I o Al |
§ -2
Pulse-width (sec) 1 ] Display individual responses.
q [ )| 2] Dispiay poiss response
el
g v () =0 (t) ~ 32 (t) = Sys{a1 (1)} -Sysfez ()}
i
20 1ALz Sysge, (1)}
5
i 12| == Sysfante
= ——= Sysie (t
§ 2 1 L -
05 08 /:
/
s 1 0 ;
E [ )
Lo - [
r 02 /
: |
= A2 M2
. /: /: -2 A2
0 K
3 2 1 0 1 2 3 < = E] 0 1 2 3
#(sec) t (sec)
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Solving Differential Equations

Solution of the g I diff ial

Solution of the general differential equation

N dty() -, dha(l)
Yy T
= b
e gtk Z kT atk
k=0 k=0
Initial conditions:
10 a1y ()
! dt t=tg ! ! dtN-1

General solution:
y(t) =yn () +yp(¢)

@ yp (t) is the homogeneous solution of the differential equation (natural response).
@ yp (t) is the particular solution of the differential equation.

o y(t) = yn (t) + yp (t) is the forced solution of the differential equation (forced
response).
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Solving Differential Equations

Finding the natural of a i ti system

Finding the natural response of a continuous-time system

Homogeneous differential equation:

First-order homogeneous differential equation:

dy (t)
— t)=0
o Tev()
Solution:
y(t) = ce o

The constant ¢ must be determined based on the desired initial value of y (¢) at t = to.
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Solving Differential Equations
Finding the natural of a i ti system

Example 2.11

Natural response of the simple RC circuit

Consider the RC circuit shown. Element values are R=1Q and C =1/4 F. Input
terminals of the circuit are connected to a battery that supplies the circuit with an
input voltage of 5 V up to the time instant t = 0. The switch is moved from position
A to position B at ¢ = 0 ensuring that z (¢) = 0 for ¢ > 0. Find the output signal as a
function of time.
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Solving Differential Equations
Finding the natural of a i ti system

Example 2.11

Natural response of the simple RC circuit

Consider the RC circuit shown. Element values are R=1Q and C =1/4 F. Input
terminals of the circuit are connected to a battery that supplies the circuit with an
input voltage of 5 V up to the time instant t = 0. The switch is moved from position
A to position B at ¢ = 0 ensuring that z (¢) = 0 for ¢ > 0. Find the output signal as a
function of time.

4 R

L.,—w

i B

5V T { c y (t)
s _

Solution:

Homogeneous differential equation:

di—it)-l-‘lzy(t)zo
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Solving Differential Equations
Finding the natural of a i ti

Example 2.11 (continued)

system

Homogeneous solution is of the form:

yp(t) =ce st =ce ™, fort >0
Satisfy initial value:
yh(0)=ce @ =c=5
Natural response:
yn(t)=5e %, for t>0
In compact form:
yn () =5e 4t u(t)



Chapter 2
Solving Differential Equations
Finding the natural of a i ti

Example 2.11 (continued)

system

yn (t) =5 e 4ty ()

Yn (t)

Time (sec)
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.12

Changing the start time in Example 2.11

Rework the problem in Example 2.11 with one minor change: The initial value of the
output signal is specified at the time instant t = —0.5 seconds instead of at ¢t = 0, and
its value is y (—0.5) = 10.
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.12

Changing the start time in Example 2.11

Rework the problem in Example 2.11 with one minor change: The initial value of the
output signal is specified at the time instant t = —0.5 seconds instead of at ¢t = 0, and
its value is y (—0.5) = 10.

M
10V T c v

=

Solution:

General form of the homogeneous solution:

4t

yn (t) =ce”
To satisfy y, (—0.5) = 10:

10
— = 1.3534
e

yn (—0.5) = ce (08 —ce? =10 = c



Chapter 2
Solving Differential Equations

Finding the natural of a i ti system

Example 2.12 (continued)

Homogeneous solution is

yp (t) =1.3534e~* |, for t > —0.5

In compact form:
yn (t) = 1.3534 e~ * (¢ + 0.5)

yn(t)

Time (sec)
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Solving Differential Equations

Finding the natural of a i ti system

Finding the natural response of a continuous-time system (continued)

General homogeneous differential equation:

Characteristic equation
N
E ak sk =0
k=0

To obtain the characteristic equation, substitute:

dky (t
di'g) -
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Solving Differential Equations

Finding the natural of a i ti system

Finding the natural response of a continuous-time system (continued)
Write the characteristic equation in open form:

N N—-1
ans’ +any_18 +...4+a1s+ap=0

In factored form:
an (s—s1)(s—s2)...(s—sny)=0

Homogeneous solution (assuming roots are distinct):

N
yn(t) =ca et 4o et 4.ty eSNt = E cx ekt
k=1

Unknown coefficients c1,c2,...,cn are determined from the initial conditions.

t

Terms e®** are called the modes of the system.
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.13

Time constant concept

Explore the natural response of the RC N
circuit as a function of circuit  (t)
parameters and the initial voltage of the -
capacitor.
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.13

Time constant concept

Explore the natural response of the RC TS

circuit as a function of circuit

parameters and the initial voltage of the _ -
capacitor.
Solution:
The characteristic equationis s+ — =0
RC

If y(0) = Vp, the natural response is

Define the time constant as
7 = RC, so that

un (8) = Voe ¥/ u(t)

yn (t) =Wo e t/RC y (¢)

Slope = —1/7
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Solving Differential Equations
Finding the natural of a i ti system

Interactive demo: rc_demo2.m

Experiment by varying the circuit parameters R and C as well as the initial voltage Vp.

: __ —

e e e e =

"o >
Time Constant for First-Order System

Refer to: Pages 124 and 125,

Example 2.13, Eqns. (2.90) and The natural response  (¢) of the RC cirouit
(2.91), Fig. 2.22 12
R (Ohms) 1 1 i
C (Farads) 1 5
Initial value (VO) 5 -
E — — ]
g V% =5.00
4 1
—— Output signal g ()
——=— Tangentatt=0
2p B _qgq 1
e
0
H H H
2 1 0 i 2 4 5 6 7 8
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Solving Differential Equations
Finding the natural of a i ti system

Example 2.14

Natural response of second-order system

For the RLC circuit let the element
valuesbe R=5Q, L =1H and

C =1/6 F. Initial values are  (0) =2 A
and y (0) = 1.5 V. No external input
signal is applied to the circuit, therefore
z (t) = 0. Determine the output voltage

y(t). |

R
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.14

Natural response of second-order system

For the RLC circuit let the element R ir(t) L
valuesbe R=5Q, L =1H and NV e T -
C = 1/6 F. Initial values are (0) = 2 A TN L

and y (0) = 1.5 V. No external input v T ’

signal is applied to the circuit, therefore

z (t) = 0. Determine the output voltage —;—
y(t) |
Solution:

Homogeneous differential equation:

d’y(t) | dy(t)
S t5 g +6y(t)=0

Characteristic equation:
s24+554+6=0 = s1=-2, sy=-3
Homogeneous solution:

yn(t) =cre  +coe 3t fort >0
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.14 (continued)

Evaluate yp, (t) for t = 0:

yn (0) = c1e7200) 4 pe=300) — ¢y 4oy =15

Use the initial value of the inductor current:

dyn (t)

(0)=Cc—2

=2 =
t=0 dt

Differentiate the homogeneous solution found:

dyn (t)
dt

= [—2c15_2t — 3cze_3t]
t=0

= —2¢1 — 3ca =12
t=0

Solve for c¢1 and ca:
cp =165, and c2 =-15

Natural response:
yn (t) =16.5e 2t — 1573, t>0
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Solving Differential Equations

Finding the natural

Example 2.14 (continued)

of a ti system

yn (t) =16.5e 2t — 1573, t>0

yn(t)
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Solving Differential Equations

Finding the natural of a i ti

system

Roots of characteristic polynomial

Case 1: All roots are distinct and real-valued.

Homogeneous solution:

N
yu(t) = Z cpe’kt

k=1

skg <0 = Decaying exponential s >0 =  Growing exponential
cp et skt

cpe
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Solving Differential Equations

Finding the natural of a i ti system

Roots of characteristic polynomial (continued)

Case 2: Characteristic polynomial has complex-valued roots.

Since the coefficients of the characteristic polynomial are real-valued, any complex
roots must appear in the form of conjugate pairs.

Part of the homogeneous solution that is due to a conjugate pair of roots:
yr1 (t) =c1q e51at 4 cpp 5107

—c1g elo1+jwi)t + 1 elor—jw)t

Coefficients c14 and c1p must form a complex conjugate pair as well.

cla = |1 e/®1  and c1p = |e1] e 70

yn1 (t) = 2e1]| €7t cos (wit + 61)

Using the appropriate trigonometric identity:

yn1 (t) = d1 et cos (wit) + d2 et sin (wit)
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Solving Differential Equations

Finding the natural of a i ti system

Roots of characteristic polynomial (continued)

@ A pair of complex conjugate roots for the characteristic polynomial leads to a
solution component in the form of a cosine signal multiplied by an exponential
signal.

@ The oscillation frequency of the cosine signal is determined by w;i, the imaginary
part of the complex roots.

@ The real part of the complex roots, o1, impacts the amplitude of the solution. If
o1 < 0, then the amplitude of the cosine signal decays exponentially over time. In
contrast, if o1 > 0, the amplitude of the cosine signal grows exponentially over
time.

ym (t)
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Solving Differential Equations

Finding the natural of a i ti system

Roots of characteristic polynomial (continued)

Case 3: Characteristic polynomial has some multiple roots.

ay (s—s1)(s—s2)...(s—sny)=0
What if s3 = s17?
yh (t) = c11 et 4+ cipt et + other terms

A root of multiplicity » requires » terms in the homogeneous solution:

Yy (t) = c11 et feiptestt 4. 4 c1pt" L eSlt 4 other terms
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Solving Differential Equations
Finding the natural of a i ti system

Example 2.15

Natural response of second-order system revisited

For the RLC circuit shown, the initial inductor current is z(0) = 0.5 A, and the initial
capacitor voltage is y (0) = 2 V. No external input signal is applied to the circuit,
therefore  (t) = 0. Determine the output voltage y (t) if

a. the element valuesare R=2Q, L=1Hand C =1/26 F,
b.  the element valuesare R=6 Q, L=1Hand C =1/9 F.

R ir(t) L

=
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Solving Differential Equations

Finding the natural of a i ti system

Example 2.15

Natural response of second-order system revisited

For the RLC circuit shown, the initial inductor current is z(0) = 0.5 A, and the initial
capacitor voltage is y (0) = 2 V. No external input signal is applied to the circuit,
therefore  (t) = 0. Determine the output voltage y (t) if

a. the element valuesare R=2Q, L=1Hand C =1/26 F,
b.  the element valuesare R=6 Q, L=1Hand C =1/9 F.

R ir(t) L

=

Solution:

Using specified initial value of the inductor current:

d t .
io=c O _o5 - ==
dt  li=o dt |4z C
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Solving Differential Equations
Finding the natural of a i ti

system
Example 2.15 (continued)
a.
Homogeneous differential equation:
?y(t) |, dy(t)
2—— 4+26y(t)=0
ar TiTg V0

Characteristic equation:

s24+254+26=0 = s1=-1+4+355, sy=-1—35
Natural response:
yn (t) = d1 e cos (5t) + d2 e " sin (5t)
Impose initial conditions:
yr(0) =d1 =2

dyn (t)

= —dj + 5dz = 13 = ds =3

Natural response:

yn (t) =2et cos(5t) + 3et sin(5t) fort >0
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Solving Differential Equations
Finding the natural of a i ti

Example 2.15 (continued)

system

b.

Homogeneous differential equation:
d?y(t dy (t
v(t) ()

6 ¥\ Loy =0
) s Tov(®)

Characteristic equation:
s246s4+9=0 = (s+3)%=0
Homogeneous solution:
Yy (t) = c11 e 3 4 ciate 3 fort >0

Impose initial conditions:
c11 =2

dyn (t)

Natural response:

= —3c11 +c12 =4.5 = ci2 = 10.5

yn (t) =2e7% +10.5te™3* fort >0



Chapter 2

Solving Differential Equations
Finding the natural of a

Example 2.15 (continued)

system

Homogeneous solution for part (a):

4

yn(t)

Homogeneous solution for part (b):
4

o

yn(t)
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Solving Differential Equations

Finding the natural of a system

Interactive demo: nr_demol.m

Experiment by varying the locations of the two roots s1 and s2 on the complex plane.

=g A

| Natural Response of Second-Order Continuous-Time System

Refer to: Pages 125 through 132, Examples Char. eqn. .1 +1500s +0500 =0
2.14 and 2.15, Eqns. (2.92) through DIt san (t) 15008 o500 = 0
| @105), Figs. 223 through 2.26. Resporso. 44,0002 -95_ o001
Roat 1
Roots of the characteristic equation
Real part 05 | Imaginary part 0 B
2
Ro2
Real part: 1| Imaginary pat 0 L;T 0 4
R e i — .
Initial conditions: %
6 4 -2 2
¥0) 0 Re{sh
J J J Natural response of the system

05 e
dylet @1=0, 0s
A I ] b

30/\\
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Solving Differential Equations
Finding the forced of a i ti system

Finding the forced response of a continuous-time system

Choosing a particular solution for various input signals

Input signal Particular solution

K (constant) | ki

K eat kl ea,t

K cos(at) k1 cos(at) + k2 sin(at)

K sin(at) k1 cos(at) + k2 sin(at)

Kt knt™ + kn 1™ 1 4+ ... + k1t + ko
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Solving Differential Equations
Finding the forced of a i ti system

Example 2.16

Forced response of the first-order system for
sinusoidal input

Determine the output signal of the RC circuit
shown in response to a sinusoidal input signal in
the form

z (t) = A cos (wt)

with amplitude A = 20 and radian frequency
w = 8 rad/s. The initial value of the output

signal is y (0) = 5.
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Solving Differential Equations
Finding the forced of a i ti system

Example 2.16

Forced response of the first-order system for
sinusoidal input

Determine the output signal of the RC circuit
shown in response to a sinusoidal input signal in N
the form

z (t) = A cos (wt) =)

with amplitude A = 20 and radian frequency
w = 8 rad/s. The initial value of the output
signal is y (0) = 5.

Solution:

Differential equation:

di—it)Jr‘Ly(t):th(t)

Homogeneous solution is in the form
yp(t) =ce ™ fort>0

Do not determine c yet!
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Solving Differential Equations
Finding the forced of a i ti system

Example 2.16 (continued)

Particular solution is in the form
yp (t) = k1 cos (wt) + k2 sin (wt)
Particular solution yp (t) must satisfy the differential equation:

dyp (t
%() = —wks sin(wt) + wka cos (wt)

—wk sin (wt) + wka cos (wt) + 4 [k1 cos (wt) + 4k2 sin(wt)] = A cos (wt)

In compact form:
(4k1 + wk2 — A) cos (wt) + (4k2 — wki) sin (wt) =0
Solve for k1 and ko:
1 — 4A ko — Aw
T 16w’ 0T 16+w?

Forced solution:

4A

61’ cos (wt) +

y(t) =yn(t) +yr(t) = ce % 4 sin (wt)

w
16 + w?
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Solving Differential Equations
Finding the forced of a i ti system

Example 2.16 (continued)

Using numerical values A = 20 and w = 8 rad/s:
y(t) = ce™* + cos (8t) + 2 sin (8t)
Impose the initial condition y (0) = 5:
y(0) =5 = c+ cos (0) + 2 sin (0) = c=4
Complete solution:

y(t) =4e * 4 cos(8t) +2sin(8t) fort>0

Yy (t) =Yt (t) + Yss (t)

Transient component:
v (t) =4e ™, lim {y; (1)} =0
t—o0
Steady-state component:

Yss (t) = cos (8t) + 2 sin (8t)
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Solving Differential Equations
Finding the forced of a conti "

Example 2.16 (continued)

system

yt (t) =4e % | yss(t) = cos (8t) + 2 sin (8t)

4 4
Ps ]
=
S 0k
ol ]
4 . . . . .
0 0.5 1 15 2 2.5 3
Time (sec)
4

Yss(t)

L
0 0.5 1 1.5 2 2.5 3

Time (sec)
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Solving Differential Equations
Finding the forced of a i ti system

Example 2.16 (continued)

Complete solution:

y(t) =4e % 4 cos(8t) +2sin(8t) fort>0

i (t) + Yss(t)

y(t)

Time (sec)
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Solving Differential Equations

Finding the forced of a i ti system

Interactive demo: fr _demol.m

Experiment by varying the circuit parameters R and C, the radian frequency w and
the initial value y (0). Observe the effects on transient response y; (t), the
steady-state response yss (t) and the total forced response y (t) = vz (t) + yss (£).

B Forced Response Demo 1 - (0) Oktay Alkin_ [Signals and Systems: A MATLAB-Integrated prm (L
Lo -
Forced Response of Simple RC Circuit for Sinusoidal Input
5
Refer to: Section 25.4, Pages 132
through 137, Example 2.16, Eqns. (2.108) 4
through (2.117), Fig. 2.27 2
o
R (Ohm). 1 2
A | =
®
C (Farats 025 6
Al H| 4
() 2
omega (adis s =
I | i)
2
0! s 4
A Gl 5
6
4
e g2 \\
¥ Fo
22
4
g 05 1 15 P 25 3
¢ (sec)
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Block Diagi Repr ion of Conti Time Sy

Block diagram representation of continuous-time systems

Block diagrams for continuous-time systems are constructed using three types of
components:

¢ Constant-gain amplifiers
@ Signal adders

@ Integrators

w (t) H}K—> Kuw(t) w (t) *» /L11,' (t) dt

wy (£) —= wy () +wy (t) + ... +wy ()
ws (1)

u"LV (t)



Chapter 2
Block Diagi

Repr ion of Conti Time Sy
Block diagram representation of continuous-time systems (continued)

A third-order differential equation:

d3y d?y dy d?z dz
-2 bl 4 = —by—— 4+ by — + b
dt3+a2 dt2+al dt+aoy 2dt2+ ldt+ 0T

Use an intermediate variable w (¢) in place of y (¢) in the left side of the differential
equation, and set the result equal to z (t):

d3w n d?w n n
—_— — +4+a1— tapw==2
at® gz T g T
d3w d?w dw
—agw
dt3 Par T e T
d*w d*w dw

x (t)—
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Block Diagi Repr

of Conti Time Sy
Block diagram representation of continuous-time systems (continued)

Express the signal y (¢) in terms of the intermediate variable w (t):

d2w dw
=by — + by — + b,
Yy 2dt2+1dt+ow

by

>

d*w d*w

o O— @2 T a2 T

y(t)

—a
o 0
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Block Diagi Repr ion of Conti Time Sy

Block diagram representation of continuous-time systems (continued)

Imposing initial conditions:

d*w

dt?

a t=tq
d*w

1t3
x (t)— . dt
1
—as
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Repr

Time Sy

Example 2.17

Block diagram for continuous-time system

Construct a block diagram to solve the differential equation

d3y d2y Yy dz
syt 13y =z +2—
ats | dg? at Y TRy

with the input signal z (t) = cos (207rt) and subject to initial conditions

d d?
y(0)=1 s = &
dt |4—o dt?

=_4,

t=0
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Block Diagi Repr ion of Conti Time Sy

Example 2.17

Block diagram for continuous-time system

Construct a block diagram to solve the differential equation

d3y d2y dy dz
2Y 1 52Y L 17% L 13y=—242%
ae o Tl g TBY=Er2y

with the input signal z (t) = cos (207rt) and subject to initial conditions

d d?
yo=1, 2 =2, =2 4,
dt 4o at? |
=0 y
Solution:
Using the intermediate variable w (t):
d3w d?w dw

F+5F+17—+13w_:c and y:w—l—ZE
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Block Diagi Repr ion of C

Time Sy

Example 2.17 (continued)

Initial conditions specified in terms of the values of y, dy/dt and d%y/dt? at t = 0
need to be expressed in terms of the integrator outputs w, dw/dt and d?w/dt? at
t=0.

58 d?w

-1 d
w(0)= il =% @
t=0 45 dt

45 ' dt

16
T 45
=0

16/45

o
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Impulse response

h(t) = Sys{s (t)} 5 H ()

For a CTLTI system: The impulse response also constitutes a complete description of
the system.

Finding the impulse response of a CTLTI| system from the differential equation

1. Use a unit-step function for the input signal, and compute the forced response of
the system, i.e., the unit-step response.

2. Differentiate the unit-step response of the system to obtain the impulse response,

ie., p

sys {80} = sy { 229} = £ sy fu (0]
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1 Ise Resp and C luti

Example 2.18

Impulse response of the simple RC circuit

Determine the impulse response of the
first-order RC circuit shown. Assume the
system is initially relaxed, that is, there is no z(t)
initial energy stored in the system. (Recall _
that this is a necessary condition for the

system to be CTLTI.)
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Example 2.18

Impulse response of the simple RC circuit

Determine the impulse response of the

first-order RC circuit shown. Assume the
system is initially relaxed, that is, there is no x(t)
initial energy stored in the system. (Recall _

that this is a necessary condition for the
system to be CTLTI.)

Solution: Differential equation is

dz—it)Jr‘Ly(t):th(t)

Using the first-order solution method:
t
h(t) = / et a5 (r) dr
Jo

Using the sifting property of the unit-impulse function:

h(t)=4e *u(t)
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Example 2.18 (continued)

Using the the more general method that relies on the unit step response:
y(t) =Sys{u(®)} = (1—e™*) u(t)
Differentiating y (¢):

h(t) = dl;—f) . [(1—e ) u(t)] =4e *u(t)

h(t)
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Example 2.19

Impulse response of a second-order system

Determine the impulse response of the RLC
circuit shown. Use element values R = 2 ,
L=1Hand C=1/26F.

R ir(t) L
ANNVN———000
PN vL (t)
TR
("//
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Example 2.19

Impulse response of a second-order system

Determine the impulse response of the RLC
circuit shown. Use element values R = 2 Q, z(t)
L=1Hand C=1/26F.

Solution:

Differential equation:

dt2 dt
The homogeneous solution is (see Example 2.15)

d2y (¢ dy (t
Y(0) a0 e
yn (t) = d1 e Fcos (5t) + dz e ¢ sin (5t)

To find the unit-step response, start with the particular solution

yp (t) = k1
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Example 2.19 (continued)

Particular solution must satisfy the differential equation, therefore k1 = 1, and the
complete solution is

y(t) =yn (t) + 95 (2)
=d1 e tcos (5t) + dz e tsin (5t) + 1

The system is CTLTI, and is therefore initially relaxed.

y(0)=di1+1=0 = dy = —1

dyp (t)

=0 = —di +5d2 =0 = ds = —0.2
dt t=0

s Unit-step response is

y(t) =yn (t) + yp(t) = —e tcos(5t) — (0.2) e sin(5t) +1 fort >0
Impulse response is

h(t)= = =5.2e " sin(5t) fort>0



=52e tsin(5t) fort >0

4.5

40> «Fr « E>»

«E=

DA
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Convolution operation for CTLT| systems

Convolution operation for CTLTI systems

The output signal y (t) of a CTLTI system is equal to the convolution of its impulse
response h (t) with the input signal z ().

Continuous-time convolution
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Convolution operation for CTLT| systems

Convolution operation for CTLTI systems (continued)

Steps involved in computing the convolution of two signals

To compute the convolution of z (t) and h (t) at a specific time-instant %:

1. Sketch the signal z (X) as a function of the independent variable A. This
corresponds to a simple name change on the independent variable, and the graph
of the signal = (\) appears identical to the graph of the signal z (t).

2. For one specific value of ¢, sketch the signal h (t — X) as a function of the
independent variable A. This task can be broken down into two steps as follows:

2a. Sketch h (—AX) as a function of A. This step amounts to time-reversal of h (X).
2b. In h (X) substitute A — X — t. This step yields

h(=2) —h(t—2)
A—=A—t
and amounts to time-shifting h (—X) by t.
3. Multiply the two signals in 1 and 2 to obtain f () =z (X) h(t — X).
4. Compute the area under the product f(X) = z(X) k(¢ — X) by integrating it

over the independent variable A. The result is the value of the output signal at
the specific time instant ¢t.

5. Repeat steps 1 through 4 for all values of ¢ that are of interest.
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Convolution operation for CTLT| systems

Convolution operation for CTLTI systems (continued)

z(t) z (1)

t—T

t— A
—__
Name change

h(t

3
] —-A)
A= A—t
—
Time shift
t

A
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Convolution operation for CTLT| systems

Example 2.20

Unit-step response of RC circuit revisited

Compute the unit-step response of the
simple RC circuit using the convolution
operation.
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Convolution operation for CTLT| systems

Example 2.20

Unit-step response of RC circuit revisited N

Compute the unit-step response of the (1)
simple RC circuit using the convolution

operation.

Solution:

Impulse response of the RC circuit is
h(t) = — e~t/RC y (t)
RC
Output of the system in response to input z (t):

y(t):/oo z () h(t—A)dx

—oo

Functions needed: z(X) and h(t —X).
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Convolution operation for CTLT| systems

Example 2.20 (continued)

Case 1: t <0 Case 2: t >0
z(A) z(A)
h(t—2X) h(t—2X)

t t

z(A) h(t—N)
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Convolution operation for CTLT| systems

Example 2.20 (continued)

Casel: t<0
Functions z (X) and h(t— X) do not overlap anywhere. Therefore

y(t)=0, fort<O0

Case2: t>0

Functions z (A) and h(t— X) overlap for values of X in the interval (0,¢).
1
In this interval z (A\) =1 and h(t — X) = Yo} e (t=2/RC  Therefore

nt 1
y(t) = / %o} e"(=N/RC gy =1 e tFC for t>0
Jo

Combine the two cases through the use of a unit-step function:

v(t) = (1-e"F%) u(y)
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Convolution operation for CTLT| systems

Interactive demo: conv__demol.m

Vary t and observe the waveforms and their overlaps.

: __ —
T T T T e, = X )

LEES >
Finding the Unit-Step Respr the Simple RC Cii i
5 Plonake () h Bal iR a ) R Refer to Section 2.7.2, Pages 145 through 149,
Eqns. (2.153) and (2.154), Example 2.20,
15 Fig. 2.38
o
=
Vs Tim (sec) i Time-constant (sec). | 1
[ [ S i £
05
2 Output signal: o (¢)
15
15
Amplitude at fime t=1 15 0.6321
= 1
! 1
s - —
0 /
t=1 =
-05 - D3
2
15 |-+... Area under function 1 .
=
T =1
508 ‘
W [ 0 51 il 2 4
t (sec)
05
2 0 i 2 ] 5
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Convolution operation for CTLT| systems

Example 2.21

Pulse response of RC circuit revisited

Using convolution, determine the response
of the RC circuit to a unit-pulse input signal
z (t) =TI (¢t).
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Convolution operation for CTLT| systems

Example 2.21

R
Pulse response of RC circuit revisited . AvAVAY 1 4
Using convqlutlpn, deterr.mne the. respoqse () TR c )
of the RC circuit to a unit-pulse input signal v T
z (t) =TI (¢t). - -
L
Solution:

It is useful to sketch the functions involved in the convolution integral, namely z ()
and h (t — A). Three distinctly different possibilities for the time variable t will be
considered.
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Convolution operation for CTLT| systems

Example 2.21 (continued)

1 1
- Case 3: t > ~
2 2

z(A) z () z(N)

1 1
Case 1: t < —= Case 2: —— <t <
2 2

B |
)=

2O h(t—2)
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Convolution operation for CTLT| systems

Example 2.21 (continued)

Case 1: t<-—1
Functions z () and A (t— X) do not overlap. Therefore

1
y(t)=0, for tg—a

Case2: -—1<t<

=

Functions z (A) and h(t— X) overlap in the range f% < X < t. Therefore

"t
y(t):/ L emU=N/RC gy (1 - e~ (H1/D/RC) g

<t<
~1/2 RC -

N =
N =

Case3: t>1

Functions z (X) and h(t — ) overlap in the range —% <A< % Therefore

1/2
e :/ /21 e (t=N)/RC g — o—t/RC (81/230 _ 871/2Rc) , for t> 1
_1/2 RC 2
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Convolution operation for CTLT| systems

Example 2.21 (continued)

0 ’
y(t) = (1 _ e—(t+1/2)/RC) ,

e—t/RC (el/ZRC _ e—l/ZRC) ,

o+
\
™

53
IN
0l

|
ol
N
53

IN
ol
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Interactive demo: conv_demo2.m

Vary t and observe the waveforms and their overlaps.

: __ —
TR T T e, = X )

LEES >
Finding Response of the Simple RC
. Plonake () h Bal iR a ) R Refer to Section 2.7.2, Pages 145 through 151,
Eqns. (2.153) and (2.154), Example 2.21,
5 Fig. 2.39,
208
. Tim (sec) o Time-constant (sec). | 1
K] | S i £
05 Pulse-vidth (sec) i
2 K I E|
15
= q Output signal  (£)
| 15
¥ 08 -
= Ampltude at time ¢=0 is 03935
0 _/ ,
t=0
-05
2 Zos
15 Area under function =0.
= S~
Lo i ~
= t=0
= ‘
=
05
2 1 0 il 2
05
3 = 3 7 5 3 t (sec)
A (sec)
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Convolution operation for CTLT| systems

Example 2.22

A more involved convolution problem

Impulse response of a CTLTI system is h(t) = et [u(t) — u(t — 2)]. The input
signal is
1, 0<t<1
o(t)=T(t—05)—T(t—15)=< —1, 1<t<2
0, otherwise

Determine the output signal y (¢) using convolution.
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Convolution operation for CTLT| systems

Example 2.22

A more involved convolution problem

Impulse response of a CTLTI system is h(t) = et [u(t) — u(t — 2)]. The input
signal is
1, 0<t<1
o(t)=T(t—05)—T(t—15)=< —1, 1<t<2
0, otherwise

Determine the output signal y (¢) using convolution.

Solution: Functions involved in the convolution integral are:

z(\) B(t— )
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Convolution operation for CTLT| systems

Example 2.22 (continued)

Case 1: t<0 Case2: 0<t<1

z () z ()

1

Case 3: 1<t
z(A)

1

2

)

h(t—) h(t—N\)
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Convolution operation for CTLT| systems

Example 2.22 (continued)

Case4d: 2<t<3 Case 5: 3<t<4 Case 6: t>4

x(X) x(X\) x(N\)

1 1 1
2 2 2
1 A 1 A 1
—1 -1 -1
hi-N h(t—N\) : Bt =)

z(A) h(t—N) z(A) h(t—2N) z(A) h(t—N)
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Convolution operation for CTLT| systems

Example 2.22 (continued)

Casel: t<0
Functions z (X) and A (t— X) do not overlap. Therefore

y(t)=0, for t<0

Case2: 0<t<1
Functions z (A) and h(t— X) overlap for 0 < A < t. Therefore
t
y (t) :/ (1 e EMNdx=1-et, for 0<t<1
0
Case 3: 1<t<2

Functions z (A) and h(t— X) overlap for 0 < A < t. Therefore

1 t
/ (1) e*<f**)d>\+/ (—1) e~ =2 gx
0 1

=-1+44366et, for 1<t<2

y(t)
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Convolution operation for CTLT| systems

Example 2.22 (continued)

Case4: 2<t<3

Functions z (X) and h(t— X) overlap for t — 2 < XA < 2. Therefore

y(t)

1 "2
/ (1) e_(t_x)dk+/ (—1) e=¢=N dx
2 J1

= —0.13563 —1.9525e~ %, for 2<t<3
Case 5: 3<t<4

Functions z (X) and h(t— X) overlap for t — 2 < XA < 2. Therefore

2
y(t) = / (-1) e "M dx =0.1353 — 7.3891e, for 3 <t <4
t—2

Case 6: t >4

Functions z (X) and h(t— X) do not overlap. Therefore

y(t)=0, for t>4
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Convolution operation for CTLT| systems

Example 2.22 (continued)

In compact form:
0,
1—et,

y(t) = —1+4.4366e~,

—0.1353 — 1.9525 e~ ¢,
0.1353 — 7.3891 et ,

t<Oort>4
0<t<1
1<t<2
2<t<3
3<t<4

t
—0.3996 F---------
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Convolution operation for CTLT| systems

Interactive demo: conv_demo3.m

Vary t and observe the waveforms and their overlaps.

. — ——
T T = %)
LALS ~
A More Involved Convolution Problem
. SR S WL Refer to Section 2.7.2, Pages 145 through 154,
) Eqns. (2.153) and (2.154), Example 2.22,
Figs. 2441 through 2.43.
05
=
W Tim (sec) 1
05
Ay L]
=
15
1 ; Output signal: (t)
: 0.8 | Ampitude at time ¢=1 is 0.6321
05
= - 06
T t=1 04 \
. o2 X
)
-15 L $=1
15 02
1 04 T
Lo |
= 08
Za
= e
i - 1 2 4
Area = 06321 #(sec)
157 ] i 2 3 4
A (sec)
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Example 2.23

Using alternative form of
convolution

Find the unit-step response of
the RC circuit with impulse
response

1
h(t)= — e t/BC 4 (¢
(=25 ®)
using the alternative form of
the convolution integral.
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Convolution operation for CTLT| systems

Example 2.23

Using alternative form of
convolution

Find the unit-step response of
the RC circuit with impulse
response
h(t) = — e~t/RC y (1)
RC
using the alternative form of
the convolution integral.

Solution:

v©)= [ hw e dr

Case 1: t <0 Case 2: t >0
o) o)
vy vy
ot =) wlt—)
vy vy
t t
B 2t —7) W)t —9)
t
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Convolution operation for CTLT| systems

Example 2.23 (continued)

For ¢t < 0 the two functions do not overlap. Therefore
y(t)=0, fort<O0

For t > 0, the two functions k () and z (¢ — -y) overlap in the interval (0,t).
Therefore

,t 1
y(t):/ %e_"’/Rcd'y:l—e_t/Rc, for t>0
Jo

In compact form:
y(t)=(1-e"F) u(t)
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Convolution operation for CTLT| systems

Interactive demo: conv__demo4.m

Vary t and observe the waveforms and their overlaps.

R e e s . = )
LALS ~
Alternative Form of the Convolution Integral
5 Plonalcs () iale)iana a)e Ene) Refer to Section 2.7.2, Pages 145 through 155,
Eqns. (2.153) and (2.154), Example 2.23,
15 Fig. 2.44.
1
=2
=05 Time (sec) 1 Time-constant (sec)- | 1
B e FIRIG | |
05
2 Output signal: y (¢)
15
15
Amplitude at ime ¢=11s 0.6321
= 1
! 1
508 L
0 /
t=1 =
05 508
2
15|.... Area under function 1
= 0
T f =1
205
= h 05
* 0 1 i 2 4
t (sec)
05
2 0 i 2 4 5
A (sec)
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Causality in continuous-time systems

A system is said to be causal if the current value of the output signal depends only on
current and past values of the input signal, but not on its future values.

CTLTI system: -
v(t) = h(t)xa(t) :[ R(A) 2 (¢ = A) dx

For A < 0, the term z (¢t — X) refers to future values of the input signal.

Causality in CTLTI systems

For a CTLTI system to be causal, the impulse response of the system must be equal
to zero for all negative values of its argument.

h(t)=0 forall t<0
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Stability in continuous-time systems

Stable system

A system is said to be stable in the bounded-input bounded-output (BIBO) sense if
any bounded input signal is guaranteed to produce a bounded output signal.

|:c(t)| < Bz < oo implies that |y(t)| < By <

CTLTI system: -
v(t) = h(t) x 2 (t) :/ h(M) (¢ —2) dA

Stability in CTLTI systems

For a CTLTI system to be stable, its impulse response must be absolute integrable.

/jo [h(V)] dr <
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Example 2.24

Stability of a first-order continuous-time system

Evaluate the stability of the first-order CTLTI| system described by the differential

equation
BO ey =20

where a is a real-valued constant.
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Stability in Continuous-Time Systems

Example 2.24

Stability of a first-order continuous-time system

Evaluate the stability of the first-order CTLTI| system described by the differential

equation
BO ey =20

where a is a real-valued constant.

Solution:

Impulse response:
h(t) = e % u(t)

Check for stability:

[ee] oo 1
/ |h()] dr = / ™ dX\ = = provided that a >0
— oo 0 a

The system is stable if a > 0.
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Approximate numerical solution of a differential equation

First-order linear differential equation:

dy (t) 1 1
2yt = — (¢
a "rRo?® = ge®®
Rearrange terms:
dy (t) 1 1
— = —z(t
o 2o VOt mze®)
General form:
dy () 1 1
= — gty (¢ h ty(t)] = ———y(t) + ——z (¢
L =alty(®)] where gl y(t)] = -2 y(H)+ o)
dy (1)
Approximate the derivative t=to
dy (t) ~ y (to + T) - Y (tO) y(to+T) Approx.
~ ' y (to) [ ==

dt li=¢o T

T Small step size

dy (1)

dt

/‘ to to+T

=

to
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Approximate numerical solution of a differential equation (continued)

y(to +7T) — y(to)

e R g [to,y (to)] = y(to +T) = y(to) + T g [to, y (to)]

For the RC circuit, using to = 0:

y(T) = y(0) +Tg[0,y(0)]

“¥O+T [~ o5 u(0) + 55 2(0)]

and

y(2T)~y(T)+Tg[T,y(T)]

=Y(T) 4T |5 (M) + 52 (T)]

This is known as the Euler method. More sophisticated methods exist with better
accuracy.
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MATLAB Exercises

MATLAB Exercise 2.1

Testing linearity of continuous-time systems

Simulate the four systems considered in Example 2.1, and test them using signals
generated in MATLAB.
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MATLAB Exercises

MATLAB Exercise 2.1

Testing linearity of continuous-time systems

Simulate the four systems considered in Example 2.1, and test them using signals
generated in MATLAB.

Solution:
If a system is linear
z(t) = a1 z1 (t) + az z2 (t) = y(t) = ary1 (t) + a2 y2 (t)

z1 (t), @2 (t): Arbitrary signals
a1, oo: Arbitrary constants
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MATLAB Exercise 2.1 (continued)

Create test signals:

>> t = [0:0.01:5];
>> x1 = cos(2xpix5xt);
>> x2 = exp(—0.5%t);

Construct and graph z (¢) with a1 =2 and as = 1.25:

>> alphal = 2;

>> alpha2 = 1.25;

>> x = alphalxxl+alpha2*x2;
>> plot(t,x);

Simulate the first system:

>> sys_a = @(x) 5x*x;

>> yl = sys_a(x1l);

>> y2 = sys_a(x2);

>> y exp = alphalxyl+alpha2xy2; % Expected output if system is linear
>> y_ act = sys_a(x); % Actual output
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MATLAB Exercise 2.1 (continued)

Complete script:

=

% Script: matex_2_1.m

o°

t = [0:0.01:4]; % Create a time vector.
x1 = cos(2*pix5xt); Test signal 1.
X2 = exp(—0.5*t); Test signal 2.

o°

o°

alphal = 2; % Set parameters alphal
alpha2 = 1.25; % and alpha2.
X = alphalsxl+alpha2*x2; % Combined signal.

© ® N o e A W N

% Define anonymous functions for the systems in Example 2.1.
sys_a = @(x) 5xx;

sys_b @(x) 5%x+3;

SYyS_C = @(X) 3*X.xX;

sys_d @(x) cos(x);

14 % Test the system in part (a) of Example 2.1.

15 yl = sys_a(x1l);

16 y2 = sys_a(x2);

17 y_exp = alphalxyl+alpha2xy2; % Expected response for a linear system.
18 y_act = sys_a(x); % Actual response.

19 clf; % Clear figure.

[
=)

B
N R
U}

-
w
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MATLAB Exercises

MATLAB Exercise 2.1 (continued)

Script “matex_2_1.m" continued:

subplot(1,2,1);
plot(t,y_exp);
title('y_{exp}
xlabel('t (sec)
subplot(1,2,2);
plot(t,y_act);
title('y_{act}
xlabel('t (sec)

")

")

% Graph expected response.
= \alpha_1l y_1 + \alpha_2 y_2'")
ylabel('Amplitude');

% Graph actual response.
= Sys_a\{\alpha_1 x_1 + \alpha_2 x_2\}")
ylabel('Amplitude');

Yeap = Q1Y1 + Q2Y2

Yat = Sysafaizy + azwa}

Amplitude
o

Amplitude
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MATLAB Exercise 2.2

Testing time-invariance of continuous-time systems

Simulate the three systems considered in Example 2.2, and test them using signals
generated in MATLAB.
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MATLAB Exercise 2.2

Testing time-invariance of continuous-time systems

Simulate the three systems considered in Example 2.2, and test them using signals
generated in MATLAB.

Solution:

If the system under consideration is time-invariant we need
Sys{z(t)}=y() =  Sys{z(t-7)}=y(t-7)

for any arbitrary time shift 7.

Create and graph the test signal z (t) = e~9-5t w (¢) and its time shifted version:

>> t [0:0.01:10];
>> X = @(t) exp(—0.5%t).*(t>=0);
>> plot(t,x(t),t,x(t=2));




Chapter 2

AW N R

© ® N o o

11

MATLAB Exercises

MATLAB Exercise 2.2 (continued)

Simulate the system:

>> sys_C = @(x) 3xcos(t).x*x;
>> yl = sys_c(x(t));

>> y2 = sys_c(x(t—2))

>> plot(t,yl,'b—",t,y2,'r:");

Complete script:

o°

Script matex_2_2.m

o°

[0:0.01:10]; %
= @(t) exp(—0.5xt).*x(t>=0); %

X +

% Define anonymous functions for
sys_a = @(x) 5x*x;

sys_b = @(x) 3xcos(x);

sys_c = @(x) 3x*cos(t).x*x;

% Test the system in part (c) of
yl = sys_c(x(t));
y2 = sys_c(x(t—2));

Create a time vector.
Anonymous function for test signal.
the systems in Example 2—2.

Example 2.2.
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MATLAB Exercise 2.2 (continued)

Script “matex_2_2.m" continued:

12 clf; % Clear figure.

13 plot(t,yl, 'b—",t,y2,'r:"); % Graph the two responses.
14 title('Responses to x(t) and x(t—2)')

15 xlabel('t (sec)');

16 ylabel('Amplitude');

17 legend('Sys\{x(t)\}', 'Sys\{x(t—2)\}");

Responses to z(t) and z(t — 2)

Sys e}
- — = Sys{a(t—2)}

)
g
Z 1k i
£
ZooboiNe, 0 ae=====o
g 0r--—2
<
1k - 4
L Phd
~ -
oL ~-- 4
I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10
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MATLAB Exercise 2.3

Using linearity to determine the response of the RC circuit
The response of the simple RC circuit to a unit-step signal was found in Example 2.8

to be

vu (8) = Sys{u(®)} = (1—e™*) u(t)
Using superposition, compute and graph the response of the circuit to the signal z3 (t)

shown.
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MATLAB Exercise 2.3

Using linearity to determine the response of the RC circuit

The response of the simple RC circuit to a unit-step signal was found in Example 2.8

to be
vu (£) = Sys {u ()} = (1 —e™*) u(®)

Using superposition, compute and graph the response of the circuit to the signal z3 (t)

shown.
R=1Q o (1)
LW | . 1
x(t) C=1/4F y(t)
T 7
—L— -1
Solution:

Define an anonymous function to compute y (¢):

yu = @(t) (l—exp(—4+t)).*(t>=0);
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MATLAB Exercise 2.3 (continued)

Express the signal zz (t) through unit-step functions:
z2(t) =u(t)—2u(t—1)+u(t—2)

Complete script:

% Script: matex_2_3b.m

o°

% Anonymous function for unit—step response.

yu = @(t) (l—exp(—4xt)).x(t>=0);

t = [-5:0.01:5]; % Vector of time instants.
y2 = yu(t)—2xyu(t—1)+yu(t—2); % Compute response to x2(t)].
7 plot(t,y2);

e o A W N R
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MATLAB Exercise 2.4

Numerical solution of the RC circuit using Euler method

Use the Euler method to find an approximate numerical solution for the RC circuit
problem of Example 2.8, and compare it to the exact solution that was found.

R=1Q

C=1/4F y(1)

=
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MATLAB Exercise 2.4

Numerical solution of the RC circuit using Euler method

Use the Euler method to find an approximate numerical solution for the RC circuit
problem of Example 2.8, and compare it to the exact solution that was found.

(t) = u(t)
N A4 N

z( C=1/4F y(t)
T |
-

Solution:

For the specified input signal, the differential equation of the circuit is

d?{d—ff)-l—lly(t)ztlu(t)

With y (0) = 0, the exact solution for the output signal is

y(t)=(1-e %) u(t)
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MATLAB Exercise 2.4 (continued)

To use the Euler method, write the differential equation in the form

dydit) =9ty (), g(ty(t) = -4y (t) +4u(t)

The Euler method approximation § (t) is
J((k+1)Ts) =9 (kTs) + Ts g (kTs, 3 (kTs))
—§ (KTS) + T (—49 (KT) + 4u (KTY))

Percent error: .
) (kTs) —Y (kTs)

e (RTs) = = )

x 100
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MATLAB Exercise 2.4 (continued)

Complete script:

1 % Script: matex_2_4.m

2 %

3 Ts = 0.1; % Time increment

a t = [0:Ts:1]; % Vector of time instants

5 % Compute the exact solution.

6 y = l—exp(—4xt); % Eqn.(2.186)

7 % Compute the approximate solution using Euler method.
8 yhat = zeros(size(t));

[ yhat(1l) = 0; % Initial value.

10 for k = 1:length(yhat)—1,

11 g = —4xyhat(k)+4; % Eqn.(2.188)

12 yhat(k+1) = yhat(k)+Ts*g; % Eqn.(2.189)

13 end;

14 % Graph exact and approximate solutions.

15 clf;

16 subplot(211);

17 plot(t,y,'—',t,yhat, 'ro'); grid;

18 title('Exact and approximate solutions for RC circuit');
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MATLAB Exercise 2.4 (continued)

Script “matex_2_4.m" continued:

19 xlabel('Time (sec)');

20 ylabel('Amplitude');

21 legend('Exact solution', 'Approximate solution', 'Location', 'SouthEast');
22 % Compute and graph the percent approximation error.

23 err_pct = (yhat—y)./y*100;

24 subplot(212);

25 plot(t(2:length(t)),err_pct(2:length(t)),'ro'); grid

26 title('Percent approximation error');

27 xlabel('Time (sec)');

28 ylabel('Error (%)');
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MATLAB Exercise 2.4 (continued)

Actual and approximate solutions for the RC circuit and the percent error for At = 0.1
seconds.

Exact and approximate solutions for RC circuit

T T ; py r

0.8 . g : §
]
= 06 e 1
204 o .
< 0.2 Exact solution

’ e Approximate solution

0 i i i i i n n n n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec)
Percent approximation error

25 T T T T T T T T
_ 2% .
=}
g2 15 [
g 15 1
= °
§ 10 ° |
L L]
&5 ° : 1

° °
; ; ; ; ; ; | ® [}
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (sec)
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MATLAB Exercise 2.4 (continued)

Actual and approximate solutions for the RC circuit and the percent error for

At =0.02 s.
Exact and approximate solutions for RC circuit
1 T T T T T Py
0.8 4
3z
= 06} 1
S04t 1
< 09 Exact solution
' @ Approximate solution
0 i i i i i n n n n
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (sec)
Percent approximation error
5 T T T T T T T T T
= 4 .
8
=1
g 3 .
=
2
<o
s
0 I I I I I d

Time (sec)



Chapter 2
MATLAB Exercises

MATLAB Exercise 2.5

Improved numerical solution of the RC circuit

Solve the approximation problem of MATLAB Exercise 2.4 using function ode45(..)
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MATLAB Exercise 2.5

Improved numerical solution of the RC circuit

Solve the approximation problem of MATLAB Exercise 2.4 using function ode45(..)

Solution:

Start by developing a function rcl(..) to compute the right side g [¢,y (¢)] of the
differential equation.

1 function ydot = rcl(t,y)
2 ydot = —4xy+4;
3 end
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MATLAB Exercise 2.5 (continued)

Complete script:

1 % Script: matex_2_5a.m

2 %

3 t =1[0:0.1:1]; % Vector of time instants

a % Compute the exact solution.

5 y = l—exp(—4xt); % Eqn.(2.187)

6 % Compute the approximate solution using ode45().
7 [t,yhat] = ode45(@rcl,t,0);

8 % Graph exact and approximate solutions.

° clf;

[
=)

subplot(211);

plot(t,y,'—',t,yhat,'ro"); grid;

title('Exact and approximate solutions for RC circuit');

xlabel('Time (sec)');

14 ylabel('Amplitude');

15 legend('Exact solution', 'Approximate solution', 'Location', 'SouthEast');
16 % Compute and graph the percent approximation error.

17 err_pct = (yhat—y')./y'*100;

18 subplot(212);

19 plot(t(2:max(size(t))),err_pct(2:max(size(t))),'ro"); grid

B
N R

-
w
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MATLAB Exercise 2.5 (continued)

Script “matex_2_5a.m” continued:

title('Percent approximation error');
xlabel('Time (sec)');
ylabel('Percent error');

Exact and approximate solutions for RC circuit

0.8

0.4+

Amplitude

Exact solution
e Approximate solution
N n n

0.2

0 i i i i i T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Time (sec)
x1074 Percent approximation error

Percent error

0F ° ° ° ] ° °

—5 i i i i i i i i

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (sec)
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MATLAB Exercise 2.5 (continued)

Modified script that uses an anonymous function instead of “rci.m".

Script: matex_2_5b.m

=
o°

o°

~+

= [0:0.1:1]; % Vector of time instants

Compute the exact solution.

= l—exp(—4x*t); % Eqn.(2.187)

% Compute the approximate solution using ode45().

rc2 = @(t,y) —4xy+4;

[t,yhat] = ode45(rc2,t,0);

% Graph exact and approximate solutions.

clf;

subplot(211);

plot(t,y,'—',t,yhat, 'ro'); grid;

title('Exact and approximate solutions for RC circuit');
14 xlabel('Time (sec)');

15 ylabel('Amplitude');

16 legend('Exact solution', 'Approximate solution', 'Location', 'SouthEast');
17 % Compute and graph the percent approximation error.

18 err_pct = (yhat—y')./y'*100;

o°
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MATLAB Exercises

MATLAB Exercise 2.5 (continued)

Script “matex_2_5b.m" continued:

subplot(212);
plot(t(2:max(size(t))),err_pct(2:max(size(t))),'ro"); grid
title('Percent approximation error');

xlabel('Time (sec)');

ylabel('Percent error');
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