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ompute the output signal for a linear and time-invariant systemusing 
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Chapter 2Introdu
tionIntrodu
tionSystemIn general, a system is any physi
al entity that takes in a set of one or more physi
alsignals and, in response, produ
es a new set of one or more physi
al signals.
x (t) y (t)System

t

x(t)

t

y(t)

A system 
an be viewed as anyphysi
al entity that de�nes the
ause-e�e
t relationships between aset of signals known as inputs andanother set of signals known asoutputs.Mathemati
al modelingThe mathemati
al model of a system is a fun
tion, formula or algorithm (or a set offun
tions, formulas, algorithms) to approximately re
reate the same 
ause-e�e
trelationship between the mathemati
al models of the input and the output signals.



Chapter 2Introdu
tionIntrodu
tion (
ontinued)
x (t) y (t)System
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y(t)y(t) = Sys fx(t)gSome examples: y (t) = K x (t)y (t) = x (t� �)y (t) = K [x (t)℄2



Chapter 2Linearity and Time-Invarian
eLinearity in 
ontinuous-time systemsConditions for linearitySys fx1 (t) + x2 (t)g = Sys fx1 (t)g+ Sys fx2 (t)gSys f�1 x1 (t)g = �1 Sys fx1 (t)gx1 (t), x2 (t): Any two input signals; �1: Arbitrary 
onstant gain fa
tor.Superposition prin
iple (
ombine the two 
onditions into one)Sys f�1 x1 (t) + �2 x2 (t)g = �1 Sys fx1 (t)g+ �2 Sys fx2 (t)gx1 (t), x2 (t): Any two input signals; �1, �2: Arbitrary 
onstant gain fa
tors.
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Chapter 2Linearity and Time-Invarian
eLinearity in 
ontinuous-time systems (
ontinued)If superposition works for the weighted sum of any two input signals, it also works foran arbitrary number of input signals.Sys( NXi=1 �i xi (t)) = NXi=1 �i Sys fxi (t)g = NXi=1 �i yi (t)
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eExample 2.1Testing linearity of 
ontinuous-timesystemsFour di�erent systems are des
ribedbelow. For ea
h, determine if the systemis linear or not:a. y (t) = 5 x (t)b. y (t) = 5 x (t) + 3
. y (t) = 3 [x (t)℄2d. y (t) = 
os (x (t))
Solution:a. y (t) =5x (t)=5 [�1 x1 (t) + �2 x2 (t)℄=�1 [5x1 (t)℄ + �2 [5x2 (t)℄=�1 y1 (t) + �2 y2 (t)Superposition prin
iple holds; thereforethis system is linear.b. y (t) =5x (t) + 3=5�1 x1 (t) + 5�2 x2 (t) + 3Superposition prin
iple does not holdtrue. The system in part (b) is notlinear.

.y (t) = 3 [�1 x1 (t) + �2 x2 (t)℄2= 3�21 [x1 (t)℄2 + 6�1�2x1 (t)x2 (t)+ 3�22 [x2 (t)℄2Superposition prin
iple does not holdtrue. The system in part (
) is notlinear.



Chapter 2Linearity and Time-Invarian
eExample 2.1 (
ontinued)d. y (t) = 
os [�1 x1 (t) + �2 x2 (t) ℄Superposition prin
iple does not hold true. The system in part (d) is not linear.MATLAB Exer
ise 2.1



Chapter 2Linearity and Time-Invarian
eTime-invarian
e in 
ontinuous-time systemsCondition for time-invarian
eSys fx (t)g = y (t) implies that Sys fx(t� �)g = y(t� �)
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Chapter 2Linearity and Time-Invarian
eTime-invarian
e in 
ontinuous-time systems (
ontinued)Alternatively, time invarian
e 
an be explained by the equivalen
e of the two system
on�gurations shown:
Delay
(τ)

Systemx (t) y (t− τ)
x (t− τ)

System
Delay
(τ)

x (t) y (t− τ)
y (t)
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Chapter 2Linearity and Time-Invarian
eExample 2.2Testing time-invarian
e of 
ontinuous-time systemsThree di�erent systems are des
ribed below. For ea
h, determine if the system istime-invariant or not:a. y (t) = 5x (t)b. y (t) = 3 
os (x (t))
. y (t) = 3 
os (t) x (t)Solution:a. Sysfx (t� �)g = 5x (t� �) = y (t� �) Time-invariant.b. Sysfx (t� �)g = 3 
os ( x (t� �) ) = y (t� �) Time-invariant.
. Sysfx (t� �)g = 3 
os (t) x (t� �) 6= y (t� �) Not time-invariant.MATLAB Exer
ise 2.2



Chapter 2Linearity and Time-Invarian
eExample 2.3Using linearity propertyA 
ontinuous-time system is known to be linear. Whether the system is time-invariantor not is not known. Assume that the responses of the system to four input signalsx1 (t), x2 (t) x3 (t) and x4 (t) shown below are known. Dis
uss how the informationprovided 
an be used for �nding the response of this system to the signal x (t) shown.
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Chapter 2Linearity and Time-Invarian
eExample 2.3 (
ontinued)
t

x (t)

Sys{..}x (t) y (t)

1

−1

0.5

1.5 2.5Solution:x (t) = 0:6x2 (t) + 0:8x4 (t) ) y (t) = 0:6 y2 (t) + 0:8 y4 (t)



Chapter 2Di�erential Equations for Continuous-Time SystemsDi�erential equations for 
ontinuous-time systemsExample: d2ydt2 + 3x(t) dydt + y(t)� 2x(t) = 0Many physi
al 
omponents have mathemati
al models that involve integral anddi�erential relationships between signals:
b b

LiL (t)

vL (t)+ −Ideal indu
tor:vL (t) = L diL (t)dt
b b

CiC (t)

vC (t)+ −Ideal 
apa
itor:iC (t) = C dvC (t)dt



Chapter 2Di�erential Equations for Continuous-Time SystemsExample 2.4Di�erential equation for simple RC
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uitFind a di�erential equation to des
ribethe input-output relationship for the�rst-order RC 
ir
uit shown. b b
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uitFind a di�erential equation to des
ribethe input-output relationship for the�rst-order RC 
ir
uit shown. b b
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y (t)i (t)Solution:We know that vR (t) = R i (t) and i (t) = C dy (t)dtUse KVL to obtainRC dy (t)dt + y (t) = x (t) ) dy (t)dt + 1RC y (t) = 1RC x (t)
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ir
uitFind a di�erential equation to des
ribethe input-output relationship for the�rst-order RC 
ir
uit shown. b
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Chapter 2Di�erential Equations for Continuous-Time SystemsExample 2.5Another RC 
ir
uitFind a di�erential equation to des
ribethe input-output relationship for the�rst-order RC 
ir
uit shown. b

b

−
+

x (t)

R1

R2 C

+

−

y (t)i1 (t) i2 (t)Solution:Apply KVL: �x (t) + R1 i1 (t) +R2 [i1 (t)� i2 (t)℄ = 0R2 [i2 (t)� i1 (t)℄ + y (t) = 0i2 (t) = C dy (t)dt ; i1 (t) = C dy (t)dt + 1R2 y (t)�x (t) +R1C dy (t)dt � R1 +R2R2 y (t) = 0Rearrange terms dy (t)dt + R1 +R2R1R2C y (t) = 1R1C x (t)
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ir
uitFind a di�erential equation to des
ribethe input-output relationship for theRLC 
ir
uit shown. iL(t)
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Chapter 2Di�erential Equations for Continuous-Time SystemsExample 2.6Di�erential equation for RLC 
ir
uitFind a di�erential equation to des
ribethe input-output relationship for theRLC 
ir
uit shown. iL(t)
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x (t)

R L
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+
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y (t)i (t)

+ −vL (t)Solution:Apply KVL: �x (t) + R i (t) + vL (t) + y (t) = 0i (t) = C dy (t)dt ; vL (t) = L di (t)dt = LC d2y (t)dt2�x (t) +RC dy (t)dt + LC d2y (t)dt2 + y (t) = 0Rearrange terms: d2y (t)dt2 + RL dy (t)dt + 1LC y (t) = 1LC x (t)



Chapter 2Constant-Coe�
ient Ordinary Di�erential EquationsConstant-
oe�
ient ordinary di�erential equationsGeneral 
onstant-
oe�
ient di�erential equation for a CTLTI system:aN dNy (t)dtN +aN�1 dN�1y (t)dtN�1 + : : :+ a1 dy (t)dt + a0 y (t) =bM dMx (t)dtM + bM�1 dM�1x (t)dtM�1 + : : :+ b1 dx (t)dt + b0 x (t)Constant-
oe�
ient ordinary di�erential equation in 
losed summation formNXk=0 ak dky (t)dtk = MXk=0 bk dkx (t)dtkInitial 
onditions: y (t0) ; dy (t)dt ���t=t0 ; : : : ; dN�1y (t)dtN�1 ����t=t0



Chapter 2Constant-Coe�
ient Ordinary Di�erential EquationsExample 2.7Che
king linearity and time-invarian
e of a di�erential equationDetermine whether the �rst-order 
onstant-
oe�
ient di�erential equationdy (t)dt + a0 y (t) = b0 x (t)represents a CTLTI system.



Chapter 2Constant-Coe�
ient Ordinary Di�erential EquationsExample 2.7Che
king linearity and time-invarian
e of a di�erential equationDetermine whether the �rst-order 
onstant-
oe�
ient di�erential equationdy (t)dt + a0 y (t) = b0 x (t)represents a CTLTI system.Solution:Let input signals x1 (t) and x2 (t) produ
e the responses y1 (t) and y2 (t) respe
tively:dy1 (t)dt + a0 y1 (t) = b0 x1 (t) and dy2 (t)dt + a0 y2 (t) = b0 x2 (t)Constru
t a new input signalx3 (t) = �1 x1 (t) + �2 x2 (t)For linearity we need y3 (t) = �1 y1 (t) + �2 y2 (t)



Chapter 2Constant-Coe�
ient Ordinary Di�erential EquationsExample 2.7 (
ontinued)It 
an be shown that dy3 (t)dt + a0 y3 (t) = b0 x3 (t)Is this su�
ient?What happens at t = t0, the time instant at whi
h the initial 
onditions are spe
i�ed?Suppose the initial value of y (t) is given as y (t0) = y0. We must havey1 (t0) = y0 ; y2 (t0) = y0 ; y3 (t0) = y0but we also need y3 (t0) = �1 y1 (t0) + �2 y2 (t0)For linearity: y0 = 0.Che
k for time-invarian
e:dy (t� �)dt + a0 y (t� �) = b0 x (t� �)The system is time-invariant.



Chapter 2Constant-Coe�
ient Ordinary Di�erential EquationsConstant-
oe�
ient ordinary di�erential equations (
ontinued)Constant-
oe�
ient di�erential equation for a CTLTI systemThe di�erential equation NXk=0 ak dky (t)dtk = MXk=0 bk dkx (t)dtkrepresents a CTLTI system provided that all initial 
onditions are equal to zero:y (t0) = 0 ; dy (t)dt ���t=t0 = 0 ; : : : ; dN�1y (t)dtN�1 ����t=t0 = 0It is typi
al, but not required, to have t0 = 0.



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationSolution of the �rst-order di�erential equationSolution of the �rst-order di�erential equationThe di�erential equationdy (t)dt + �y (t) = r (t) ; y (t0) : spe
i�edis solved as y (t) = e��(t�t0) y (t0) + ˆ tt0 e��(t��) r (�) d�Even though this result is only appli
able to a �rst-order di�erential equation, it is alsouseful for working with higher order systems through the use of state-spa
e models.



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.8Unit-step response of the simple RC 
ir
uitFor the RC 
ir
uit shown, assume the initial value of the output at time t = 0 isy (0) = 0. Determine the response of the system to a unit-step fun
tion, i.e.,x (t) = u (t).
b b

b

b

b

R=1 Ω

C=1/4 F

+

−

x (t)

+

−

y (t)

t

x(t) = u(t)

1
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ir
uitFor the RC 
ir
uit shown, assume the initial value of the output at time t = 0 isy (0) = 0. Determine the response of the system to a unit-step fun
tion, i.e.,x (t) = u (t).
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R=1 Ω
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+

−

x (t)

+

−

y (t)

t

x(t) = u(t)

1Solution: dy (t)dt + 4 y (t) = 4u (t)y (t) = ˆ t0 e�4 (t��) 4u (t) d� = 4 e�4t ˆ t0 e4 � d� = 1� e�4t for t � 0



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.8 (
ontinued)In 
ompa
t form: y (t) = �1� e�4t� u (t)replacemen

y
(t
)

t (sec)

−1 −0.5 0 0.5 1 1.5
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Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.9Pulse response of the simple RC 
ir
uitDetermine the response of the RC 
ir
uit shown to a re
tangular pulse signalx (t) = A� (t=w)
b

b

b

b

b

R = 1 Ω

C = 1/4 F

+

−

x(t)

+

−

y(t)

t

x (t) = AΠ (t/w)

A

−w/2 w/2

w



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.9Pulse response of the simple RC 
ir
uitDetermine the response of the RC 
ir
uit shown to a re
tangular pulse signalx (t) = A� (t=w)
b

b

b

b

b

R = 1 Ω

C = 1/4 F

+

−

x(t)

+

−

y(t)

t

x (t) = AΠ (t/w)

A

−w/2 w/2

wSolution:Di�erential equation: dy (t)dt + 4 y (t) = 4A� (t=w)Initial value: y (�w=2) = 0.



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.9 (
ontinued)Output signal: y (t) = ˆ t�w=2 e�4(t��) 4A� (�=w) d�Case 1: �w2 < t � w2y (t) = 4Ae�4t ˆ t�w=2 e4� d� = A �1� e�2w e�4t�Case 2: t > w2 y (t) = 4Ae�4t ˆ w=2�w=2 e4� d� = Ae�4t �e2w � e�2w�



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.9 (
ontinued)Complete response:y (t) =8<: A �1� e�2w e�4t� ; �w2 < t � w2Ae�4t �e2w � e�2w� ; t > w2The signal y (t) is shown for A = 1 and w = 1.replacemen

y
(t
)

t (sec)

−1 −0.5 0 0.5 1 1.5
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Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.10Pulse response of the simple RC 
ir
uit revisitedRework the problem in Example 2.9 by making use of the unit-step response found inExample 2.8 along with linearity and time-invarian
e properties of the RC 
ir
uit.



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.10Pulse response of the simple RC 
ir
uit revisitedRework the problem in Example 2.9 by making use of the unit-step response found inExample 2.8 along with linearity and time-invarian
e properties of the RC 
ir
uit.Solution: Express the pulse signal as the di�eren
e of two unit-step signals:x (t) = A� (t=w) = Au�t+ w2 �� Au�t� w2 �
t

A u (t+ w/2)

t

A u (t− w/2)

t

x (t) = A [u (t+ w/2)− u (t− w/2)]

−
w

2

w

2

−
w

2

w

2

A

A

A

(a)

(b)

(c)



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.10 (
ontinued)
t

x1 (t) = Au (t+ w/2)

t

y1 (t) = A Sys {u (t+ w/2)}

t

x2 (t) = Au (t− w/2)

t

y2 (t) = A Sys {u (t− w/2)}

t

x1 (t)− x2 (t)

t

y1 (t)− y2 (t)

A

A

A

A

A

A

−w/2 −w/2

w/2 w/2

−w/2 w/2 −w/2 w/2

(a)

(c)

(e)

(b)

(d)

(f)



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationExample 2.10 (
ontinued)Unit-step response: Sys fu (t)g = �1� e�4t� u (t)Response to the pulse input:Sys fx (t)g = A Sysnu�t+ w2 �o� A Sysnu�t� w2 �oSys fx (t)g = A �1� e�4(t+w=2)� u�t+ w2 �� A �1� e�4(t�w=2)� u�t� w2 �MATLAB Exer
ise 2.3



Chapter 2Solving Di�erential EquationsSolution of the �rst-order di�erential equationIntera
tive demo: r
_demo1.mExperiment with the superposition prin
iple by varying the 
ir
uit parameters R and Cas well as the pulse width w.



Chapter 2Solving Di�erential EquationsSolution of the general di�erential equationSolution of the general di�erential equationNXk=0 ak dky (t)dtk = MXk=0 bk dkx (t)dtkInitial 
onditions: y (t0) ; dy (t)dt ���t=t0 ; : : : ; dN�1y (t)dtN�1 ����t=t0General solution: y (t) = yh (t) + yp (t)yh (t) is the homogeneous solution of the di�erential equation (natural response).yp (t) is the parti
ular solution of the di�erential equation.y (t) = yh (t) + yp (t) is the for
ed solution of the di�erential equation (for
edresponse).



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemFinding the natural response of a 
ontinuous-time systemHomogeneous di�erential equation:NXk=0 ak dky (t)dtk = 0First-order homogeneous di�erential equation:dy (t)dt + � y (t) = 0Solution: y (t) = 
 e��tThe 
onstant 
 must be determined based on the desired initial value of y (t) at t = t0.



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.11Natural response of the simple RC 
ir
uitConsider the RC 
ir
uit shown. Element values are R = 1 
 and C = 1=4 F. Inputterminals of the 
ir
uit are 
onne
ted to a battery that supplies the 
ir
uit with aninput voltage of 5 V up to the time instant t = 0. The swit
h is moved from positionA to position B at t = 0 ensuring that x (t) = 0 for t � 0. Find the output signal as afun
tion of time.
b

b

b

5 V

R

C

+

−

+

−

y (t)

A

B b

b

b

5 V

R

C

+

−

+

−

y (t)
i (t)

t = 0

A

B

x (t) = 0
+

−



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.11Natural response of the simple RC 
ir
uitConsider the RC 
ir
uit shown. Element values are R = 1 
 and C = 1=4 F. Inputterminals of the 
ir
uit are 
onne
ted to a battery that supplies the 
ir
uit with aninput voltage of 5 V up to the time instant t = 0. The swit
h is moved from positionA to position B at t = 0 ensuring that x (t) = 0 for t � 0. Find the output signal as afun
tion of time.
b

b

b

5 V

R

C

+

−

+

−

y (t)

A

B b

b

b

5 V

R

C

+

−

+

−

y (t)
i (t)

t = 0

A

B

x (t) = 0
+

−Solution:Homogeneous di�erential equation:dy (t)dt + 4 y (t) = 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.11 (
ontinued)Homogeneous solution is of the form:yh (t) = 
 e�st = 
 e�4t ; for t � 0Satisfy initial value: yh (0) = 
 e�4(0) = 
 = 5Natural response: yh (t) = 5 e�4t ; for t � 0In 
ompa
t form: yh (t) = 5 e�4t u (t)



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.11 (
ontinued) yh (t) = 5 e�4t u (t)
y h
(t
)

Time (sec)

0 0.5 1 1.5

0

2

4

6



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.12Changing the start time in Example 2.11Rework the problem in Example 2.11 with one minor 
hange: The initial value of theoutput signal is spe
i�ed at the time instant t = �0:5 se
onds instead of at t = 0, andits value is y (�0:5) = 10.
b

b

b

10 V

R

C

+

−

+

−

y (t)

A

B b

b

b

10 V

R

C

+

−

+

−

y (t)
i (t)

t=−0.5

A

B

x (t) = 0
+

−



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.12Changing the start time in Example 2.11Rework the problem in Example 2.11 with one minor 
hange: The initial value of theoutput signal is spe
i�ed at the time instant t = �0:5 se
onds instead of at t = 0, andits value is y (�0:5) = 10.
b

b

b

10 V

R

C

+

−

+

−

y (t)

A

B b

b

b

10 V

R

C

+

−

+

−

y (t)
i (t)

t=−0.5

A

B

x (t) = 0
+

−Solution:General form of the homogeneous solution:yh (t) = 
 e�4tTo satisfy yh (�0:5) = 10:yh (�0:5) = 
 e�4(�0:5) = 
 e2 = 10 ) 
 = 10e2 = 1:3534



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.12 (
ontinued)Homogeneous solution isyh (t) = 1:3534 e�4t ; for t � �0:5In 
ompa
t form: yh (t) = 1:3534 e�4t u (t+ 0:5)
1.3534

y h
(t
)

Time (sec)

−0.5 0 0.5 1

0

2

4

6

8

10



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemFinding the natural response of a 
ontinuous-time system (
ontinued)General homogeneous di�erential equation:NXk=0 ak dky (t)dtk = 0Chara
teristi
 equation NXk=0 ak sk = 0To obtain the 
hara
teristi
 equation, substitute:dky (t)dtk ! sk



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemFinding the natural response of a 
ontinuous-time system (
ontinued)Write the 
hara
teristi
 equation in open form:aNsN + aN�1sN�1 + : : :+ a1s+ a0 = 0In fa
tored form: aN (s� s1) (s� s2) : : : (s� sN ) = 0Homogeneous solution (assuming roots are distin
t):yh (t) = 
1 es1t + 
2 es2t + : : :+ 
N esN t = NXk=1 
k esktUnknown 
oe�
ients 
1; 
2; : : : ; 
N are determined from the initial 
onditions.Terms eskt are 
alled the modes of the system.



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.13Time 
onstant 
on
eptExplore the natural response of the RC
ir
uit as a fun
tion of 
ir
uitparameters and the initial voltage of the
apa
itor. b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.13Time 
onstant 
on
eptExplore the natural response of the RC
ir
uit as a fun
tion of 
ir
uitparameters and the initial voltage of the
apa
itor. b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)Solution:The 
hara
teristi
 equation is s+ 1RC = 0If y (0) = V0, the natural response is yh (t) = V0 e�t=RC u (t)De�ne the time 
onstant as� = RC, so thatyh (t) = V0 e�t=� u (t)
t

yh (t)

Slope = −1/τ

τ

V0

V0

e



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemIntera
tive demo: r
_demo2.mExperiment by varying the 
ir
uit parameters R and C as well as the initial voltage V0.



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.14Natural response of se
ond-order systemFor the RLC 
ir
uit let the elementvalues be R = 5 
, L = 1 H andC = 1=6 F. Initial values are i (0) = 2 Aand y (0) = 1:5 V. No external inputsignal is applied to the 
ir
uit, thereforex (t) = 0. Determine the output voltagey (t).
iL(t)

−
+

x (t)

R L

C

+

−

y (t)i (t)

+ −vL (t)



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.14Natural response of se
ond-order systemFor the RLC 
ir
uit let the elementvalues be R = 5 
, L = 1 H andC = 1=6 F. Initial values are i (0) = 2 Aand y (0) = 1:5 V. No external inputsignal is applied to the 
ir
uit, thereforex (t) = 0. Determine the output voltagey (t).
iL(t)

−
+

x (t)

R L

C

+

−

y (t)i (t)

+ −vL (t)

Solution:Homogeneous di�erential equation:d2y (t)dt2 + 5 dy (t)dt + 6 y (t) = 0Chara
teristi
 equation:s2 + 5s+ 6 = 0 ) s1 = �2 ; s2 = �3Homogeneous solution: yh (t) = 
1 e�2t + 
2 e�3t for t � 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.14 (
ontinued)Evaluate yh (t) for t = 0:yh (0) = 
1e�2(0) + 
2e�3(0) = 
1 + 
2 = 1:5Use the initial value of the indu
tor 
urrent:i (0) = C dyh (t)dt ���t=0 = 2 ) dyh (t)dt ���t=0 = i (0)C = 21=6 = 12Di�erentiate the homogeneous solution found:dyh (t)dt ���t=0 = ��2
1e�2t � 3
2e�3t ����t=0 = �2
1 � 3
2 = 12Solve for 
1 and 
2: 
1 = 16:5 ; and 
2 = �15Natural response: yh (t) = 16:5 e�2t � 15 e�3t ; t � 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.14 (
ontinued)yh (t) = 16:5 e�2t � 15 e�3t ; t � 0replacemen

y h
(t
)

Time (sec)

0 0.5 1 1.5 2 2.5 3

−1

0

1

2

3

4



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemRoots of 
hara
teristi
 polynomialCase 1: All roots are distin
t and real-valued.Homogeneous solution: yh (t) = NXk=1 
kesktsk < 0 ) De
aying exponential
t

ck e
skt

sk < 0

sk > 0 ) Growing exponential
t

ck e
skt

sk > 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemRoots of 
hara
teristi
 polynomial (
ontinued)Case 2: Chara
teristi
 polynomial has 
omplex-valued roots.Sin
e the 
oe�
ients of the 
hara
teristi
 polynomial are real-valued, any 
omplexroots must appear in the form of 
onjugate pairs.Part of the homogeneous solution that is due to a 
onjugate pair of roots:yh1 (t) =
1a es1at + 
1b es1bt=
1a e(�1+j!1)t + 
1b e(�1�j!1)tCoe�
ients 
1a and 
1b must form a 
omplex 
onjugate pair as well.
1a = j
1j ej�1 and 
1b = j
1j e�j�1yh1 (t) = 2 j
1j e�1t 
os (!1t+ �1)Using the appropriate trigonometri
 identity:yh1 (t) = d1 e�1t 
os (!1t) + d2 e�1t sin (!1t)



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemRoots of 
hara
teristi
 polynomial (
ontinued)A pair of 
omplex 
onjugate roots for the 
hara
teristi
 polynomial leads to asolution 
omponent in the form of a 
osine signal multiplied by an exponentialsignal.The os
illation frequen
y of the 
osine signal is determined by !1, the imaginarypart of the 
omplex roots.The real part of the 
omplex roots, �1, impa
ts the amplitude of the solution. If�1 < 0, then the amplitude of the 
osine signal de
ays exponentially over time. In
ontrast, if �1 > 0, the amplitude of the 
osine signal grows exponentially overtime.
t

yh1 (t)

σk < 0

t

yh1 (t)

σk > 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemRoots of 
hara
teristi
 polynomial (
ontinued)Case 3: Chara
teristi
 polynomial has some multiple roots.aN (s� s1) (s� s2) : : : (s� sN ) = 0What if s2 = s1? yh (t) = 
11 es1t + 
12 t es1t + other termsA root of multipli
ity r requires r terms in the homogeneous solution:yh (t) = 
11 es1t + 
12 t es1t + : : :+ 
1r tr�1 es1t + other terms



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.15Natural response of se
ond-order system revisitedFor the RLC 
ir
uit shown, the initial indu
tor 
urrent is i (0) = 0:5 A, and the initial
apa
itor voltage is y (0) = 2 V. No external input signal is applied to the 
ir
uit,therefore x (t) = 0. Determine the output voltage y (t) ifa. the element values are R = 2 
, L = 1 H and C = 1=26 F,b. the element values are R = 6 
, L = 1 H and C = 1=9 F.
iL(t)

−
+

x (t)

R L

C

+

−

y (t)i (t)

+ −vL (t)



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.15Natural response of se
ond-order system revisitedFor the RLC 
ir
uit shown, the initial indu
tor 
urrent is i (0) = 0:5 A, and the initial
apa
itor voltage is y (0) = 2 V. No external input signal is applied to the 
ir
uit,therefore x (t) = 0. Determine the output voltage y (t) ifa. the element values are R = 2 
, L = 1 H and C = 1=26 F,b. the element values are R = 6 
, L = 1 H and C = 1=9 F.
iL(t)

−
+

x (t)

R L

C

+

−

y (t)i (t)

+ −vL (t)Solution:Using spe
i�ed initial value of the indu
tor 
urrent:i (0) = C dyh (t)dt ���t=0 = 0:5 ) dyh (t)dt ���t=0 = 0:5C



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.15 (
ontinued)a.Homogeneous di�erential equation:d2y (t)dt2 + 2 dy (t)dt + 26 y (t) = 0Chara
teristi
 equation:s2 + 2s+ 26 = 0 ) s1 = �1 + j5 ; s2 = �1� j5Natural response: yh (t) = d1 e�t 
os (5t) + d2 e�t sin (5t)Impose initial 
onditions: yh (0) = d1 = 2dyh (t)dt ���t=0 = �d1 + 5d2 = 13 ) d2 = 3Natural response: yh (t) = 2 e�t 
os (5t) + 3 e�t sin (5t) for t � 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.15 (
ontinued)b.Homogeneous di�erential equation:d2y (t)dt2 + 6 dy (t)dt + 9 y (t) = 0Chara
teristi
 equation: s2 + 6s+ 9 = 0 ) (s+ 3)2 = 0Homogeneous solution:yh (t) = 
11 e�3t + 
12 te�3t for t � 0Impose initial 
onditions: 
11 = 2dyh (t)dt ���t=0 = �3 
11 + 
12 = 4:5 ) 
12 = 10:5Natural response: yh (t) = 2 e�3t + 10:5 te�3t for t � 0



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemExample 2.15 (
ontinued)Homogeneous solution for part (a):
y h
(t
)

t (sec)

0 0.5 1 1.5 2 2.5 3

−2

0

2

4

Homogeneous solution for part (b):
y h
(t
)

t (sec)

0 0.5 1 1.5 2 2.5 3

−2

0

2

4



Chapter 2Solving Di�erential EquationsFinding the natural response of a 
ontinuous-time systemIntera
tive demo: nr_demo1.mExperiment by varying the lo
ations of the two roots s1 and s2 on the 
omplex plane.



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemFinding the for
ed response of a 
ontinuous-time systemChoosing a parti
ular solution for various input signalsInput signal Parti
ular solutionK (
onstant) k1K eat k1 eatK 
os (at) k1 
os (at) + k2 sin (at)K sin (at) k1 
os (at) + k2 sin (at)K tn kntn + kn�1tn�1 + : : :+ k1t+ k0



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemExample 2.16For
ed response of the �rst-order system forsinusoidal inputDetermine the output signal of the RC 
ir
uitshown in response to a sinusoidal input signal inthe form x (t) = A 
os (!t)with amplitude A = 20 and radian frequen
y! = 8 rad/s. The initial value of the outputsignal is y (0) = 5. b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemExample 2.16For
ed response of the �rst-order system forsinusoidal inputDetermine the output signal of the RC 
ir
uitshown in response to a sinusoidal input signal inthe form x (t) = A 
os (!t)with amplitude A = 20 and radian frequen
y! = 8 rad/s. The initial value of the outputsignal is y (0) = 5. b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)Solution:Di�erential equation: dy (t)dt + 4 y (t) = 4x (t)Homogeneous solution is in the formyh (t) = 
 e�4t for t � 0Do not determine 
 yet!



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemExample 2.16 (
ontinued)Parti
ular solution is in the formyp (t) = k1 
os (!t) + k2 sin (!t)Parti
ular solution yp (t) must satisfy the di�erential equation:dyp (t)dt = �!k1 sin (!t) + !k2 
os (!t)�!k1 sin (!t) + !k2 
os (!t) + 4 [k1 
os (!t) + 4k2 sin (!t)℄ = A 
os (!t)In 
ompa
t form:(4k1 + !k2 �A) 
os (!t) + (4k2 � !k1) sin (!t) = 0Solve for k1 and k2: k1 = 4A16 + !2 ; k2 = A!16 + !2For
ed solution:y (t) = yh (t) + yf (t) = 
e�4t + 4A16 + !2 
os (!t) + A!16 + !2 sin (!t)



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemExample 2.16 (
ontinued)Using numeri
al values A = 20 and ! = 8 rad/s:y (t) = 
 e�4t + 
os (8t) + 2 sin (8t)Impose the initial 
ondition y (0) = 5:y (0) = 5 = 
+ 
os (0) + 2 sin (0) ) 
 = 4Complete solution: y (t) = 4 e�4t + 
os (8t) + 2 sin (8t) for t � 0y (t) = yt (t) + yss (t)Transient 
omponent: yt (t) = 4 e�4t ; limt!1 fyt (t)g = 0Steady-state 
omponent: yss (t) = 
os (8t) + 2 sin (8t)



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemExample 2.16 (
ontinued)yt (t) = 4 e�4t ; yss (t) = 
os (8t) + 2 sin (8t)
y t
(t
)

Time (sec)

0 0.5 1 1.5 2 2.5 3

−4

−2

0

2

4

y s
s
(t
)

Time (sec)

0 0.5 1 1.5 2 2.5 3

−4

−2

0

2

4



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemExample 2.16 (
ontinued)Complete solution: y (t) = 4 e�4t + 
os (8t) + 2 sin (8t) for t � 0
y
(t
)
=

y t
(t
)
+
y s

s
(t
)

Time (sec)

0 0.5 1 1.5 2 2.5 3

−2

0

2

4



Chapter 2Solving Di�erential EquationsFinding the for
ed response of a 
ontinuous-time systemIntera
tive demo: fr_demo1.mExperiment by varying the 
ir
uit parameters R and C, the radian frequen
y ! andthe initial value y (0). Observe the e�e
ts on transient response yt (t), thesteady-state response yss (t) and the total for
ed response y (t) = yt (t) + yss (t).



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsBlo
k diagram representation of 
ontinuous-time systemsBlo
k diagrams for 
ontinuous-time systems are 
onstru
ted using three types of
omponents:Constant-gain ampli�ersSignal addersIntegrators
w (t)

K
K w (t)

b

w (t)

∫ t

t0

w (t) dt
∫

dt

w1 (t)

w2 (t)

wL (t)

...

w1 (t) + w2 (t) + . . .+ wL (t)



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsBlo
k diagram representation of 
ontinuous-time systems (
ontinued)A third-order di�erential equation:d3ydt3 + a2 d2ydt2 + a1 dydt + a0 y = b2 d2xdt2 + b1 dxdt + b0 xUse an intermediate variable w (t) in pla
e of y (t) in the left side of the di�erentialequation, and set the result equal to x (t):d3wdt3 + a2 d2wdt2 + a1 dwdt + a0 w = xd3wdt3 = x� a2 d2wdt2 � a1 dwdt � a0 w
x (t)

d3w

dt3
b

d2w

dt2
b

dw

dt
b

w (t)
∫

dt
∫

dt
∫

dt

−a2

−a1

−a0



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsBlo
k diagram representation of 
ontinuous-time systems (
ontinued)Express the signal y (t) in terms of the intermediate variable w (t):y = b2 d2wdt2 + b1 dwdt + b0 w
x (t)

d3w

dt3
b

d2w

dt2
b

dw

dt
b

w (t)
y (t)

∫

dt
∫

dt
∫

dt

−a2

−a1

−a0

b2

b1

b0



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsBlo
k diagram representation of 
ontinuous-time systems (
ontinued)Imposing initial 
onditions:
x (t)

d3w

dt3
b b b y (t)

∫

dt
∫

dt
∫

dtb

b

b

d2w

dt2

∣

∣

∣

∣

t=t0

t = t0

b

b

b

dw

dt

∣

∣

∣

∣

t=t0

t = t0

b

b

b

w(t0)

t = t0
−a2

−a1

−a0

b2

b1

b0



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsExample 2.17Blo
k diagram for 
ontinuous-time systemConstru
t a blo
k diagram to solve the di�erential equationd3ydt3 + 5 d2ydt2 + 17 dydt + 13 y = x+ 2 dxdtwith the input signal x (t) = 
os (20�t) and subje
t to initial 
onditionsy (0) = 1 ; dydt ���t=0 = 2 ; d2ydt2 ����t=0 = �4 ;



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsExample 2.17Blo
k diagram for 
ontinuous-time systemConstru
t a blo
k diagram to solve the di�erential equationd3ydt3 + 5 d2ydt2 + 17 dydt + 13 y = x+ 2 dxdtwith the input signal x (t) = 
os (20�t) and subje
t to initial 
onditionsy (0) = 1 ; dydt ���t=0 = 2 ; d2ydt2 ����t=0 = �4 ;Solution:Using the intermediate variable w (t):d3wdt3 + 5 d2wdt2 + 17 dwdt + 13w = x and y = w + 2 dwdt



Chapter 2Blo
k Diagram Representation of Continuous-Time SystemsExample 2.17 (
ontinued)Initial 
onditions spe
i�ed in terms of the values of y, dy=dt and d2y=dt2 at t = 0need to be expressed in terms of the integrator outputs w, dw=dt and d2w=dt2 att = 0. w (0) = �7145 ; dwdt ���t=0 = 5845 ; d2wdt2 ����t=0 = 1645
x (t) b b b y (t)

∫

dt
∫

dt
∫

dtb
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b
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Chapter 2Impulse Response and ConvolutionImpulse responseh (t) = Sys fÆ (t)g δ (t) h (t)Sys{..}For a CTLTI system: The impulse response also 
onstitutes a 
omplete des
ription ofthe system.Finding the impulse response of a CTLTI system from the di�erential equation1. Use a unit-step fun
tion for the input signal, and 
ompute the for
ed response ofthe system, i.e., the unit-step response.2. Di�erentiate the unit-step response of the system to obtain the impulse response,i.e., h (t) = dy (t)dtSys fÆ (t)g = Sysndu (t)dt o = ddt h Sys fu (t)gi



Chapter 2Impulse Response and ConvolutionExample 2.18Impulse response of the simple RC 
ir
uitDetermine the impulse response of the�rst-order RC 
ir
uit shown. Assume thesystem is initially relaxed, that is, there is noinitial energy stored in the system. (Re
allthat this is a ne
essary 
ondition for thesystem to be CTLTI.) b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)



Chapter 2Impulse Response and ConvolutionExample 2.18Impulse response of the simple RC 
ir
uitDetermine the impulse response of the�rst-order RC 
ir
uit shown. Assume thesystem is initially relaxed, that is, there is noinitial energy stored in the system. (Re
allthat this is a ne
essary 
ondition for thesystem to be CTLTI.) b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)Solution: Di�erential equation isdy (t)dt + 4 y (t) = 4x (t)Using the �rst-order solution method:h (t) = ˆ t0 e�4 (t��) 4 Æ (�) d�Using the sifting property of the unit-impulse fun
tion:h (t) = 4 e�4t u (t)



Chapter 2Impulse Response and ConvolutionExample 2.18 (
ontinued)Using the the more general method that relies on the unit step response:y (t) = Sys fu (t)g = �1� e�4t� u (t)Di�erentiating y (t):h (t) = dy (t)dt = ddt ��1� e�4t� u (t)� = 4 e�4t u (t)s
h
(t
)
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Chapter 2Impulse Response and ConvolutionExample 2.19Impulse response of a se
ond-order systemDetermine the impulse response of the RLC
ir
uit shown. Use element values R = 2 
,L = 1 H and C = 1=26 F. iL(t)

−
+

x (t)

R L

C

+

−

y (i (t)

+ −vL (t)



Chapter 2Impulse Response and ConvolutionExample 2.19Impulse response of a se
ond-order systemDetermine the impulse response of the RLC
ir
uit shown. Use element values R = 2 
,L = 1 H and C = 1=26 F. iL(t)

−
+

x (t)

R L

C

+

−

y (i (t)

+ −vL (t)Solution:Di�erential equation: d2y (t)dt2 + 2 dy (t)dt + 26 y (t) = 0The homogeneous solution is (see Example 2.15)yh (t) = d1 e�t 
os (5t) + d2 e�t sin (5t)To �nd the unit-step response, start with the parti
ular solutionyp (t) = k1



Chapter 2Impulse Response and ConvolutionExample 2.19 (
ontinued)Parti
ular solution must satisfy the di�erential equation, therefore k1 = 1, and the
omplete solution is y (t) =yh (t) + yp (t)=d1 e�t 
os (5t) + d2 e�t sin (5t) + 1The system is CTLTI, and is therefore initially relaxed.y (0) = d1 + 1 = 0 ) d1 = �1dyh (t)dt ���t=0 = 0 ) �d1 + 5d2 = 0 ) d2 = �0:2s Unit-step response isy (t) = yh (t) + yp (t) = �e�t 
os (5t)� (0:2) e�t sin (5t) + 1 for t � 0Impulse response is h (t) = dy (t)dt = 5:2 e�t sin (5t) for t � 0



Chapter 2Impulse Response and ConvolutionExample 2.19 (
ontinued)h (t) = dy (t)dt = 5:2 e�t sin (5t) for t � 0
t (sec)

h
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Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsConvolution operation for CTLTI systemsThe output signal y (t) of a CTLTI system is equal to the 
onvolution of its impulseresponse h (t) with the input signal x (t).Continuous-time 
onvolutiony (t) =x (t) � h (t) =ˆ 1�1 x (�) h (t� �) d�=h (t) � x (t) =ˆ 1�1 h (�) x (t� �) d�



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsConvolution operation for CTLTI systems (
ontinued)Steps involved in 
omputing the 
onvolution of two signalsTo 
ompute the 
onvolution of x (t) and h (t) at a spe
i�
 time-instant t:1. Sket
h the signal x (�) as a fun
tion of the independent variable �. This
orresponds to a simple name 
hange on the independent variable, and the graphof the signal x (�) appears identi
al to the graph of the signal x (t).2. For one spe
i�
 value of t, sket
h the signal h (t� �) as a fun
tion of theindependent variable �. This task 
an be broken down into two steps as follows:2a. Sket
h h (��) as a fun
tion of �. This step amounts to time-reversal of h (�).2b. In h (�) substitute �! �� t. This step yieldsh (��)����!��t = h (t� �)and amounts to time-shifting h (��) by t.3. Multiply the two signals in 1 and 2 to obtain f (�) = x (�) h (t� �).4. Compute the area under the produ
t f (�) = x (�) h (t� �) by integrating itover the independent variable �. The result is the value of the output signal atthe spe
i�
 time instant t.5. Repeat steps 1 through 4 for all values of t that are of interest.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsConvolution operation for CTLTI systems (
ontinued)
t

x (t)

τ

x (τ)

t → τ

t

h (t)

λ

h (λ)

λ

h (−λ)

λ

h (t− λ)

t → λ

Name change

λ→
−λ

Tim
e r

eve
rsa

l

λ → λ− t

Time shift

t



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.20Unit-step response of RC 
ir
uit revisitedCompute the unit-step response of thesimple RC 
ir
uit using the 
onvolutionoperation. b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.20Unit-step response of RC 
ir
uit revisitedCompute the unit-step response of thesimple RC 
ir
uit using the 
onvolutionoperation. b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)Solution:Impulse response of the RC 
ir
uit ish (t) = 1RC e�t=RC u (t)Output of the system in response to input x (t):y (t) = ˆ 1�1 x (�) h (t� �) d�Fun
tions needed: x (�) and h (t� �).



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.20 (
ontinued)
λ

x (λ)

λ

x (λ)

λ

h (t− λ)

λ

h (t− λ)

λ

x (λ) h (t− λ)

λ

x (λ) h (t− λ)

t t

t

Case 1: t ≤ 0 Case 2: t > 0



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.20 (
ontinued)Case 1: t � 0Fun
tions x (�) and h (t� �) do not overlap anywhere. Thereforey (t) = 0; for t � 0Case 2: t > 0Fun
tions x (�) and h (t� �) overlap for values of � in the interval (0; t).In this interval x (�) = 1 and h (t� �) = 1RC e�(t��)=RC . Thereforey (t) = ˆ t0 1RC e�(t��)=RC d� = 1� e�t=RC ; for t > 0Combine the two 
ases through the use of a unit-step fun
tion:y (t) = � 1� e�t=RC � u (t)



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsIntera
tive demo: 
onv_demo1.mVary t and observe the waveforms and their overlaps.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.21Pulse response of RC 
ir
uit revisitedUsing 
onvolution, determine the responseof the RC 
ir
uit to a unit-pulse input signalx (t) = � (t). b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.21Pulse response of RC 
ir
uit revisitedUsing 
onvolution, determine the responseof the RC 
ir
uit to a unit-pulse input signalx (t) = � (t). b b

b

b

b

R

C

+

−

x (t)

+

−

y (t)i (t)Solution:It is useful to sket
h the fun
tions involved in the 
onvolution integral, namely x (�)and h (t� �). Three distin
tly di�erent possibilities for the time variable t will be
onsidered.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.21 (
ontinued)
λ

x (λ)

λ

x (λ)

λ

x (λ)

λ

h (t− λ)

λ

h (t− λ)
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h (t− λ)
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x (λ) h (t− λ)
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Case 1: t ≤ −
1

2
Case 2: −
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Case 3: t >
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Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.21 (
ontinued)Case 1: t � � 12Fun
tions x (�) and h (t� �) do not overlap. Thereforey (t) = 0 ; for t � �12Case 2: � 12 < t � 12Fun
tions x (�) and h (t� �) overlap in the range � 12 < � � t. Thereforey (t) = ˆ t�1=2 1RC e�(t��)=RC d� = �1� e�(t+1=2)=RC� ; for � 12 < t � 12Case 3: t > 12Fun
tions x (�) and h (t� �) overlap in the range � 12 < � � 12 . Thereforey (t) = ˆ 1=2�1=2 1RC e�(t��)=RC d� = e�t=RC �e1=2RC � e�1=2RC� ; for t > 12



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.21 (
ontinued)y (t) =8><>: 0 ; t � � 12�1� e�(t+1=2)=RC� ; � 12 < t � 12e�t=RC �e1=2RC � e�1=2RC� ; t > 12
t

y (t)

−
1

2

1

2

1− e−1/RC



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsIntera
tive demo: 
onv_demo2.mVary t and observe the waveforms and their overlaps.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22A more involved 
onvolution problemImpulse response of a CTLTI system is h(t) = e�t [u (t)� u (t� 2)℄. The inputsignal is x (t) = � (t� 0:5)� � (t� 1:5) =( 1 ; 0 � t < 1�1 ; 1 � t < 20 ; otherwiseDetermine the output signal y (t) using 
onvolution.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22A more involved 
onvolution problemImpulse response of a CTLTI system is h(t) = e�t [u (t)� u (t� 2)℄. The inputsignal is x (t) = � (t� 0:5)� � (t� 1:5) =( 1 ; 0 � t < 1�1 ; 1 � t < 20 ; otherwiseDetermine the output signal y (t) using 
onvolution.Solution: Fun
tions involved in the 
onvolution integral are:
λ

x (λ)

λ

h (t− λ)

1

−1

1 2 t− 2 t



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22 (
ontinued)
λ

x (λ)

λ

x (λ)

λ

x (λ)

λ

h (t− λ)

λ

h (t− λ)

λ

h (t− λ)

λ

x (λ) h (t− λ)
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x (λ) h (t− λ)
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1
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1
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t t t−2 t
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Case 1: t ≤ 0 Case 2: 0 < t ≤ 1 Case 3: 1 < t ≤ 2



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22 (
ontinued)
λ

x (λ)

λ

x (λ)

λ

x (λ)

λ

h (t− λ)

λ

h (t− λ)

λ

h (t− λ)

λ
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1
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1
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1
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t−2 t t−2 t−2

t−2

Case 4: 2 < t ≤ 3 Case 5: 3 < t ≤ 4 Case 6: t > 4



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22 (
ontinued)Case 1: t � 0Fun
tions x (�) and h (t� �) do not overlap. Thereforey (t) = 0 ; for t � 0Case 2: 0 < t � 1Fun
tions x (�) and h (t� �) overlap for 0 < � � t. Thereforey (t) = ˆ t0 (1) e�(t��) d� = 1� e�t ; for 0 < t � 1Case 3: 1 < t � 2Fun
tions x (�) and h (t� �) overlap for 0 < � � t. Thereforey (t) = ˆ 10 (1) e�(t��) d�+ ˆ t1 (�1) e�(t��) d�= �1 + 4:4366 e�t ; for 1 < t � 2



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22 (
ontinued)Case 4: 2 < t � 3Fun
tions x (�) and h (t� �) overlap for t� 2 < � � 2. Thereforey (t) = ˆ 1t�2 (1) e�(t��) d�+ ˆ 21 (�1) e�(t��) d�= �0:1353� 1:9525 e�t ; for 2 < t � 3Case 5: 3 < t � 4Fun
tions x (�) and h (t� �) overlap for t� 2 < � � 2. Thereforey (t) = ˆ 2t�2 (�1) e�(t��) d� = 0:1353 � 7:3891 e�t ; for 3 < t � 4Case 6: t > 4Fun
tions x (�) and h (t� �) do not overlap. Thereforey (t) = 0 ; for t > 4



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.22 (
ontinued)In 
ompa
t form:y (t) =8>>>><>>>>: 0 ; t < 0 or t > 41� e�t ; 0 < t � 1�1 + 4:4366 e�t ; 1 < t � 2�0:1353� 1:9525 e�t ; 2 < t � 30:1353 � 7:3891 e�t ; 3 < t � 4
t

y (t)

1 2 3 4

0.6321

−0.3996



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsIntera
tive demo: 
onv_demo3.mVary t and observe the waveforms and their overlaps.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.23Using alternative form of
onvolutionFind the unit-step response ofthe RC 
ir
uit with impulseresponseh (t) = 1RC e�t=RC u (t)using the alternative form ofthe 
onvolution integral.



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.23Using alternative form of
onvolutionFind the unit-step response ofthe RC 
ir
uit with impulseresponseh (t) = 1RC e�t=RC u (t)using the alternative form ofthe 
onvolution integral.Solution:y (t) = ˆ t0 h (
) x (t� 
) d

γ

h (γ)

γ

h (γ)

γ

x (t− γ)

γ

x (t− γ)

γ

h (γ) x (t− γ)

γ

h (γ) x (t− γ)

t t

t

Case 1: t ≤ 0 Case 2: t > 0



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsExample 2.23 (
ontinued)For t � 0 the two fun
tions do not overlap. Thereforey (t) = 0 ; for t � 0For t > 0, the two fun
tions h (
) and x (t� 
) overlap in the interval (0; t).Therefore y (t) = ˆ t0 1RC e�
=RC d
 = 1� e�t=RC ; for t > 0In 
ompa
t form: y (t) = � 1� e�t=RC � u (t)



Chapter 2Impulse Response and ConvolutionConvolution operation for CTLTI systemsIntera
tive demo: 
onv_demo4.mVary t and observe the waveforms and their overlaps.



Chapter 2Causality in Continuous-Time SystemsCausality in 
ontinuous-time systemsCausal systemA system is said to be 
ausal if the 
urrent value of the output signal depends only on
urrent and past values of the input signal, but not on its future values.CTLTI system: y (t) = h (t) � x (t) = ˆ 1�1 h (�) x (t� �) d�For � < 0, the term x (t� �) refers to future values of the input signal.Causality in CTLTI systemsFor a CTLTI system to be 
ausal, the impulse response of the system must be equalto zero for all negative values of its argument.h (t) = 0 for all t < 0



Chapter 2Stability in Continuous-Time SystemsStability in 
ontinuous-time systemsStable systemA system is said to be stable in the bounded-input bounded-output (BIBO) sense ifany bounded input signal is guaranteed to produ
e a bounded output signal.��x (t)�� < Bx <1 implies that ��y (t)�� < By <1CTLTI system: y (t) = h (t) � x (t) = ˆ 1�1 h (�) x (t� �) d�Stability in CTLTI systemsFor a CTLTI system to be stable, its impulse response must be absolute integrable.
ˆ 1�1 ��h (�)�� d� <1



Chapter 2Stability in Continuous-Time SystemsExample 2.24Stability of a �rst-order 
ontinuous-time systemEvaluate the stability of the �rst-order CTLTI system des
ribed by the di�erentialequation dy (t)dt + ay (t) = x (t)where a is a real-valued 
onstant.



Chapter 2Stability in Continuous-Time SystemsExample 2.24Stability of a �rst-order 
ontinuous-time systemEvaluate the stability of the �rst-order CTLTI system des
ribed by the di�erentialequation dy (t)dt + ay (t) = x (t)where a is a real-valued 
onstant.Solution:Impulse response: h (t) = e�at u (t)Che
k for stability:
ˆ 1�1 ��h (�)�� d� = ˆ 10 e�a� d� = 1a provided that a > 0The system is stable if a > 0.



Chapter 2Approximate Numeri
al Solution of a Di�erential EquationApproximate numeri
al solution of a di�erential equationFirst-order linear di�erential equation:dy (t)dt + 1RC y (t) = 1RC x (t)Rearrange terms: dy (t)dt = � 1RC y (t) + 1RC x (t)General form:dy (t)dt = g [t; y (t)℄ where g [t; y (t)℄ = � 1RC y (t) + 1RC x (t)Approximate the derivativedy (t)dt ���t=t0 � y (t0 + T )� y (t0)T ;T : Small step size
t

y (t)

y (t0+T )
y (t0)

t0 t0+T

dy (t)

dt

∣

∣

∣

∣

t=t0

Approx.
dy (t)

dt

∣

∣

∣

∣

t=t0



Chapter 2Approximate Numeri
al Solution of a Di�erential EquationApproximate numeri
al solution of a di�erential equation (
ontinued)y (t0 + T )� y (t0)T � g [t0; y (t0)℄ ) y (t0 + T ) � y (t0) + T g [t0; y (t0)℄For the RC 
ir
uit, using t0 = 0:y (T ) � y (0) + T g [0; y (0)℄= y (0) + T h� 1RC y (0) + 1RC x (0)iand y (2T ) � y (T ) + T g [T; y (T )℄= y (T ) + T h� 1RC y (T ) + 1RC x (T )iThis is known as the Euler method. More sophisti
ated methods exist with bettera

ura
y. MATLAB Exer
ise 2.4 MATLAB Exer
ise 2.5



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.1Testing linearity of 
ontinuous-time systemsSimulate the four systems 
onsidered in Example 2.1, and test them using signalsgenerated in MATLAB.



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.1Testing linearity of 
ontinuous-time systemsSimulate the four systems 
onsidered in Example 2.1, and test them using signalsgenerated in MATLAB.Solution:If a system is linearx (t) = �1 x1 (t) + �2 x2 (t) ) y (t) = �1 y1 (t) + �2 y2 (t)x1 (t), x2 (t): Arbitrary signals�1, �2: Arbitrary 
onstants



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.1 (
ontinued)Create test signals:
>> t = [0:0.01:5];

>> x1 = cos(2*pi*5*t);

>> x2 = exp(�0.5*t);Constru
t and graph x (t) with �1 = 2 and �2 = 1:25:
>> alpha1 = 2;

>> alpha2 = 1.25;

>> x = alpha1*x1+alpha2*x2;

>> plot(t,x);Simulate the �rst system:
>> sys_a = @(x) 5*x;

>> y1 = sys_a(x1);

>> y2 = sys_a(x2);

>> y_exp = alpha1*y1+alpha2*y2; % Expected output if system is linear

>> y_act = sys_a(x); % Actual output



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.1 (
ontinued)Complete s
ript:1 % Script: matex_2_1.m2 %3 t = [0:0.01:4]; % Create a time vector.4 x1 = cos(2*pi*5*t); % Test signal 1.5 x2 = exp(�0.5*t); % Test signal 2.6 alpha1 = 2; % Set parameters alpha17 alpha2 = 1.25; % and alpha2.8 x = alpha1*x1+alpha2*x2; % Combined signal.9 % Define anonymous functions for the systems in Example 2.1.10 sys_a = @(x) 5*x;11 sys_b = @(x) 5*x+3;12 sys_c = @(x) 3*x.*x;13 sys_d = @(x) cos(x);14 % Test the system in part (a) of Example 2.1.15 y1 = sys_a(x1);16 y2 = sys_a(x2);17 y_exp = alpha1*y1+alpha2*y2; % Expected response for a linear system.18 y_act = sys_a(x); % Actual response.19 clf; % Clear figure.



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.1 (
ontinued)S
ript �matex_2_1.m� 
ontinued:20 subplot(1,2,1);21 plot(t,y_exp); % Graph expected response.22 title('y_{exp} = \alpha_1 y_1 + \alpha_2 y_2')23 xlabel('t (sec)'); ylabel('Amplitude');24 subplot(1,2,2);25 plot(t,y_act); % Graph actual response.26 title('y_{act} = Sys_a\{\alpha_1 x_1 + \alpha_2 x_2\}')27 xlabel('t (sec)'); ylabel('Amplitude');
A
m
p
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.2Testing time-invarian
e of 
ontinuous-time systemsSimulate the three systems 
onsidered in Example 2.2, and test them using signalsgenerated in MATLAB.



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.2Testing time-invarian
e of 
ontinuous-time systemsSimulate the three systems 
onsidered in Example 2.2, and test them using signalsgenerated in MATLAB.Solution:If the system under 
onsideration is time-invariant we needSys fx (t)g = y (t) ) Sys fx (t� �)g = y (t� �)for any arbitrary time shift � .Create and graph the test signal x (t) = e�0:5t u (t) and its time shifted version:
>> t = [0:0.01:10];

>> x = @(t) exp(�0.5*t).*(t>=0);
>> plot(t,x(t),t,x(t�2));



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.2 (
ontinued)Simulate the system:
>> sys_c = @(x) 3*cos(t).*x;

>> y1 = sys_c(x(t));

>> y2 = sys_c(x(t�2));
>> plot(t,y1,'b�',t,y2,'r:');Complete s
ript:1 % Script matex_2_2.m2 %3 t = [0:0.01:10]; % Create a time vector.4 x = @(t) exp(�0.5*t).*(t>=0); % Anonymous function for test signal.5 % Define anonymous functions for the systems in Example 2�2.6 sys_a = @(x) 5*x;7 sys_b = @(x) 3*cos(x);8 sys_c = @(x) 3*cos(t).*x;9 % Test the system in part (c) of Example 2.2.10 y1 = sys_c(x(t));11 y2 = sys_c(x(t�2));



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.2 (
ontinued)S
ript �matex_2_2.m� 
ontinued:12 clf; % Clear figure.13 plot(t,y1,'b�',t,y2,'r:'); % Graph the two responses.14 title('Responses to x(t) and x(t�2)')15 xlabel('t (sec)');16 ylabel('Amplitude');17 legend('Sys\{x(t)\}','Sys\{x(t�2)\}');
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.3Using linearity to determine the response of the RC 
ir
uitThe response of the simple RC 
ir
uit to a unit-step signal was found in Example 2.8to be yu (t) = Sys fu (t)g = �1� e�4t� u (t)Using superposition, 
ompute and graph the response of the 
ir
uit to the signal x2 (t)shown.
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.3Using linearity to determine the response of the RC 
ir
uitThe response of the simple RC 
ir
uit to a unit-step signal was found in Example 2.8to be yu (t) = Sys fu (t)g = �1� e�4t� u (t)Using superposition, 
ompute and graph the response of the 
ir
uit to the signal x2 (t)shown.
b b

b

b

b

R=1 Ω

C=1/4 F
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−

x (t)

+

−

y (t)
t

x2 (t)

1

−1

1 2Solution:De�ne an anonymous fun
tion to 
ompute yu (t):
yu = @(t) (1�exp(�4*t)).*(t>=0);



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.3 (
ontinued)Express the signal x2 (t) through unit-step fun
tions:x2 (t) = u (t)� 2u (t� 1) + u (t� 2)Complete s
ript:1 % Script: matex_2_3b.m2 %3 % Anonymous function for unit�step response.4 yu = @(t) (1�exp(�4*t)).*(t>=0);5 t = [�5:0.01:5]; % Vector of time instants.6 y2 = yu(t)�2*yu(t�1)+yu(t�2); % Compute response to x2(t)].7 plot(t,y2); Example 2.10



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4Numeri
al solution of the RC 
ir
uit using Euler methodUse the Euler method to �nd an approximate numeri
al solution for the RC 
ir
uitproblem of Example 2.8, and 
ompare it to the exa
t solution that was found.
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4Numeri
al solution of the RC 
ir
uit using Euler methodUse the Euler method to �nd an approximate numeri
al solution for the RC 
ir
uitproblem of Example 2.8, and 
ompare it to the exa
t solution that was found.
b b
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b
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x (t)
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y (t)

t

x(t) = u(t)

1Solution:For the spe
i�ed input signal, the di�erential equation of the 
ir
uit isdy (t)dt + 4 y (t) = 4u (t)With y (0) = 0, the exa
t solution for the output signal isy (t) = � 1� e�4t � u (t)



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4 (
ontinued)To use the Euler method, write the di�erential equation in the formdy (t)dt = g (t; y (t)) ; g (t; y (t)) = �4 y (t) + 4u (t)The Euler method approximation ŷ (t) isŷ ( (k+ 1)Ts) =ŷ (kTs) + Ts g (kTs; ŷ (kTs))=ŷ (kTs) + Ts (�4 ŷ (kTs) + 4u (kTs))Per
ent error: " (kTs) = ŷ (kTs)� y (kTs)y (kTs) � 100



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4 (
ontinued)Complete s
ript:1 % Script: matex_2_4.m2 %3 Ts = 0.1; % Time increment4 t = [0:Ts:1]; % Vector of time instants5 % Compute the exact solution.6 y = 1�exp(�4*t); % Eqn.(2.186)7 % Compute the approximate solution using Euler method.8 yhat = zeros(size(t));9 yhat(1) = 0; % Initial value.10 for k = 1:length(yhat)�1,11 g = �4*yhat(k)+4; % Eqn.(2.188)12 yhat(k+1) = yhat(k)+Ts*g; % Eqn.(2.189)13 end;14 % Graph exact and approximate solutions.15 clf;16 subplot(211);17 plot(t,y,'�',t,yhat,'ro'); grid;18 title('Exact and approximate solutions for RC circuit');



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4 (
ontinued)S
ript �matex_2_4.m� 
ontinued:19 xlabel('Time (sec)');20 ylabel('Amplitude');21 legend('Exact solution','Approximate solution','Location','SouthEast');22 % Compute and graph the percent approximation error.23 err_pct = (yhat�y)./y*100;24 subplot(212);25 plot(t(2:length(t)),err_pct(2:length(t)),'ro'); grid26 title('Percent approximation error');27 xlabel('Time (sec)');28 ylabel('Error (%)');



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4 (
ontinued)A
tual and approximate solutions for the RC 
ir
uit and the per
ent error for �t = 0:1se
onds.
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.4 (
ontinued)A
tual and approximate solutions for the RC 
ir
uit and the per
ent error for�t = 0:02 s.
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.5Improved numeri
al solution of the RC 
ir
uitSolve the approximation problem of MATLAB Exer
ise 2.4 using fun
tion ode45(..)



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.5Improved numeri
al solution of the RC 
ir
uitSolve the approximation problem of MATLAB Exer
ise 2.4 using fun
tion ode45(..)Solution:Start by developing a fun
tion rc1(..) to 
ompute the right side g [t; y (t)℄ of thedi�erential equation.1 function ydot = rc1(t,y)2 ydot = �4*y+4;3 end



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.5 (
ontinued)Complete s
ript:1 % Script: matex_2_5a.m2 %3 t = [0:0.1:1]; % Vector of time instants4 % Compute the exact solution.5 y = 1�exp(�4*t); % Eqn.(2.187)6 % Compute the approximate solution using ode45().7 [t,yhat] = ode45(@rc1,t,0);8 % Graph exact and approximate solutions.9 clf;10 subplot(211);11 plot(t,y,'�',t,yhat,'ro'); grid;12 title('Exact and approximate solutions for RC circuit');13 xlabel('Time (sec)');14 ylabel('Amplitude');15 legend('Exact solution','Approximate solution','Location','SouthEast');16 % Compute and graph the percent approximation error.17 err_pct = (yhat�y')./y'*100;18 subplot(212);19 plot(t(2:max(size(t))),err_pct(2:max(size(t))),'ro'); grid



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.5 (
ontinued)S
ript �matex_2_5a.m� 
ontinued:20 title('Percent approximation error');21 xlabel('Time (sec)');22 ylabel('Percent error');
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Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.5 (
ontinued)Modi�ed s
ript that uses an anonymous fun
tion instead of �r
1.m�.1 % Script: matex_2_5b.m2 %3 t = [0:0.1:1]; % Vector of time instants4 % Compute the exact solution.5 y = 1�exp(�4*t); % Eqn.(2.187)6 % Compute the approximate solution using ode45().7 rc2 = @(t,y) �4*y+4;8 [t,yhat] = ode45(rc2,t,0);9 % Graph exact and approximate solutions.10 clf;11 subplot(211);12 plot(t,y,'�',t,yhat,'ro'); grid;13 title('Exact and approximate solutions for RC circuit');14 xlabel('Time (sec)');15 ylabel('Amplitude');16 legend('Exact solution','Approximate solution','Location','SouthEast');17 % Compute and graph the percent approximation error.18 err_pct = (yhat�y')./y'*100;



Chapter 2MATLAB Exer
isesMATLAB Exer
ise 2.5 (
ontinued)S
ript �matex_2_5b.m� 
ontinued:19 subplot(212);20 plot(t(2:max(size(t))),err_pct(2:max(size(t))),'ro'); grid21 title('Percent approximation error');22 xlabel('Time (sec)');23 ylabel('Percent error'); Approx. Num. Solution
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