
C: From Theory to Practice

Chapter 2
Data Types, Variables

and Data Output

George S. Tselikis and Nikolaos D. TselikasGeorge S. Tselikis and Nikolaos D. Tselikas

2C: From Theory to Practice – Chapter 2

Variables
 RAM and Variables

 The computer’s RAM (Random Access Memory) consists of
millions of successive storage cells

 The size of each cell is one byte

 For example, an old PC with 16 MB (megabytes) of RAM
consists of: 16×1024 kB (kilobytes) =

16.777.216 memory cells

 A newer PC with 8 GB (gigabytes) of RAM would have:

8×1024 MB = 8192×1024 kB =

8.388.608×1.024 = 8.589.934.592 memory cells

 A variable in C is a storage location with a given name

 The value of a variable is the content of its memory location,
while a program may use the name of a variable to access its
value

3C: From Theory to Practice – Chapter 2

Rules for Naming Variables

 Be sure to apply the basic rules for naming variables
or your code won’t compile

 The name of a variable can contain uppercase letters, lowercase
letters, digits and the underscore character '_'

 The name must begin with either a letter or the underscore
character '_'

 The C programming language is case sensitive, meaning that it
distinguishes between uppercase and lowercase letters

 For example, the variable temp is different from Temp or
tEmP

 The keywords of C language can not be used as variable names
because they have special significance to the C compiler

4C: From Theory to Practice – Chapter 2

C keywords

5C: From Theory to Practice – Chapter 2

Remarks

 Use descriptive names for variables, since it’s much easier to
read a program when the names of the variables indicate their
intended use

 E.g. if you plan to use a variable to hold the sum of some
even numbers, name that variable something like sum_even
rather than an arbitrary name like i

 When necessary, don’t be afraid to use long names to describe
the role of a variable and if a variable name is several words
long, separate each word with the underscore character (_)
for readability

 E.g. you might call a variable that holds the number of
books in a calculation books_number (instead of
booksnumber, or something less readable)

 By convention (this is not a requirement) C programmers use
lower-case letters when naming variables and upper-case
letters when defining macros and constants

6C: From Theory to Practice – Chapter 2

Declaring Variables

 Variables must be declared before being used in a program

 Declare a variable as follows:

data_type name_of_variable;

 The name_of_variable is the variable name, while the
data_type should be one of the C supported data types

 E.g., the int keyword is used to declare integer
variables, and the float keyword is used to declare
floating point variables, i.e. variables that can store
values with a fractional part

7C: From Theory to Practice – Chapter 2

C Data Types
Type Size (bytes) Range (min – max)

char 1 -128 … 127

short 2 -32.768 … 32.767

int 4 -2.147.483.648…2.147.483.647

long 4 -2.147.483.648…2.147.483.647

float 4
Lowest positive value: 1.17*10-38

Highest positive value: 3.4*1038

double 8
Lowest positive value: 2.2*10-308

Highest positive value: 1.8*10308

long double 8, 10, 12, 16

unsigned char 1 0 … 255

unsigned short 2 0 … 65535

unsigned int 4 0 … 4.294.967.295

unsigned long 4 0 … 4.294.967.295

8C: From Theory to Practice – Chapter 2

Examples and Remarks
int a; /* Declare an integer variable with name a. */

float b; /* Declare a float variable with name b. */

 Variables of the same type can be declared in the same line, separated
with a comma (,)
 So, instead of declaring the variables a, b and c in three different lines:

int a;
int b;
int c;

you can declare them in a single line, as:

int a, b, c;

 The memory space that a data type requires may vary from one system to
another
 For example, the int type may reserve 2 bytes in one system and 4 bytes

in another
 To determine the number of bytes a data type uses on a particular system,

use the sizeof operator (discussed in Chapter 4)

 If the precision of your data is not critical use the float type, because
float usually reserves fewer bytes than double, and calculations with
float numbers tend to be executed faster than with double numbers

 If the precision is critical, use the double type

9C: From Theory to Practice – Chapter 2

Assigning Values to Variables (1/2)

 A variable can be given a value by using the
assignment operator (=)

 E.g. the following statement assigns the value 100 to the int
variable a

int a;

a = 100;

 Alternatively, a variable can be initialized
together with its declaration.

 E.g. the above statements could be replaced in one line,
as:

int a = 100;

10C: From Theory to Practice – Chapter 2

Assigning Values to Variables (2/2)
 You can also initialize more than one variable of the same

type together with its declaration, e.g.

int a = 100, b = 200, c = 300;

 To assign a floating point value to a float variable we use the
dot (.) for the fractional part and not the comma (,) e.g.

float a = 1.24;

 If an integer value begins with the digit 0, this value will be
interpreted as an octal (base-8) number
 E.g. the following statement assigns the decimal value 64 and not

the value 100 to the variable a

int a = 0100;

 Similarly, a value that begins with 0x or 0X is interpreted as
hexadecimal (base-16) number
 E.g., the following statement assigns the decimal value 16 to

variable a

int a = 0x10;

11C: From Theory to Practice – Chapter 2

Remarks (1/2)

 The value assigned to a variable should be within the range of
its type

 E.g., the statement:

char ch = 130;

 does not make the value of ch equal to 130, since the range of
the values of the signed char type is from -128 to 127

 130 is out of the allowed range, so the value is wrapped around
to -126

 A floating point value can be written in scientific notation
using the letter E (or e), which represents the power of 10

 E.g., instead of a = 0.085;

we can write a = 85E-3;

which is equivalent to 85*10-3

 E.g., a = 1.56e6;

is equivalent to a = 1560000; or 1.56*106

12C: From Theory to Practice – Chapter 2

Remarks (2/2)

 The value assigned to a variable should match the
variable type
 E.g., the statement:

int a = 10.9;

actually sets the value of a to 10, since a has been
declared as int and not float

The decimal part is completely ignored and the assigned
value is not rounded to 11

 However, the value of a float variable can be an
integer
 E.g., you could write:

float a = 50;

since that’s equivalent to:

float a = 50.0;

13C: From Theory to Practice – Chapter 2

Constants

 A variable whose value can not change during the
execution of the program is called a constant

 To declare a constant, precede the type of the
variable with the const keyword

 A constant must be initialized when it is declared
and you can not assign it another value within the
program
 E.g., the following statement declares the integer variable
a as constant and sets it equal to 10

const int a = 10;

 If we attempt to change the value of a constant later in a
program, e.g., by writing:

a = 100;

the compiler will raise an error message

14C: From Theory to Practice – Chapter 2

The #define Directive

 An alternative to declare a constant in a program is to use
the #define directive, which is used to define a macro

 A macro is a name, which – in most cases - represents a
numerical value

 To define a simple macro we write:

#define name_of_macro value

 When a program is compiled each macro is replaced by its
defined value

 E.g.:

#define NUM 100

a macro called NUM with value 100 is defined

 When the program is compiled NUM is replaced by 100

15C: From Theory to Practice – Chapter 2

Remarks
 Macros are typically defined before the main() function, and

are usually named using all capital letters

 Note that there is no semicolon at the end of a #define
directive

 In general, macros are most helpful when they’re used to
represent a numeric value that appears many times within your
program

vs.

It’s safer and faster (especially in programs with thousand of lines...)

16C: From Theory to Practice – Chapter 2

The printf() function

 The printf() function is used to print a variable number
of data items to the standard output stream (stdout),

which, by default, is associated with the screen

 printf() accepts several parameters

 The first (mandatory) parameter is a format string, that is a
sequence of characters in double quotes (" "), which
determines the output format

 The next parameters are optional and, if any, printf()
displays their values to the screen

 The format string may contain:

 Escape Sequences

 Conversion Specifications

 Ordinary characters (which are printed as is to the screen)

17C: From Theory to Practice – Chapter 2

Escape Sequences

 Escape sequences tell the compiler to perform a specific
action, such as move the cursor

 An escape sequence consists of a backslash (\) followed by a
character

Escape sequence Action

\a Make an audible beep.

\b Delete the last character (equivalent to using the Backspace key).

\n Advance the cursor to the beginning of the next line (equivalent to using the Enter key).

\r Move the cursor to the beginning of the current line (equivalent to a carriage return).

\t Move the cursor to the next tab stop (equivalent to the Tab key).

\\ Display a single backslash (\).

\" Display double quotes (").

18C: From Theory to Practice – Chapter 2

Conversion Specification

 Conversion
specifications
always begin with
the percent (%)
character and it is
followed by one or
more characters
with special
significance

 It its simplest
form, a conversion
specification is
followed by one
special character,
called conversion
specifier, listed in
the table

Conversion Specifier Meaning

c Display the character which corresponds to an integer value.

d, i Display a signed integer in decimal form.

u Display an unsigned integer in decimal form.

f
Display a floating-point number in decimal form using a decimal

point. The default precision is six digits after the decimal point.

s Display a sequence of characters.

e, Ε
Display a floating-point number in scientific notation using an

exponent. The exponent is preceded by the specifier.

g, G
Display a floating-point number either in decimal form (%f) or

scientific notation (%e).

p Display the value of a pointer variable.

x, Χ

Display an unsigned integer in hex form: %x displays lowercase

letters (a-f), while %X displays uppercase letters (A-F).

ο Display an unsigned integer in octal.

% Display the character %.

19C: From Theory to Practice – Chapter 2

Examples (I)

20C: From Theory to Practice – Chapter 2

Examples (II)

21C: From Theory to Practice – Chapter 2

Printing Variables

 In printf() variable names follow the last double quote (" ")
of the format string

 When printing more than one variable, separate each with a
comma (,)

 The compiler will associate the conversion specifications with
the names of each of the variables from left to right

 Each conversion specification should match the type of the
respective variable, or the output will be meaningless

22C: From Theory to Practice – Chapter 2

Example

23C: From Theory to Practice – Chapter 2

Optional Fields

 The simplest form of the conversion specification
begins with the % character followed by the
conversion specifier

 However, a conversion specification may include
another four fields as shown in the figure

24C: From Theory to Practice – Chapter 2

Precision
 When displaying the value of a floating-point type (i.e., float

or double), we can specify the number of significant digits

 The default precision is six digits

 To specify another precision add a period (.) followed by

 either an integer (to specify a precise number)

 or an asterisk (*) and in this case the precise number of
significant digits is defined by the next argument

 If the precision digits are less than the decimal digits, the
displayed value is rounded up or down, according to the value of
the cut-off digit

 If it is less than 5 the displayed value is rounded down

 otherwise it is rounded up

 To display no significant digits, add only a period (.)

25C: From Theory to Practice – Chapter 2

Example

26C: From Theory to Practice – Chapter 2

Display characters in strings
 When displaying a string we can define how many of its characters

will be displayed as with floating-point numbers

 If the defined precision exceeds the number of the string’s
characters, the string is displayed as is

27C: From Theory to Practice – Chapter 2

Field Width
 When displaying the value of an integer or floating-point

variable we can define the total number of characters to be
displayed by adding

 an integer (to specify the width of the output field)

 or an asterisk (*) (in which case the width is defined by

the next argument)

 If the displayed variable will need fewer characters than the
defined width, space characters are added from left to right,
and the value is right-justified

 If the displayed value needs more characters, the field width
will automatically expand as needed

In the case of floating-point numbers, the defined width
should take into account the precision digits and the decimal
point

28C: From Theory to Practice – Chapter 2

Example

29C: From Theory to Practice – Chapter 2

Prefix
 To indicate that the displayed value is a short integer we can

use the letter h

 Similarly, to indicate that the displayed value is a long integer
we can use the letter l

30C: From Theory to Practice – Chapter 2

Flags

 Flags can be used to control the output of numeric values as
listed in the following table

Flag Meaning

- Left aligns the output value within the defined field width.

+ Prefixes the output positive values with +.

space Prefixes the output positive values with a space character.

Prefixes octal numbers with 0 and hex numbers with 0x or 0X.

When used with floating point numbers it forces output to contain a decimal point.

0 Pads with zeros until the defined width is reached.

31C: From Theory to Practice – Chapter 2

Example

32C: From Theory to Practice – Chapter 2

Remarks (1/2)
 If you use a floating-point number variable in several statements (e.g.

in comparisons, arithmetical operations, etc) prefer the double type
rather than the float one, because of the unexpected manner that
float type manages the decimal digits

 E.g. in the next program the output might not be the expected value
(i.e., 12345.65432), but a similar one

33C: From Theory to Practice – Chapter 2

Remarks (2/2)
 To expand the format string of printf() to several lines

(typically for purposes of readability) use a backslash (\)

 E.g., the following printf() is written over three lines

printf("This printf uses three lines, but the \

message will appear \

on one line ");

but the output will appear on one line

34C: From Theory to Practice – Chapter 2

Type casting
 C allows the programmer to convert (temporary) the type of an

expression to another type

 This kind of conversion is known as type casting

 Cast expressions have the following form:

(data_type) expression

 data_type specifies the type to which the expression should be converted

 E.g. after the following declaration:

float a, b = 2.34;

the cast expression:

a = (int)b;

converts the value of b from float to int and make a equal to 2

 After being used in the cast expression, b will be treated again as float

35C: From Theory to Practice – Chapter 2

 The cast expression
(float)i converts the value
of i from int to float and
the result of the division is
a decimal number

 If we had written k = i/j,
then k would have been
equal to 0 (i.e., the result
of the integer division
20/30)

 As already noted, the
conversion of i from int to
float is temporary, so i
remains an int for the rest
of the program

 This is why we use %d (not
%f) to display its value in
the second printf()

Example

