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Chapter 2: Laser Beams 
2.1 
We begin with equation (2.34d) 

𝜆
𝜋𝜔!"!

=
𝜆

𝜋𝜔!"!
𝑓 − 𝑝
𝑓 − 𝑑  

We also make use of equation (2.34c), i.e. 

𝑑 = 𝑓 +
𝑓! 𝑝 − 𝑓
𝑝 − 𝑓 ! + 𝑧!"!

 

Therefore 
1
𝜔!"!

=
1
𝜔!"!

𝑓 − 𝑝
𝑓 − 𝑑

=
1
𝜔!"!

𝑝 − 𝑓
𝑑 − 𝑓

=
1
𝜔!"!

𝑝 − 𝑓
𝑓! 𝑝 − 𝑓

𝑝 − 𝑓 ! + 𝑧!"! =
1
𝜔!"!

𝑝 − 𝑓 ! + 𝑧!"!

𝑓!
 

 
or 

1
𝜔!"!

==
1
𝜔!"!

𝑝 − 𝑓 ! + 𝑧!"!

𝑓! =
1
𝜔!"!

1−
𝑝
𝑓

!
+

1
𝜔!"!

𝑧!"!

𝑓!  

When p=f, then 

𝜔!"! = 𝜔!"!
𝑓!

𝑧!"!
= 𝜔!"!

𝑓!

𝜋𝜔!"! /𝜆 ! =
𝑓𝜆
𝜋𝜔!"

!

 

This gives 

𝜔!" =
𝑓𝜆
𝜋𝜔!"

 

 
 
 
2.2 
We use the following relations 

  𝜔! 𝑧 = 𝜔!! 1+
𝑧
𝑧!

!
 

  𝜔! 𝑧 + 1 = 𝜔!! 1+
𝑧 + 1
𝑧!

!

=   𝜔! 𝑧 + 𝜔!!
2𝑧 + 1
𝑧!!

=   𝜔! 𝑧 +
2𝑧 + 1 𝜆!

𝜋!𝜔!!
 

 

𝑅 𝑧 = 𝑧 1+
𝑧!
𝑧

!
= 𝑧  

𝑧!
𝑧

!
1+

𝑧
𝑧!

!
=
𝑧!!

𝑧
𝜔! 𝑧
𝜔!!

=
𝜋!𝜔!!  𝜔! 𝑧

𝜆!  𝑧  

𝑧! =
𝜋𝜔!!

𝜆  
Given ω(z) = 1 x 10-3m; ω(z+1) = 1.5 x 10-3m and R = 2m. Substituting these values we 
have 

2.25  𝑥10!! − 1.0  𝑥  10!! =
2𝑧 + 1 𝜆!

𝜋!𝜔!!
⟹ 1.25  𝑥  10!!𝑥  𝜋!𝜔!! = 2𝑧 + 1 𝜆! 

and  
1.0  𝑥  10!!𝑥  𝜋!𝜔!! = 2𝑧𝜆! 

Dividing, we obtain 
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1.25 =
2𝑧 + 1
2𝑧     ⟹       𝑧 = 2.0𝑚 

Substituting this value of z in the above equation, we obtain 

1.0  𝑥  10!!𝑥  𝜋!𝜔!! = 2  𝑥  2  𝜆!   ⟹   𝜔! =
2𝜆

10!!𝜋 =
2  𝑥  632.8  𝑥10!!

𝜋 = 0.4𝑚𝑚 
Given the value of ω0, the distance z0 is obtained as  

𝑧! =
𝜋𝜔!!

𝜆 =
𝜋
𝜆

2𝜆
10!!𝜋

!

=
4𝜆

𝜋10!! =
4  𝑥  632.8  𝑥10!!

𝜋 = 0.806𝑚 
Beam waist is 0.8mm and is located 0.806m to the left of the plane where the radius of 
curvature is 2m. 
The radius of the spot at a distance of 1.806m is 1.5mm. The power received in an area of 
radius 2mm is 

𝑃 = 𝑃! 1− 𝑒
!!   !!

!! ! = 3𝑚𝑊 1− 𝑒!!/!.!" = 3 1− 0.0286 = 2.91𝑚𝑊 

 
 
 
2.3 
The beam-waist radius at the focal plane is related to the beam-waist radius just before 
the lens through the equation (2.28b), i.e., 

𝜔!!!

𝜔!!!
=

1

1+ 𝜋𝜔!!!
𝜆𝑓

! 

Given P0 =5mW, ω0 =1.0mm, λ = 632.8nm and f = 10cm. Substituting these values, we 
obtain 

𝜔!" =
1.0  𝑥  10!!

1 + 𝜋  𝑥  10!! 632.8  𝑥  10!!𝑥  0.1 ! ½ =
1.0  𝑥  10!!

1 + 49.64 ! ½ =
1.0  𝑥  10!!

49.65
= 0.02𝑚𝑚 

The beam waist at the focal plane is 0.04mm. 
 
Power received within the focal spot is 

𝑃 = 𝑃! 1− 𝑒!!   =   4.3232𝑚𝑊 
The intensity at the focal point is  

𝐼 =
4.3232  𝑥10−3  

𝜋 0.02  𝑥  0.02  𝑥  10−6
= 3.41𝑀𝑊/𝑚! 

When there is a pinhole of 0.5mm diameter to restrict the size of the waist, the radius of 
the beam spot at the focal plane is given by 

𝜔 =
1.22𝜆  𝑓
𝐷 =

1.22  𝑥  632.8  𝑥  10−9𝑥  0.1
0.5  𝑥  10−3

= 154.4  𝑥10−6 = 0.154𝑚𝑚   
This expression is written under the assumptions that (1) there is no diffraction at the 
pinhole and (2) the beam-waist is not of Gaussian profile, but of nearly constant 
amplitude. The beam-waist is now 0.154mm.  
 
The pinhole allows reduced power through. The amount of power that is allowed by the 
pinhole is given by 
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𝑃 = 𝑃! 1− 𝑒
!!   !!

!! ! = 5 1− 𝑒!!.!"# = 0.588𝑚𝑊 

The intensity at the focal spot is now  
 

𝐼 =
0.588  𝑥10−3  

𝜋 0.154  𝑥  0.154  𝑥  10−6
= 7.88  𝑥  103𝑊/𝑚! 

 
 
 
 
2.4 
The radius of curvature of the beam is given by 

𝑅 𝑧 = 𝑧 1+
𝑧!
𝑧

!
= 𝑧 1+

𝜋𝜔!!

𝑧𝜆

!

⟹ 𝑅 𝑧 − 𝑧 𝑧 =
𝜋𝜔!!

𝜆

!

 

It is infinite at z=0 where the beam waist lies. It is also infinite at z=∞. In between these 
two extreme values, the beam takes different values of radius of curvature. For z values 
less than z0, the beam propagation is governed by wave optics while for z > z0, 
geometrical optics takes over. Substituting the values, we obtain 

2𝑧 − 𝑧 𝑧 =           
𝜋  𝑥  0.25  𝑥10−6  
632.8  𝑥  10−9

!

= 1.24 ! =   1.54⟹ 𝑧 = 1.24𝑚   

Alternately, it can be shown that R=2z leads to z=z0. The value of z0 is 1.24m. 
 
 
 
 
 
2.5 
Figure [2a] shows the stable resonator.  
 
 
 
 
 

Figure [2a] 
For the mode to be sustained, the curvatures of the wavefront should match with those of 
the mirrors. Therefore the beam waist would lie on the plane mirror and the radius of 
curvature of the beam must be R at the concave mirror. Therefore 

𝑅 = 𝑑 1+
𝑧!
𝑑

!
⟹   

𝑅
𝑑 − 1

!
!
=
𝑧!
𝑑  

Write for 𝑧! =
!!!!

!
, we obtain 

𝑧!
𝑑 =

𝑅
𝑑 − 1

!
!
⟹

𝜋𝜔!!

𝜆  𝑑 =
𝑅
𝑑 − 1

!
!
⟹ 𝜔! =

𝜆  𝑑
𝜋

!
! 𝑅
𝑑 − 1

!
!
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2.6 
(a) We use equation (233b), which is given by  

𝜆
𝜋𝜔!!

=
𝑧!" 𝑓 − 𝑝 𝑓 − 𝑑 + 𝑝𝑓 + 𝑑 𝑓 − 𝑝

𝑝𝑓 + 𝑓 − 𝑝 𝑑 ! + 𝑓 − 𝑑 !𝑧!"!
=

𝑧!"𝑓!

𝑝𝑓 + 𝑓 − 𝑝 𝑑 ! + 𝑓 − 𝑑 !𝑧!"!
 

Given ω01 = 0.5mm; f = 10.0mm; p = 10.0cm, and d = 1.9m. 
From this data, we obtain 

𝑧!" =
𝜋𝜔!"!

𝜆 =
𝜋  𝑥  0.25  𝑥10−6  
632.8  𝑥  10−9

= 1.24𝑚 

Hence 
𝜆
𝜋𝜔!!

=
1.24  𝑥  10−4  

10−3 − 0.009  𝑥  1.9 2 + 1.89  𝑥  1.24 2 = 0.2246  𝑥  10−4/𝑚 

  𝜔!! =
𝜆

𝜋  𝑥  0.2246  𝑥  10−4
=   

632.8  𝑥  10−9

𝜋  𝑥  0.2246  𝑥  10−4
= 8.969  𝑥  10−3   ⟹   𝜔4 = 0.0947𝑚 

 
(b) The spot size just before the lens is  

𝜔! = 𝜔!" +
𝜆  𝑝
𝜋𝜔!"

= 0.5  𝑥  10−3 +
0.6328  𝑋  10−6𝑥  0.1
𝜋  𝑥  0.5  𝑥  10−3

= 0.54𝑚𝑚 

The radius 𝜔! of the beam waist at the focal plane is 

𝜔! =
𝜆  𝑓
𝜋𝜔!

=
632.8  𝑥  10−9𝑥  10−2  
𝜋  𝑥  0.54  𝑥  10−3

= 3.7  𝑥  10−6𝑚 

The intensity of the light wave at the focal plane is  

𝐼 =
5  𝑥  10−3

𝜋 3.7  𝑥  10−6 ! = 11.42  𝑥  107 = 114.2𝑀𝑊/𝑚2 

(c) Using the relation (2.34a), it can be shown that the beam waist lies at a distance of 20.0 cm 
from the lens and its size is given by 

𝜔! =
  𝑓!
𝑓 𝜔!" =

0.2
0.010.5  𝑥10

−3 = 10  𝑥10−3 = 10−2𝑚 = 1.0𝑐𝑚   

 
 
 
 
 
2.7 
 

 
The spiral phase plate (SPP) has the base thickness t0 and continuously varying thickness 
as a function of azimuthal angle θ. At any azimuth, the thickness is constant radially. For 
a charge m, the step height is such that it introduces a path difference of mλ. Therefore 
the azimuthally varying thickness tθ can be written as  

𝑡! =
𝑚  𝜆
𝜇 − 1

𝜃
2𝜋 

Therefore the total thickness t(θ) can be expressed as  

involves the use of a spiral phase plate9,20 !SPP",
which is the subject of the present paper.

2. Spiral Phase Plates
A SPP is an optical element that imposes an azimuth-

where hs is the step height and h0 is the base height
of the device. This configuration yields an azimuth-
dependent optical phase delay:

%!#, &" !
2$

& !!n # n0"hs#

2$
" nh0" , (4)

where n0 is the refractive index of the surrounding
medium. When such a plate is inserted in the waist
of a Gaussian beam, where the phase distribution is
plane, it imprints a vortex with a charge equal to Q '
hs!n ( n0"#&, thereby generating an output beam
that carries orbital angular momentum per photon
equal to Q). Note here that the value of Q depends
both explicitly and implicitly !through the refractive
index" on the wavelength of the incident light, betray-
ing the chromatic nature of this device. The result-
ant phase distribution is illustrated in Fig. 2.

To obtain a device that is able to generate beams
with low values of Q, it is clear that step height hs of
the plate should be of the order of the wavelength, &.
Alternatively, the SPP can be made to be almost in-
dex matched to its surroundings, *n ' $n ( n0$ + 0.

reported by Beijersbergen et al.,9
mm and *n + 9 , 10(4

for which *n + 4 , 10(6

occurs naturally.

diffi
steepness of the step, !ii"

turing SPPs for optical wavelengths based on state-
of-the-art micromachining and molding. Our
technique is based on technologies originally devel-
oped at Philips Research Laboratories for the mass
fabrication of lightweight aspheres for the optical
pick-up units of CD players.22 In our case, it permits
the fabrication of multiple SPPs by replication from a
master.

3. Production
The manufacturing technique is based on crafting a
mold that, naturally, is the negative of the SPP that
we wish to produce. The mold is machined with a
diamond tool in a piece of brass by use of a modified
version of the COLATH, a high-precision computer-
driven lathe.23 This lathe can be programmed to
produce the surface that we require.

Postfabrication inspection of the mold is made with
a high-accuracy interferometric metrology system
!Zygo"; typical results are shown in Fig. 3. The two
parts of the figure demonstrate the depth variations
along a radial and along an azimuthal path across the
mold. These measurements yielded a value of the
step height equal to 5.07 -m !design value, 5.00 -m",
a linear relation between local depth h and the azi-
muthal angle with a rms deviation of order 15 nm,
and an azimuthal width of the step discontinuity of
.6°. Along a radial path of 4.2-mm length, the
depth can be seen to increase by +150 nm. Note
that the mold thus deviates from its design by much
less than half of an optical wavelength in the visible
regime. Naturally, in the central part where the
height anomaly resides, the deviations were larger,
owing to technological difficulties. The diameter of
this anomaly in the mold was measured to be .50
-m, very small compared to the overall diameter of
the device !8.4 mm".

The mold is then used for the production of the
SPPs, as shown in Fig. 4. It is first treated with

Fig. 1. Sketch of the spiral phase plate. The top surface spirals
upward from height h0 to h0 / hs.

Fig. 2. Phase distribution imprinted onto the transverse plane of
an incident beam. When Q is an integer number, the phase
change at the transition from black to white is actually smooth.
Otherwise, the sharp transition in gray level represents a phase
discontinuity.

20 January 2004 # Vol. 43, No. 3 # APPLIED OPTICS 689
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𝑡 𝜃 = 𝑡! +
𝑚  𝜆
𝜇 − 1

𝜃
2𝜋 

In fact the constant thickness introduces a path difference of (µ-1)t0 and hence t0 in the 
above expression should be t0/(µ-1). Being a constant, it does not matter. 
 
 
 
 
 
2.8 
(a) Radius of the beam-waist at the focal plane is 

𝜔! =
𝜆  𝑓
𝜋𝜔!

=   
632.8  𝑥  10−9𝑥  0.2

𝜋  𝑥  10−3
= 4.029  𝑥  10−5𝑚 

The intensity at the focal plane is  

𝐼 =
𝑃
𝜋𝜔!!

=
5  𝑥  10−3

𝜋 4.029  𝑥  10−5 ! = 0.098  𝑥  107𝑊/𝑚2 ≈ 1𝑀𝑊/𝑚2 

 
(b) Radius of the spot at a plane 1.0cm from the focal plane 

𝜔(0.1) =
1
20   1𝑥  10

−3 = 0.05𝑚𝑚 

𝑃 = 𝑃! 1− 𝑒
!!   !!

!! ! = 5 1− 𝑒!!
!.!"
!.!!"# ≅ 5𝑚𝑊 

The aperture allows the entire beam through. 
 
 
 
 
 
 
2.9 
(a) The radius of curvature of the Gaussian beam is given by 

𝑅 𝑧 = 𝑧 1+
𝑧!
𝑧

!
 

Therefore 

2𝑧 = 𝑧 1+
𝑧!
𝑧

!
⟹ 𝑧 =   ±𝑧! 

(b) The amplitude of a Gaussian wave is given by 

𝑈! 𝑥,𝑦, 𝑧 =
𝐴

1+ 𝑧
𝑧!

!
𝑒

!!
! !!!!!

!! !!!!
!

!!

  

  𝑒

!!!
!!!!!

!! !!!
!

!!!   𝑒!!"#
!! !

!!  

The amplitude at z = z0 and at r = 2ω(z) = 2ω(z0) is given by  

𝑈! 𝑥,𝑦, 𝑧! =     
𝐴
2
  𝑒
!!!

!!! !!
!!!!!/! =

𝐴
2
  𝑒!! 
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The intensity is given as  

𝐼 =
𝐼!
4   𝑒

!! = 0.000084 
The intensity is practically zero. 

(c) The Gouy phase is given by 𝑒!!"#
!! !

!! , which is 450 at z = z0. 
 
 
(d) The phase at (r = 0, z = z0) is 

𝜙 0; 𝑧! = −
𝑘 𝑥! + 𝑦!

4𝑧!
+ 𝑡𝑎𝑛!!

𝑧
𝑧!

= 45! 

The phase at [r = 2ω(z), z = z0] is 

𝜙 2𝜔 𝑧! ; 𝑧! = −
2𝜋
𝜆
  4 𝜔! 𝑧!
4𝜋𝜔!!
𝜆

+ 𝑡𝑎𝑛!!
𝑧
𝑧!

= −4+ 45! 

The phase difference 𝜙 0; 𝑧! − 𝜙 2𝜔 𝑧! ; 𝑧! = 4  𝑟𝑎𝑑 
 
(e)  
The intensity at z = 0 plane is given by  

𝐼 0 =
𝑃
𝜋𝜔!!

=
5  𝑥  10−3

𝜋  𝑥  10−6
𝑊
𝑚! = 1.6𝑘𝑊/𝑚! 

The intensity at z = 5 z0 plane is  

𝐼 𝑧! =
𝑃

𝜋𝜔! 5𝑧!
=

𝑃
26  𝑥  𝜋  𝑥  𝜔!!

=
1.6
26 = 61.2𝑊/𝑚! 

 
  


