
Chapter 2

Two

2.1. Solving differential equations. For the differential equation

dy

dt
= 2y,

(a) Show that y(t) = ce2t, where c is any real valued constant, satisfies the differential
equation by substituting into both sides of the equation. Is there any value of c that
isn’t a solution?

(b) Find the one solution that corresponds to the initial condition y(0) = 5.

See Appendix A.1 if you need any revision of the meaning of differential equations.

Solution.

(a) Substituting into the differential equation y′(t) = 2y(t) we obtain

LHS = 2ce2t, RHS = 2× ce2t

Since LHS=RHS, then y(t) = c1e
2t satisfies the differential equation so the set of

solutions y(t) = c1e
2t. This is true for all real values of c.

(b) Setting t = 0 in y(t) = ce2t gives y(0) = c. Since y(0) = 5 this implies that
c = 5. So y(t) = 5e2t.

Answer given at back of textbook:
(a) No. Is a solution for all c.

(b) y(t) = 5e2t.

2.2. Solving first-order DEs. For the following first-order differential equations, find
the general solution, solving for the dependent variable. See Appendix A.3 if you need to
revise how to solve first-order differential equations.

(a)
dy

dt
= −3y, (b)

dC

dt
= 3C − 1, (c)

dy

dt
= 3yt−1.

3
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4 2 Two

Solution.

(a) By separating variables,

1

y
dy = −3 dt, ⇒

∫

1

y
dy =

∫

−3 dt

and hence ℓn(y) = 3t+ c1. Inverting the ℓn function gives

y = e−3t+c1 = e−3t × ec1 = Ae−3t.

where A = ec1 .

Alternatively, by the constant coefficient method, let y(t) = emt so m + 3 = 0 so
general solution is y(t) = Ae−3t.

(b) By separating variables
∫

1

3C − 1
dy =

∫

dt

and integrating gives
1

3
ℓn(3C − 1) = t+ c1

and rearranging gives

C(t) = Ae3t +
1

3
.

Alternative method: the DE is a constant coefficient (non-homogeneous) DE

dC

dt
− 3C = −1.

Let C(t) = Ch + Cp where

dCh

dt
− 3Ch = 0,

dCp

dt
− 3Cp = −1,

and, substituting Ch = emt into the DE for Ch gives Ch(t) = c1e
3t.

For a particular solution, the ‘forcing term’ is a constant function f(t) = −1, and
not the same as the homogeneous solution, so we look for a particular solution of
the form of a general constant solution, yp(t) = A. Substituting this into the DE
for Cp gives 0 − 3A = −1 so A = 1/3 and Cp = −1/3. Hence Cp(t) = −1/3. The
general solution is

C(t) = Ch(t) + Cp(t) = c1e
3t − 1

3
.

(c) Separating variables gives
∫

1

y
dy = 3

∫

1

t
dt

and integrating gives
ℓn(y) = 3 ℓn(t) + c1

so
y = e3 ℓn(t)+c1 = eℓn(t

3+3c1) = At3, where A = e3c1 .
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2.3. Atmospheric pressure. The Earth’s atmospheric pressure p is often modelled by
assuming that dp/dh (the rate at which pressure p changes with altitude h above sea level)
is proportional to p. Suppose that the pressure at sea level is 1,013 millibars and that the
pressure at an altitude of 20 km is 50 millibars.

Answer the following questions and then check your calculations with Maple or MATLAB.

(a) Use an exponential decay model

dp

dh
= −kp

to describe the system, and then by solving the equation find an expression for p in
terms of h. Determine k and the constant of integration from the initial conditions.

(b) What is the atmospheric pressure at an altitude of 50 km?

(c) At what altitude is the pressure equal to 900 millibars?

Solution.

(a) Since the rate of change of pressure (p) with respect to altitude (h) is propor-
tional to pressure, and pressure decreases with increasing altitude,

dp

dh
= −kp,

where k is a constant. Separating the variables,

1

p

dp

dh
= −k,

and then integrating, with the condition that p(0) = p0 (pressure at sea level),
∫

1

p
dp =

∫

−kdt ⇒ p(h) = p0e
−kh = 1013e−kh.

Since p(20) = 50, solving 50 = 1013e−20k gives k = 0.1504. So the solution is

p(h) = 1 013e−0.1504h. (2.1)

(b) Substitute h = 50 into the solution (2.1), which gives p(50) ≈ 0.55 millibars.

(c) Substitute p(h) = 900 into the solution (2.1), which gives h ≈ 0.79 kilometres.

Answer given at back of textbook:
(a) p(h) = 1 013 e−0.1504h.
(b) Approximately 0.55 millibars.
(c) Approximately 0.79 kilometres.

2.4. The Rule of 72. Continuous compounding for invested money can be described by
a simple exponential model, M ′(t) = 0.01rM(t), where M(t) is the amount of money at
time t and r is the percent interest compounding. Business managers commonly apply the
Rule of 72, which says that the number of years it takes for a sum of money invested at r%
interest to double, can be approximated by 72/r. Show that this rule always overestimates
the time required for the investment to double.
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6 2 Two

Solution.

t =
100 ℓn(2)

r
≈ 69

r
< 72r.

2.5. Dating a seashell. If an archaeologist uncovers a seashell which contains 60% of the
14C of a living shell, how old do you estimate that shell, and thus that site, to be? (You
may assume the half-life of 14C to be 5,568 years.)

Solution.

Let N(t) be the amount of 14C per gram in the shell at time t. Let the current
time, t0, occur at t = 0 and the time at which the shell is formed be T . For t > T ,
14C decays at

dN

dt
= −kN, N(0) = n0,

where k ≈ 0.0001245 per year, and so

N(T ) = n0e
−kT .

This can be rearranged to give

T = −1

k
ℓn(

N(T )

n0
).

We know that
N(T )

n0
=

N ′(T )

N ′(0)
=

N ′(T )

0.6N ′(T )
.

Thus

T = −1

k
ℓn(

1

0.6
) ≈ −4, 103 years.

Approximately 4,103 years ago.

Answer given at back of textbook:
4,103 years.

2.6. Olduvai Gorge. (From Borelli and Coleman (1996).) Olduvai Gorge, in Kenya, cuts
through volcanic flows, tuff (volcanic ash), and sedimentary deposits. It is the site of bones
and artefacts of early hominids, considered by some to be precursors of man. In 1959, Mary
and Louis Leakey uncovered a fossil hominid skull and primitive stone tools of obviously
great age, older by far than any hominid remains found up to that time. Carbon-14 dating
methods being inappropriate for a specimen of that age and nature, dating had to be based
on the ages of the underlying and overlying volcanic strata.

The method used was that of potassium-argon decay. The potassium-argon clock is an
accumulation clock, in contrast to the 14C dating method. The potassium-argon method
depends on measuring the accumulation of ‘daughter’ argon atoms, which are decay prod-
ucts of radioactive potassium atoms. Specifically, potassium-40 (40K) decays to argon (40Ar)
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and to Calcium-40 (40Ca) by the branching cascade illustrated below in Figure 2.1. Potas-
sium decays to calcium by emitting a β particle (i.e. an electron). Some of the potassium
atoms, however, decay to argon by capturing an extra-nuclear electron and emitting a γ
particle.

40Ar

40Ca

40K

Figure 2.1: Compartment diagram for Question 2.6.

The rate equations for this decay process may be written in terms of K(t), A(t) and C(t),
the potassium, argon and calcium in the sample of rock:

K ′ = −(k1 + k2)K,

A′ = k1K,

C ′ = k2K,

where
k1 = 5.76× 10−11 year−1, k2 = 4.85× 10−10 year−1.

(a) Solve the system to find K(t), A(t) and C(t) in terms of k1, k2, and k3 = k1 + k2,
using the initial conditions K(0) = k0, A(0) = C(0) = 0.

(b) Show that K(t) +A(t) + C(t) = k0 for all t ≥ 0. Why would this be the case?

(c) Show that K(t) → 0, A(t) → k1k0/k3 and C(t) → k2k0/k3 as t → ∞.

(d) The age of the volcanic strata is the current value of the time variable t because the
potassium-argon clock started when the volcanic material was laid down. This age
is estimated by measuring the ratio of argon to potassium in a sample. Show that
this ratio is

A

K
=

k1
k3

(ek3t − 1).

(e) Now show that the age of the sample in years is

1

k3
ℓn

[(

k3A

k1K

)

+ 1

]

.

(f) When the actual measurements were made at the University of California at Berkeley,
the age of the volcanic material (and thus the age of the bones) was estimated to be
1.75 million years. What was the value of the measured ratio A/K?
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Solution.

(From Borelli and Coleman (1996).)

(a) The equation
K ′ = −(k1 + k2)K

is separable with solution
K(t) = C1e

−k3t,

for an arbitrary constant C1. Since K(0) = k0, C = k0 and so

K(t) = k0e
−k3t,

Substituting for K in the differential equation for A(t) gives

A′ = k1k0e
−k3t,

which can be solved to give

A(t) = −k1k0
k3

e−k3t + C2,

where C2 is an arbitrary constant. The initial condition A(0) = 0 implies that
C2 = k1k0/k3 and so

A(t) =
k1k2
k3

(

1− e−k3t
)

.

Similarly, substitution for K(t) into the differential equation for C(t) leads to a
linear first-order differential equation for C whose solution is

C(t) = −k2k0
k3

e−k3t + C3,

for an arbitrary constant C3. The initial condition A(0) = 0 implies that C3 =
k2k1/k0 and so

C(t) =
k2k0
k3

(1− e−k3t).

Summarising,

K(t) = k0e
−k3t,

A(t) =
k1k0
k3

(1− e−k3t),

C(t) =
k2k0
k3

(1− e−k3t).

(b) Adding the three solutions together gives

K(t) +A(t) + C(t) = k0e
−k3t +

k1k0
k3

(1− e−k3t) +
k2k0
k3

(1− e−k3t)

= k0,
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since k3 = k1 + k2. So the sum of K, A and C is a constant at all times.

Alternative approach: adding the three differential equations

K ′(t) +A′(t) + C ′(t) = k0e
−k3t +

k1k0
k3

(1− e−k3t) +
k2k0
k3

(1− e−k3t).

This simplifies to
K ′(t) +A′(t) + C ′(t) = 0,

since k3 = k1+k2. Integrating with respect to t gives K(t)+A(t)+C(t) = constant.

The sum of K, A and C represents the total number of atoms in the system. This
number is always constant because the number of particles in the system must be
conserved. (This result also implies that both potassium-40 and argon-40 are stable
isotopes.)

(c) The limits as t → ∞ are

lim
t→∞

K(t) = lim
t→∞

k0e
−k3t = 0,

lim
t→∞

A(t) = lim
t→∞

k1k0
k3

(1− e−k3t) =
k1k0
k3

,

and

lim
t→∞

C(t) = lim
t→∞

k2k0
k3

(1− e−k3t) =
k2k0
k3

.

(d) From (a)

A

K
=

k1k0
k3

(1− e−k3t)

k0e−k3t

=
k1
k3

(ek3t − 1.)

(e) From (d)

ek3t =
k3A

k1K
+ 1

Solving for t,

t =
1

k3
ℓn

[

(
k3A

k1K
) + 1

]

.

(f) From (a), k1 = 5.76 × 10−11 year−1 and k2 = 4.85 × 10−10 year−1. Since
k3 = k1 + k2, k3 = 5.426 × 10−10 year−1. If t = 1.75 × 106 then the equation in (e)
gives that

A/K ≈ 1.008 × 10−4.
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2.7. Storage time for radioactive chemicals.. (Adapted from Borelli and Coleman
(1996).) In a biochemical laboratory radioactive phosphorus (32P) was used as a tracer. (A
tracer, through its radioactive emission, allows the course followed by a substance through
a system to be tracked, which otherwise would not be visible.) 32P decays exponentially
with a half-life of 14.5 days and its quantity is measured in curies (Ci). (Although it is not
necessary for the calculations, one curie is the quantity of a radioactive isotope undergoing
3.7 × 10−5 disintegrations per second.) After the experiment the biochemists needed to
dispose of the contents, but they had to store them until the radioactivity had decreased
to the acceptably safe level of 1 × 10−5Ci. The experiment required 8Ci of 32P. Using a
simple model of exponential decay, establish how long they had to store the contents of the
experiment before it could be disposed of safely.

Solution.

Let N(t) be the amount of 32P present, in curies, and t be the time after the
experiment. We assume the exponential decay model N ′ = −kN with N(0) = n0.
The solution to this differential equation is N(t) = n0e

−kt. The half-life of 32P is
τ = 14.5 days and so, from (9), k = ℓn 2

τ ≈ 0.0478.

From the equation for N we then find that the acceptable level of 1× 10−5 curies is
reached after t = (1/k) ℓn(N(t)/n0) = 1/0.0478 ℓn(8/10−5) which is approximately
284 days. Let N(t) be the amount of 32P present, in curies, and t be the time
after the experiment. We assume the exponential decay model N ′ = −kN with
N(0) = n0. The solution to this differential equation is N(t) = n0e

−kt. The half-life
of 32P is τ = 14.5 days and so, from (9), k = ℓn 2

τ ≈ 0.0478.

From the equation for N we then find that the acceptable level of 1 × 10−5 curies
is reached after approximately 284 days.

Answer given at back of textbook:
Approximately 284 days.

2.8. Lake Burley Griffin. Read the case study on Lake Burley Griffin. The average
summer flow rate for the water into and out of the lake is 4× 106m3/month.

(a) Using this summer flow, how long will it take to reduce the pollution level to 5% of
its current level? How long would it take for the lake with pollution concentration of
107parts /m3, to drop below the safety threshold? (Assume in both cases that only
fresh water enters the lake.)

(b) Use Maple or MATLAB to replicate the results in the case study, for both constant and
seasonal flow and constant and seasonal pollution concentrations entering the lake.
Comment on the solutions.
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Solution.

(a) The concentration is reduced to 5% of the original concentration after approx-
imately 21 months. The safety threshold of 4 × 106 parts/m3 is reached after
approximately 6 months.

The equation describing pollution in the lake is

c(t) = cin − (cin − co)e
−Ft/V ,

where c(t) is the concentration of pollutant in the lake in parts/m3, cin is the
concentration of pollutant entering the lake and c0 is the initial concentration of
pollutant in the lake. The flow rate is F = 4 × 106 m3/month and the volume of
the lake is V = 28× 106 m3. Since only fresh water enters the lake, cin = 0.

(b) See Figure 2.2.

2.9. Pollution with chemical activity. Consider the concentration, C(t), of some
pollutant chemical in a lake. Suppose that polluted water with concentration ci flows into
the lake with a flow rate of F and the well-stirred mixture leaves the lake at the same rate
F .

In addition, suppose some chemical agent is present in the lake that breaks down the
pollution at a rate r kg/day per kg of pollutant. Assuming that the volume of mixture in
the lake remains constant and the chemical agent is not used up, formulate (but do not
solve) a mathematical model as a single differential equation for the pollution concentration
C(t).

Solution.

We have conservation of the mass of the pollutant, which is V C(t) where V is the
constant volume of the lake. There is one input, due to the rate of mass of pollution
flowing into the lake and two outputs, due to the rate of mass of pollutant flowing
out of the lake and the rate of pollutant which is broken down by the chemical
agent. This term is modelled as r multiplied by the mass of the pollutant, rV C.

Thus, conservation of mass leads to

d(V C)

dt
= Fci − FC(t)− rV C.

Since V is constant, d(V C)/dt = V (dC/dt), and dividing through by V gives

dC

dt
=

F

V
ci −

F

V
C − rC.

Answer given at back of textbook:
dC

dt
=

F

V
ci −

F

V
C − rC.
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2.2a Constant flow and concentration.
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2.2b Constant flow and seasonal con-
centration.
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2.2c Seasonal flow and constant con-
centration.
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2.2d Seasonal flow and concentration.

Figure 2.2: The effect of incorporating a seasonal inflowing pollutant concentration and flow
rate on pollution levels in Lake Burley Griffin (Question 2.8). The constant concentration is
cin = ×106 parts/m3 and the variable concentration is cin = 106(10+10 cos(2πt)) parts/m3.
The constant flow rate is F = 4× 106 m3/month and the variable flow rate is F = 106(1 +
6 sin(2πt)) m3/year. In all plots V = 28 m3. The grey line is the pollution threshold level.
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2.10. North American lake system. Consider the American system of two lakes: Lake
Erie feeding into Lake Ontario. What is of interest is how the pollution concentrations
change in the lakes over time. You may assume the volume in each lake to remain constant
and that Lake Erie is the only source of pollution for Lake Ontario.

(a) Write a differential equation describing the concentration of pollution in each of the
two lakes, using the variables V for volume, F for flow, c(t) for concentration at time
t and subscripts 1 for Lake Erie and 2 for Lake Ontario.

(b) Suppose that only unpolluted water flows into Lake Erie. How does this change the
model proposed?

(c) Solve the system of equations to get expressions for the pollution concentrations c1(t)
and c2(t).

(d) Set T1 = V1/F1 and T2 = V2/F2, and then T1 = kT2 for some constant k as V and
F are constants in the model. Substitute this into the equation describing pollution
levels in Lake Ontario to eliminate T1. Then show that, with the initial conditions
c1,0 and c2,0, the solution to the differential equation for Lake Ontario is

c2(t) =
k

k − 1
c1,0

(

e−t/(kT2) − e−t/T2

)

+ c2,0e
t/T2 .

(One way of finding the solution would be to use an integrating factor. See Ap-
pendix A.4.)

(e) Compare the effects of c1(0) and c2(0) on the solution c2(t) over time.

Solution.

(a)
dc1
dt

=
F1

V1
c1,in − F1

V1
c1,

dc2
dt

=
F2

V2
c1 −

F2

V2
c2.

(b)
dc1
dt

= −F1

V1
c1,

dc2
dt

=
F2

V2
c1 −

F2

V2
c2.

(c) c1(t) = αe
−

F1t

V1 , c2(t) =
F2α

V2(
F2

V2
− F1

V1
)
e
−

F1t

V1 + βe
−

F2t
V2 , where α and β are

arbitrary constants.

(e) As the initial concentration of pollution in Lake Erie increases, the peak con-
centration of pollution in Lake Ontario increases as well. It takes longer to reach
this peak level and for the pollution concentration to decrease in Lake Ontario.
Increasing the initial concentration of pollution in Lake Ontario increases the rate
at which the pollution is initially removed.
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2.11. Smoke in the bar. (Adapted from Fulford et al. (1997).) A public bar opens
at 6 p.m. and is rapidly filled with clients of whom the majority are smokers. The bar is
equipped with ventilators that exchange the smoke-air mixture with fresh air.

Cigarette smoke contains 4% carbon monoxide and a prolonged exposure to a concentration
of more than 0.012% can be fatal. The bar has a floor area of 20m by 15m, and a height
of 4m. It is estimated that smoke enters the room at a constant rate of 0.006m3/min, and
that the ventilators remove the mixture of smoke and air at 10 times the rate at which
smoke is produced.

The problem is to establish a good time to leave the bar, that is, sometime before the
concentration of carbon monoxide reaches the lethal limit.

(a) Starting from a word equation or a compartmental diagram, formulate the differential
equation for the changing concentration of carbon monoxide in the bar over time.

(b) By solving the equation above, establish at what time the lethal limit will be reached.

Solution.

(a) The compartment model is shown in Figure 2.3.

bar
cigarette smoke outflow

Figure 2.3: Compartment diagram for model of smoke concentration in a bar, Question 2.11.

The corresponding word equation is
{

rate of change
of amount of

carbon monoxide

}

=

{

rate carbon
monoxide produced

by smoke

}

−
{

rate carbon
monoxide removed

by ventilators

}

.

The appropriate differential equation is:

C ′(t) =
Fin

V
cin −

Fout

V
C(t), C (0) = 0

and its solution is

C(t) =
Fincin
Fout

(1− e−(Fout/V )t).

(b) Approximately 10 hours.

Answer given at back of textbook:
(b) Approximately 10 hours.

2.12. Detecting art forgeries. Based on methods used in the case study describing the
detection of art forgeries (Section 2.3), comment on whether each of the paintings below is
a possible forgery, based on the time it was painted:

(a) ‘Washing of Feet’, where the disintegration rate for 210Po is 8.2 per minute per gram
of white lead, and for 226Ra is 0.26 per minute per gram of white lead.

(b) ‘Laughing Girl’, where the disintegration rate for 210Po is 5.2 per minute per gram
of white lead and for 226Ra is 4 per minute per gram of white lead.
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Solution.

(a) The original disintegration rate of Lead-210 is

λn0 = λNeλ(t−t0) −R(eλ(t−t0) − 1).

Assuming ‘Washing of Feet’ is approximately 300 years old,

λn0 = 8.2× 2150/11 − 0.26(2150/11 − 1) > 101 000.

This original rate of disintegration is too high. The painting is modern.

(b) With λN = 5.2 and R = 4 and assuming the painting is 300 years old the
equation gives

λn0 = 5.2× 2150/11 − 4(2150/11 − 1) ≈ 15284.

The painting could be authentic.

2.13. Cold pills. In Section 2.7, we developed the model

dx

dt
= −k1x, x(0) = x0,

dy

dt
= k1x− k2y, y(0) = 0,

where k1, k2 > 0 determine the rate at which a drug, antihistamine or decongestant moves
between two compartments in the body, the GI-tract and the bloodstream, when a patient
takes a single pill. Here x(t) is the level of the drug in the GI-tract and y(t) is the level in
the bloodstream at time t.

(a) Find solution expressions for x(t) and y(t) that satisfy this pair of differential equa-
tions, when k1 �= k2. Show that this solution is equivalent to that provided in the
text.

(b) The solution above is invalid at k1 = k2. Why is this, and what is the solution in
this case?

(c) For old and sick people, the clearance coefficient (that is, the rate at which the drug
is removed from the bloodstream) is often much lower than that for young, healthy
individuals. How does an increase or decrease in k2 change the results of the model?
Using Maple or MATLAB to generate the time-dependent plots, check your results.
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Figure 2.4: Amount of a single cold pill present in (a) the GI-tract and (b) the bloodstream
with clearance coefficients of k2 = 0.1 (grey line), k2 = 0.05 (thick black line) and k2 = 0.01
(thin black line). In all cases, k1 = 1.3860, x0 = 1 and y0 = 0.

Solution.

(b) Cannot divide by k1 − k2 = 0.

We can replace k2 by k1 in the differential equation for y above to get

dy

dt
= k1x0e

−k1t − k1y, y(0) = 0.

The solution of this equation is y(t) = k1x0te
−k1t.

(c) Lowering the clearance coefficient does not change the GI-tract drug concentra-
tion since the differential equation describing the amount in the tract is independent
of k2. It does, however, increase the time taken for the drug to be removed from the
blood stream. Accordingly, the peak concentration in the blood stream is higher.
This is shown in Figure 2.4.

Answer given at back of textbook:
(b) Dividing by zero if k1 = k2.
y(t) = k1x0te

−k1t.

(c) Hint: DE for the GI tract doesn’t contain k2.

2.14. Cold pills. In Section 2.7, we also developed a model to describe the levels of
antihistamine and decongestant in a patient taking a course of cold pills:

dx

dt
= I − k1x, x(0) = 0,

dy

dt
= k1x− k2y, y(0) = 0.

Here k1 and k2 describe rates at which the drugs move between the two sequential com-
partments (the GI-tract and the bloodstream) and I denotes the amount of drug released
into the GI-tract in each time step. The levels of the drug in the GI-tract and bloodstream
are x and y, respectively. By solving the equations sequentially show that the solution is

x(t) =
I

k1

(

1− e−k1t
)

, y(t) =
I

k2

[

1− 1

k2 − k1

(

k2e
−k1t − k1e

−k2t
)

]

.
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Hint: Substitute the solution for x into the differential equation for y. The differ-
ential equation for x(t),

dx

dt
= I − k1x,

can be solved using an integrating factor to give

x(t) =
I

k1
+ C1e

−k1t,

for some arbitrary constant C1. Applying the initial condition we find that the
equation for x(t) is

x(t) =
I

k1
(1− e−k1t).

Substituting for x(t) in the differential equation for y(t) gives

dy

dt
= I(1− e−k1t)− k2y.

We again use the integrating factor technique and find that

y(t) =
I

k2
− I

k1 − k2
e−k1t + C2e

−k2t,

where C2 is an arbitrary constant. With y(0) = 0 we find that

C2 =
I

k2 − k1
− I

k2
=

Ik1
k2(k2 − k1)

and so

y(t) =
I

k2

[

1− 1

k2 − k1
(k2e

−k1t − k1e
−kt2)

]

.

2.15. Antibiotics. (Adapted from Borelli and Coleman (1996).) Tetracycline is an an-
tibiotic prescribed for a range of problems, from acne to acute infections. A course is taken
orally and the drug moves from the GI-tract through the bloodstream, from which it is
removed by the kidneys and excreted in the urine.

(a) Write word equations to describe the movement of a drug through the body, using
three compartments: the GI-tract, the bloodstream and the urinary tract. Note that
the urinary tract can be considered as an absorbing compartment, that is, the drug
enters but is not removed from the urinary tract.

(b) From the word equations develop the differential equation system that describes this
process, defining all variables and parameters as required.

(c) The constants of proportionality associated with the rates at which tetracycline (mea-
sured in milligrams) diffuses from the GI-tract into the bloodstream, and then is
removed, are 0.72 hour−1 and 0.15 hour−1, respectively (Borelli and Coleman (1996)).
Suppose, initially, the amount of tetracycline in the GI-tract is 0.0001 milligrams,
while there is none in the bloodstream or urinary tract.
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Use Maple or MATLAB(with symbolic toolbox) to solve this system analytically, and
thus establish how the levels of tetracycline change with time in each of the com-
partments. In the case of a single dose, establish the maximum level reached by the
drug in the bloodstream and how long it takes to reach this level with the initial
conditions as given above.

(d) Suppose that, initially, the body is free from the drug and then the patient takes a
course of antibiotics: 1 unit per hour. Use Maple or MATLAB to examine the level of
tetracycline (expressed as units) in each of the compartments over a 24-hour period.
Use the constants as given above.

Solution.

(a)
{

rate of change
of drug in
GI tract

}

= −
{

rate drug
leaves GI tract

}

{

rate of change
of drug
in blood

}

=
{

rate drug
enters blood

}

−
{

rate drug
leaves blood

}

{

rate of change
of drug in

urinary tract

}

=
{

rate drug enters
urinary tract

}

(b) Let x(t) be the amount of the drug in the GI-tract, y(t) be the amount of drug
in the blood stream and z(t) be the amount of drug in the urinary tract at time t.
Then

x(t) = −k1x, x(0) = x0,

y(t) = k1x− k2y, y(0) = 0,

z(t) = k2y, z(0) = 0,

where k1, k2 > 0 represent the rates at which the drug is removed from or enters
different parts of the system.

(c)

x(t) = 0.0001e−0.72t ,

y(t) = 0.000126(e−.15t − e−.72t),

z(t) = 0.000026e−.72t − 0.000126e−.15t + 0.0001.

The maximum level in the bloodstream is approximately 6.6× 10−5 milligrams and
that this maximum is reached after about 2.8 hours.

(d)

x(t) = I − k1x, x(0) = 0,

y(t) = k1x− k2y, y(0) = 0,

z(t) = k2y, z(0) = 0,
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Figure 2.5: Amount of a single dose of tetracycline present in the GI-tract (grey line), the
bloodstream (thick black line) and the urinary tract (thin black line) with k1 = 0.72 and
k2 = 0.15, x0 = 0.0001, y0 = 0 and z0 = 0.
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Figure 2.6: Amount of a course of tetracycline present in the GI-tract (grey line), the
bloodstream (thick black line) and the urinary tract (thin black line) with I = 1, k1 = 0.72
and k2 = 0.15, x0 = 0, y0 = 0 and z0 = 0.

where I represents the rate of ingestion of the drug.

The amount of tetracycline in the GI-tract levels out at just over 1 milligram after
approximately 5 hours. The amount in the bloodstream rises in the first 24 hours,
although this too appears to tend towards a constant value after 24 hours. The uri-
nary tract is considered to be an absorbing compartment and so it is not surprising
that the amount of tetracycline continues to rise.

Answer given at back of textbook:
(d) x(t) = I − k1x, x(0) = 0,
y(t) = k1x− k2y, y(0) = 0,
z(t) = k2y, z(0) = 0.

2.16. Alcohol consumption. Use the model from the case study on alcohol consumption
(Dull, dizzy or dead, Section 2.8), to establish, for the case of drinking on an empty stomach,
the following:

(a) Use Maple or MATLAB to generate graphs to investigate the effects of alcohol on a
woman of 55 kg, over a period of time.

(b) Compare these results with those for a man of the same weight.

(c) Assuming the legal limit to be 0.05BAL (the Australian limit), establish roughly
how much alcohol the man and woman above can consume each hour and remain
below this limit.
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(d) Repeat (a)–(c) for the case of drinking together with a meal.

Solution.

(a) The BAL of a 55kg woman over time in both the bloodstream and the GI-tract
are examined in Figure 2.7
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Figure 2.7: The BAL of a 55kg woman drinking on an empty stomach. In (a) and (b) 1
drink per hour are consumed, in (c) and (d) 2 drinks per hour are consumed and in (e) and
(f) 4 drinks per hour are consumed. The left-hand diagrams are for a single drinking bout
and the right-hand graphs for a continuous binge. The black line represents the BAL in the
bloodstream and the grey line the level in the GI-tract. The legal limit BAL of 0.05 is also
indicated.
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(b) The BAL of a man is slightly lower than that of a woman, regardless of the
number of standard drinks consumed, but tends to rise and fall in a qualitatively
similar manner.
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Figure 2.8: The BAL of a 55kg man drinking on an empty stomach. In (a) and (b) 1 drink
per hour are consumed, in (c) and (d) 2 drinks per hour are consumed and in (e) and (f) 4
drinks per hour are consumed. The left-hand diagrams are for a single drinking bout and
the right-hand graphs for a continuous binge. The black line represents the BAL in the
bloodstream and the grey line the level in the GI-tract. The legal limit BAL of 0.05 is also
indicated.

(c) To remain strictly under the legal limit men and woman can only consume one
drink at the start of the first hour. If the man consumes two drinks his BAL just
exceeds the legal limit of 0.05 in the second half of the first hour but then falls below
this threshold.
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(d) The BAL of a woman is again higher than that of a man of the same weight
and who consumes the same amount of alcohol. The BAL of both women and men
is lower if alcohol is consumed after a substantial meal than on an empty stomach,
as expected. After a meal, women and men can consume three standard drinks at
once and remain under the limit.
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Figure 2.9: The BAL of a 55kg woman drinking after a substantial meal. In (a) and (b)
2 drinks per hour are consumed, in (c) and (d) 3 drinks per hour are consumed and in (e)
and (f) 4 drinks per hour are consumed. The left-hand diagrams are for a single drinking
bout and the right-hand graphs for a continuous binge. The black line represents the BAL
in the bloodstream and the grey line the level in the GI-tract. The legal limit BAL of 0.05
is also indicated.
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Figure 2.10: The BAL of a 55kg man drinking after a substantial meal. In (a) and (b) 2
drinks per hour are consumed, in (c) and (d) 3 drinks per hour are consumed and in (e)
and (f) 4 drinks per hour are consumed. The left-hand diagrams are for a single drinking
bout and the right-hand graphs for a continuous binge. The black line represents the BAL
in the bloodstream and the grey line the level in the GI-tract. The legal limit BAL of 0.05
is also indicated.
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2.17. Alcohol consumption. Alcohol is unusual in that it is removed (that is, metabolised
through the liver) from the bloodstream by a constant amount each time period, indepen-
dent of the amount in the bloodstream. This removal can be modelled by a Michaelis–
Menten type function y′ = −k3y/(y +M), where y(t) is the ‘amount’ (BAL) of alcohol in
the bloodstream at time t, k3 is a positive constant and M a small positive constant.

(a) If y is large compared with M , then show that y′ ≃ −k3. Solve for y in this case.

(b) Alternatively, as y decreases and becomes small compared with M , show that then
y′ ≃ −k3y/M . Solve for y in this case.

(c) Now sketch the solution function for y′ = −k3y/(y+M) assuming that, initially, y is
much greater than M . Indicate clearly how the graph changes in character when y
is small compared with M , compared with when y is large compared with M . Show
how the solution behaves as t → ∞.

(d) When and why would this function be more suitable than simply using y′ = −k3 to
model the removal rate?

Solution.

(a) y(t) = −k3t+ y0, y(0) = y0.

(b) y(t) = y0e
−(k3/M)t, y(0) = y0.

(c) See Figure 2.11

x

y
y0

Figure 2.11: Sketch of the solution of the differential equation in Question 2.17.

(d) If the observed rate of removal frequently reaches a saturation value.

Answer given at back of textbook:
(a) y(t) = −k3t+ y0, y(0) = y0.

(b) y(t) = y0e
−(k3/M)t, y(0) = y0.

2.18. Solving differential equations. Consider the differential equations

t
dx

dt
= x, x(t0) = x0,
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and

y2
dx

dy
+ xy = 2y2 + 1, x(y0) = x0.

Put each equation into normal form and then use the integrating factor technique to find
the solutions. Establish whether these solutions are unique, and which part of each solution
is a response to the initial data and which part a response to the input or forcing.

Solution.

The normal form of

t
dx

dt
= x

is
dx

dt
− x

t
= 0

and its solution is
x(t) =

x0
t0

t.

A unique solution to the IVP exists on an interval containing t0 provided t0 �= 0.
The response to the initial data is x0

t0
t. There is no response to the input.

The normal form of

y2
dx

dy
+ xy = 2y2 + 1

is
dx

dy
+

x

y
= 2 +

1

y2
.

Its solution is

x(y) = y +
1

y
(ℓn y + x0y0 − y20 − ℓn y0).

A unique solution to the IVP exists on an interval containing y0 provided y0 �= 0.
The response to the initial data is y0x0

y and the response to the input is y+ 1
y (ℓn y−

y20 − ℓn y0).

2.19. Formulating DEs for alcohol case study. Read over the case study in Section 2.8.
Consider two compartments, one for the GI-tract and one for the blood. Let C1(t) be the
concentration of alcohol in the GI tract and C2(t) be the concentration in the blood, with
both concentrations measured in BAL (g per 100ml). Also let F1 be the flow rate of fluid
from the GI-tract and let F2 be the flow rate of fluid from the blood to the tissues. Finally,
we let i0 be the rate of ingestion of alcohol (in g/hr). Use conservation of mass of alcohol
to deduce the equations in the form

dC1

dt
= I − k1C1,

dC2

dt
= k2C2 − k4C2

and determine I, k1, k2 and k3 all in terms of i0, F1, F2 and Vg, the volume of the fluid in
the GI-tract, Vb the volume of fluid in the blood, and α, where α is the proportion of the
alcohol leaving the GI-tract goes into the bloodstream.
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Note: In the case study we let the rate constant k4 depend on the blood alcohol concentra-
tion

k4 =
k3

M + C2
,

where k3 andM are positive constants, k3 with the same units as k1 and k2, namely hours−1

and M with the same units as C2, namely BAL.

Solution.

Conservation of mass requires

d

dt
(VbC1) = I − F1 ×

C1Vb

Vg
,

d(VbC2)

dt
= αF1 ×

C1Vb

Vg
− F2 × C2,

So

I =
i0
Vb

, k1 =
F1

Vg
, k2 =

αF1

Vg
, k4 =

F2

Vb
.

Since C1 is the concentration in the GI-tract measured in terms of the volume in
the blood, the mass of alcohol is therefore VbC1 and since F1 measures flow rate as
volume of fluid in the GI-tract we need to multiply by the fraction (C1Vb)/Vg as the
appropriate concentration in the first equation.

Answer given at back of textbook:
d

dt
(VbC1) = I − F1 ×

C1Vb

Vg
,

d

dt
(VbC2) = αF1 ×

C1Vb

Vg
− F2 × C2.

2.20. Economic growth. Read over the case study on a model of economic growth in
Section 2.12. In this model the Cobb–Douglas function was used to model production. An
alternative model is the Harrod–Domar model of fixed proportions, Y = min {K/a,L/b}
is the minimum of the two values, with a units of capital and b units of labour required
to produce a unit of output. The expression for Y describes the ‘bottlenecks’ for the
system, that is, whether it is limitations in capital or labour that determine the outcome
for production.

(a) For the case r/a < 1/b, show that

dr

dt
=

( s

a
− n

)

r

and solve this to obtain
r(t) = r0e

(s/a−n)t.

where r(0) = r0.

(b) Consider the case when n > s/a and r0 > a/b. Provide an interpretation of what
this scenario means in terms of capital and the demand for labour.
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Solution.

(a) Note that, from the definition of parameters a and b, Y ≡ F
(

K
L0ent , 1

)

. From

the case study, the ratio of capital to labour, r(t) satisfies

(

dr

dt
+ nr

)

L0e
nt = sF

(

K,L0e
nt
)

so
dr

dt
= smin

{

r

a
,
1

b

}

− nr,

For r/a < 1/b we have r < a/b and the relevant equation is

dr

dt
=

(s

a
− n

)

r.

The solution, satisfying an initial condition r(t) = r0, is

r(t) = r0e
(s/a−n)t.

(b) For s/a − n < 0 then r is always decreasing. With r0 > a/b, then r decreases
towards s/nb < a/b. When r(t) reaches a/b it decreases further.

To interpret this scenario, note that at r = a/b labour supply and capital stock
are in balance (from the definition of a and b) Thereafter, the capital-labour ratio
decreases with labour becoming redundant, and this redundancy growing. Thus the
conditions above predict a possible scenario for growing unemployment.

2.21. Return to scale property. Show that the Cobb–Douglas function, from Sec-
tion 2.12,

Y = F (K,L) = KaL1−a

has the return to scale property.

Solution.

From the definition

F (aK, aL) = (aL)α (aK)1−α

= aKαL1−α

= aF (K,L) .

2.22. Stability of equilibrium solution. Consider Figure 2.16(b), in Section 2.12. Es-

tablish the stability of each of the equilibrium points, r
(1)
e , r

(2)
e and r

(3)
e , from the underlying

equation.
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Table 2.1: Stability of the steady states of r (t) for Question 2.22.

r Value of sf (r) Sign of dr/dt

r < r
(1)
e sf (r) > nr +

r
(1)
e < r < r

(2)
e sf (r) < nr -

r
(2)
e < r < r

(3)
e sf (r) > nr +

r > r
(1)
e sf (r) < nr -

Solution.

The stability of the steady states can be determined by examining the sign of dr/dt

for different values of r, as shown in Table 2.1. If r < r
(1)
e , dr/dt is positive and r

increases towards r
(1)
e . On the other hand, if r

(1)
e < r < r

(2)
e , r decreases towards

r
(1)
e . Thus r

(1)
e is a stable steady state.

By similar arguments, we see that r
(2)
e is unstable and r

(3)
e is stable.

2.23. Equilibria. Each of the following differential equations has only one equilibrium
solution. Find that equilibrium solution and determine if it is stable or unstable?

(a)
dy

dt
= y − 1.

(b)
dC

dt
=

F

V
ci −

F

V
C, where F , V , ci are positive constants.

Solution.

(a) Set dy/dt = 0 so y − 1 = 0 hence y = 1. So the equilibrium solution is ye = 1.
Now F ′(y) = d

dy (y − 1) = 1, so F ′(ye) = 1 > 0, so ye = 1 is unstable.

(b) Ce = ci is the only equilibrium. Now F ′(C) = −(FG/V ) so F ′(ci) = −F/V < 0
for all positive F and V . So Ce = ci is stable for all parameter values.

Answer given at back of textbook:
(a) ye = 1 which is unstable.

(b) Ce = ci. F
′(C) = −(F/V ) < 0.

Ce = ci is stable for all values of parameters.
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