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CHAPTER 2

Path Integral
Formulation

2.1 Show by direct substitution that the free particle kernel K (zy,t;z;,0)
satisfies the differential equation ihdK /0t = —(h?/2m)0*K/ 81’?.

From
m 1/2 . 2
K @, _ ( ) im(xy—x;)°/(2ht)
(@rtien0) = 50m) ¢
we obtain
3_K — ,E,iﬁ o 2K
o 2t 2h t '
IK — ﬁ(xfixi)K
8.’L‘f h t
and
0’K imK . (zy—uxz;) 0K
5 = +1m R
é)xf ht t Ox g
imK im\ 2 Ty — T4
= — K
() ()
2m K m(x;—ux; 2
= —=5 |+ K
72 [ 2 2 < i 1
2m 0K
= — i
12 (l 8t>
That is,
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16 W Solutions to the Exercises in Quantum Mechanics I1: Advanced Topics

2.2

2.3

24

Find the wavelength A of oscillation of K(x,t;0,0) of a free particle at
large values of = at a fixed time.

We have

m 1/2 imaz?
K(x’t;o’o):(%im) R

The phase factor is given by ma?/(2ht). Increasing z by A must increase
the phase of K by 2x. That is,

m(z+A\)?  ma®
ont  2ht

ma\  mN?

TR

2r =

A2 A
For large values of =z, % < % Therefore,

ma\ 2mh
or =

27 & .
i ht mx/t

Since ma:/t is the classical momentum p, we get A = h/p.

Show that for a fixed distance z, the frequency of oscillation of
K(x,t;0,0) at large values of ¢ is given by v = E/h where E is the
classical energy of the free particle.

If T is the period of oscillation then changing ¢ — ¢ + T will change the
phase factor ma?/(2ht) by 2. Hence,

ma? _ ma? _ ma?T
2nt  2h(t+T)  2m2(1+ L)~

2r =

For large values of ¢, we get 27 ~ ma?T/(2ht?). That is,

1 1 ma?

T~ 2rh 212 °
Since v = x/t and max?/(2t?) = E we obtain 1/T = v = E/h.
Obtain the classical action for one-dimensional harmonic oscillator.

The Lagrangian for one-dimensional harmonic oscillator is

L= (i —wk?) . (2.1)
d
Substituting 4% = a(mx) — x in the above equation we get

L= % (%(m) - w2x2> . (2.2)
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Since the equation of motion for a linear harmonic oscillator is mi +

d
w?r =0 we get L = %axx Then

ty=T

S(zem(t)) = / Ldt =

m
t;=0 2

() i=r — (x2)i=0] - (2.3)

Using the solution z(t) = Acoswt + Bsinwt of the linear harmonic
oscillator with A = 2(0) = a; and Bw = @(0) = &; we get

zy = «(T)=wx;coswT + L GinwT , (2.4)
w
ty = #(T)=wz;sinwl + &; coswT . (2.5)
From Eq. (2.4) we get

~ (zp —xicoswlw

£; = . 2.6
. sinwT' (2:6)
Using this expression in Eq. (2.5) we obtain
. (—zi + x5 coswT)w
= 2.7
o sinwT’ (2.7)
Using (2.6) and (2.7) we get
w [(ﬂc,2 +2%) coswT — 236,»17]
Py - mid = 2.
TpEp— Tk P (2.8)
and
S(zem(t)) = QSZZL:T [(=F + x?) coswT — 2x;x7] . (2.9)

2.5 Express the propagator in terms of eigenstates.
In the operator formalism the time-independent Schrédinger equation is

H‘(én) = En|¢n> )

where

<¢m‘¢n> = Omn » Z ‘¢n><¢n| =1.

n

In the coordinate basis

60} = / 0z hu (@), Gn(z) = (]bn)
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18 MW Solutions to the Exercises in Quantum Mechanics I1: Advanced Topics

(1)) =D CreEnt/h|g, )

and
2 d%,
2m dx?
Then
or

Y(x,t) = che_iEnt/hﬁbn(x) .

n

Now, we write

K(as, Tiai,0) = (agle” /M)
= (sl Y |on)(dnlw:)
= Dteslon)e T Mon )
= D Ualap)yy(@)e BTN
2.6 Similar to the quantum statistical function Z(8) = Tre ?# we can

introduce the quantum mechanical partition function as Z(ty,t;) =
TrU(ty,t;). Obtain the path integral form of it.

In the time-independent case

Z(ty ti) = Z(ty —t;) = Tre st H/A

Z(B) and Z(ty,t;) are related by continuation of ty —t; as ty —t; = —ihp.
Computing the trace in |n) basis we get

Z(tf —ti) =

In |z) basis
Z(tf — ti) =

ry = x; = = means that the

Ze—i(tf—ti)En/h (21)

/ Al U (1, 1))
/ K(z,z;ty —t;)dx.

integration is over all closed paths at z.
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e8] z(ty)=z .
—00 x(t;)=x

N / Dlar(t)] S/
w(tp)=a(t:)

- / Pla(t)] SOUA
x(ty)=x(ti)

Comparing (2.2) with (2.1) we infer that by computing this path integral

over all closed loops we can determine the energy eigenvalues.

potential V(x) = 0 for |z| < a and oo for |z| > a.

(2.2)

2.7 Obtain the propagator for a particle of mass m confined within a box

By solving the Schrédinger equation of the given problem we obtain

Un(z) = \/g sin(nma/a) .

The propagator is then obtained as

h2m2n?
En - 2
2ma

oo

2
K(zys,t;2,0) = aZeX

Jj=1

We need to include all paths joining the initial point z; and the end point
x ¢ within a period of time ¢. There are infinite paths connecting x; and
xy because the walls of the potential reflects the particles incident on
it. Four of these paths are shown in Fig. 7. Do these all paths distinct?

1

o[

2ma

7T2 2

2

J } sin(jrxy/a)sin(jnz;/a) .

FIGURE 2.1 Some of the paths connecting x; and x s for a particle in a

box potential system.

No. Instead of considering particles reflected at the walls we remove the
walls and set-up a sequence of mirror reflected boxes on either sides of
the original box. We view the particle as a free particle. In this case

%
N\ N\
° .%
%
N\ N\
l—\;.
X X
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20 B Solutions to the Exercises in Quantum Mechanics II: Advanced Topics

2.8

[ 1 L ] 3

i X¢
X; 1 xll
1 1
XX

FIGURE 2.2 Paths corresponding to those in Fig. 2.1 when instead of
reflecting the particle at the wall it is allowed to pass through the se-
quence of mirror reflected boxes.

there will not be folding of paths. The paths in Fig.7 become those in
Fig. 7. From this figure we observe that for an odd number of reflections
the end point is at 2na — x¢ while for even number of reflections the end
point becomes 2na + x¢. Therefore, we have

n— m im

KR e ti0) = g o gy ona —as e
m im

1/ (2 — )2 .

Remember that we need to consider only the paths that are not cross-
ing the walls. We can write the resultant propagator as the propagator
that includes all the paths minus the propagator that considers only
the paths which crossed the walls. By a tricky argument (for details see
G.L. Ingold, Path integrals and their applications to dissipative quantum
systems (preprint)) we obtain

K(Q")(xf,t;xi,())

even

K(mf7 ta L, 0) = K(Zn) - K((Qinrl) .

even O

Making use of the propagator of a free particle the propagator for a
particle of mass confined to a ring of radius R.

The stationary state eigenfunctions and energy eigenvalues of the system
obtained by solving the Schrédinger equation is

h21?
= 2mR?

Vi(¢) = S 1=0,+1,42,--- .

The propagator for a free particle is

m /2 . 2
K g, _ ( ) im(xyp—x;)"/2ht )
(wrtiwn0) = {5q)
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There is a difference between free particle and a particle on a ring. In
the ring case we need to find the angles ¢ + 27n, where n is an integer
and ¢ is the angle. There are infinite number of paths connecting ¢; and
¢y. These paths are different. For example one path is connecting ¢;
and ¢¢ without making one complete revolution over the ring. Another
path is starting from ¢; crossing ¢, and then ¢; and then ending on
¢s (that is, connecting after making one revolution). In this case the
winding number is 1. In this way different paths are characterized by
winding number. Two paths with distinct winding number cannot be
continuously transformed into one another. Thus all paths can be taken
into consideration by summing over all winding numbers. That is, the
propagator consists of sum of all free particle’s propagators with vari-
ous winding numbers. This gives (G.L. Ingold, Path integrals and their
applications to dissipative quantum systems (preprint))

1/2 : R2
K(7,t:6,0) = R (50=) Y exp [”;‘m (65 — ¢i — 2mn)?

In the above the presence R is because the coordinate of the particle on
a ring is specified by an angle rather than a position.

Because the propagator is periodic with period-27 in ¢y — ¢; we write

K(('bf’t’ (ZSZ)O) - Z Cleil(d’f*¢i) ,

l=—00

where L
O = — —ihl%t/(2mR?) )
! 27re
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