
C H A P T E R 2

Path Integral

Formulation

2.1 Show by direct substitution that the free particle kernel K(xf , t;xi, 0)
satisfies the differential equation i�∂K/∂t = −(�2/2m)∂2K/∂x2

f .

From

K(xf , t;xi, 0) =
( m

2πi�t

)1/2

eim(xf−xi)
2/(2�t)

we obtain

∂K

∂t
= −K

2t
− im

2�

(

xf − xi

t

)2

K ,

∂K

∂xf
=

im

�

(xf − xi)

t
K

and

∂2K

∂x2
f

=
imK

�t
+ im

(xf − xi)

t

∂K

∂xf

=
imK

�t
+

(

im

�

)2 (
xf − xi

t

)2

K

= −2m

�2

[

−i�
K

2t
+

m

2

(

xf − xi

t

)2

K

]

= −2m

�2

(

i�
∂K

∂t

)

.

That is,

i�
∂K

∂t
= − �

2

2m

∂2K

∂x2
f

.
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16 � Solutions to the Exercises in Quantum Mechanics II: Advanced Topics

2.2 Find the wavelength λ of oscillation of K(x, t; 0, 0) of a free particle at
large values of x at a fixed time.

We have

K(x, t; 0, 0) =
( m

2πi�t

)1/2

eimx2/(2�t) .

The phase factor is given by mx2/(2�t). Increasing x by λ must increase
the phase of K by 2π. That is,

2π =
m(x+ λ)2

2�t
− mx2

2�t

=
mxλ

�t
+

mλ2

2�t
.

For large values of x,
mλ2

2�t
� mxλ

�t
. Therefore,

2π ≈ mxλ

�t
or λ =

2π�

mx/t
.

Since mx/t is the classical momentum p, we get λ = h/p.

2.3 Show that for a fixed distance x, the frequency of oscillation of
K(x, t; 0, 0) at large values of t is given by ν = E/h where E is the
classical energy of the free particle.

If T is the period of oscillation then changing t → t+ T will change the
phase factor mx2/(2�t) by 2π. Hence,

2π =
mx2

2�t
− mx2

2�(t+ T )
=

mx2T

2�t2(1 + T
t )

.

For large values of t, we get 2π ≈ mx2T/(2�t2). That is,

1

T
=

1

2π�

mx2

2t2
.

Since v = x/t and mx2/(2t2) = E we obtain 1/T = ν = E/h.

2.4 Obtain the classical action for one-dimensional harmonic oscillator.

The Lagrangian for one-dimensional harmonic oscillator is

L =
m

2

(

ẋ2 − ω2x2
)

. (2.1)

Substituting ẋ2 =
d

dt
(xẋ)− xẍ in the above equation we get

L =
m

2

(

d

dt
(xẋ)− xẍ− ω2x2

)

. (2.2)
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Path Integral Formulation � 17

Since the equation of motion for a linear harmonic oscillator is mẍ +

ω2x = 0 we get L =
m

2

d

dt
xẋ. Then

S(xCM(t)) =

∫ tf=T

ti=0

Ldt =
m

2
[(xẋ)t=T − (xẋ)t=0] . (2.3)

Using the solution x(t) = A cosωt + B sinωt of the linear harmonic
oscillator with A = x(0) = xi and Bω = ẋ(0) = ẋi we get

xf = x(T ) = xi cosωT +
ẋi

ω
sinωT , (2.4)

ẋf = ẋ(T ) = ωxi sinωT + ẋi cosωT . (2.5)

From Eq. (2.4) we get

ẋi =
(xf − xi cosωT )ω

sinωT
(2.6)

Using this expression in Eq. (2.5) we obtain

ẋf =
(−xi + xf cosωT )ω

sinωT
. (2.7)

Using (2.6) and (2.7) we get

xf ẋf − xiẋi =
ω
[

(x2
i + x2

f ) cosωT − 2xixf

]

sinωT
(2.8)

and

S(xCM(t)) =
mω

2 sinωT

[

(x2
i + x2

f ) cosωT − 2xixf

]

. (2.9)

2.5 Express the propagator in terms of eigenstates.

In the operator formalism the time-independent Schrödinger equation is

H |φn� = En|φn� ,

where

�φm|φn� = δmn ,
∑

n

|φn��φn| = 1 .

In the coordinate basis

|φn� =
∫

dxφn(x)|x� , φn(x) = �x|φn�
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18 � Solutions to the Exercises in Quantum Mechanics II: Advanced Topics

and

− �
2

2m

d2φn

dx2
+ V φn = Enφn .

Then

|ψ(t)� =
∑

n

Cne
−iEnt/�|φn�

or

ψ(x, t) =
∑

n

Cne
−iEnt/�φn(x) .

Now, we write

K(xf , T ;xi, 0) = �xf |e−iHT/�|xi�
= �xf |e−iHT/�

∑

|φn��φn|xi�

=
∑

�xf |φn�e−iEnT/��φn|xi�

=
∑

n

ψn(xf )ψ
∗
n(xi)e

−iEnT/� .

2.6 Similar to the quantum statistical function Z(β) = Tr e−βH we can
introduce the quantum mechanical partition function as Z(tf , ti) =
TrU(tf , ti). Obtain the path integral form of it.

In the time-independent case

Z(tf , ti) = Z(tf − ti) = Tr e−i(tf−ti)H/� .

Z(β) and Z(tf , ti) are related by continuation of tf−ti as tf−ti = −i�β.
Computing the trace in |n� basis we get

Z(tf − ti) =
∑

n

e−i(tf−ti)En/� (2.1)

In |x� basis

Z(tf − ti) =

∫ ∞

−∞
dx�x|U(tf , ti)|x�

=

∫ ∞

−∞
K(x, x; tf − ti)dx.

xf = xi = x means that the integration is over all closed paths at x.
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Path Integral Formulation � 19

Then

Z(tf , ti) = N

∫ ∞

−∞
dx

∫ x(tf )=x

x(ti)=x

D[x(t)] eiS[x(t)]/�

= N

∫

x(tf )=x(ti)

D[x(t)] eiS[x(t)]/�

=

∫

x(tf )=x(ti)

D̂[x(t)] eiS[x(t)]/� . (2.2)

Comparing (2.2) with (2.1) we infer that by computing this path integral
over all closed loops we can determine the energy eigenvalues.

2.7 Obtain the propagator for a particle of mass m confined within a box
potential V (x) = 0 for |x| < a and ∞ for |x| > a.

By solving the Schrödinger equation of the given problem we obtain

En =
�
2π2n2

2ma2
, ψn(x) =

√

2

a
sin(nπx/a) .

The propagator is then obtained as

K(xf , t;x, 0) =
2

a

∞
∑

j=1

exp

[

− i�π2j2

2ma2

]

sin(jπxf/a) sin(jπxi/a) .

We need to include all paths joining the initial point xi and the end point
xf within a period of time t. There are infinite paths connecting xi and
xf because the walls of the potential reflects the particles incident on
it. Four of these paths are shown in Fig. 7. Do these all paths distinct?

xixf

FIGURE 2.1 Some of the paths connecting xi and xf for a particle in a
box potential system.

No. Instead of considering particles reflected at the walls we remove the
walls and set-up a sequence of mirror reflected boxes on either sides of
the original box. We view the particle as a free particle. In this case

K24777_SM_Cover.indd   31 13/11/14   6:20 PM



20 � Solutions to the Exercises in Quantum Mechanics II: Advanced Topics

xi
1xf

1

xi
1xf

-1

xi
1 x 2

f

xi
1 x 3

f

FIGURE 2.2 Paths corresponding to those in Fig. 2.1 when instead of
reflecting the particle at the wall it is allowed to pass through the se-
quence of mirror reflected boxes.

there will not be folding of paths. The paths in Fig.7 become those in
Fig. 7. From this figure we observe that for an odd number of reflections
the end point is at 2na−xf while for even number of reflections the end
point becomes 2na+ xf . Therefore, we have

K
(2n−1)
odd (xf , t;xi, 0) =

√

m

2πi�t
exp

[

im

2�t
(2na− xf − xi)

2

]

K(2n)
even(xf , t;xi, 0) =

√

m

2πi�t
exp

[

im

2�t
(2na+ xf − xi)

2

]

.

Remember that we need to consider only the paths that are not cross-
ing the walls. We can write the resultant propagator as the propagator
that includes all the paths minus the propagator that considers only
the paths which crossed the walls. By a tricky argument (for details see
G.L. Ingold, Path integrals and their applications to dissipative quantum
systems (preprint)) we obtain

K(xf , t;xi, 0) = K(2n)
even −K

(2n+1)
odd .

2.8 Making use of the propagator of a free particle the propagator for a
particle of mass confined to a ring of radius R.

The stationary state eigenfunctions and energy eigenvalues of the system
obtained by solving the Schrödinger equation is

ψl(φ) =
1√
2π

eilφ, El =
�
2l2

2mR2
, l = 0,±1,±2, · · · .

The propagator for a free particle is

K(xf , t;xi, 0) =
( m

2πi�t

)1/2

eim(xf−xi)
2/2�t .
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Path Integral Formulation � 21

There is a difference between free particle and a particle on a ring. In
the ring case we need to find the angles φ + 2πn, where n is an integer
and φ is the angle. There are infinite number of paths connecting φi and
φf . These paths are different. For example one path is connecting φi

and φf without making one complete revolution over the ring. Another
path is starting from φi crossing φf and then φi and then ending on
φf (that is, connecting after making one revolution). In this case the
winding number is 1. In this way different paths are characterized by
winding number. Two paths with distinct winding number cannot be
continuously transformed into one another. Thus all paths can be taken
into consideration by summing over all winding numbers. That is, the
propagator consists of sum of all free particle’s propagators with vari-
ous winding numbers. This gives (G.L. Ingold, Path integrals and their
applications to dissipative quantum systems (preprint))

K(φf , t;φi, 0) = R
( m

2πi�t

)1/2 ∑

exp

[

imR2

2�t
(φf − φi − 2πn)2

]

.

In the above the presence R is because the coordinate of the particle on
a ring is specified by an angle rather than a position.

Because the propagator is periodic with period-2π in φf − φi we write

K(φf , t;φi, 0) =

∞
∑

l=−∞
Cle

il(φf−φi) ,

where

Cl =
1

2π
e−i�l2t/(2mR2) .
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