
Chapter 2

Solution to exercise 11:

• For the Bernoulli distribution p(x) = px(1− p)1−x, with p ∈ [0, 1] and x ∈ {0, 1}, we have

ϕ(s) = E(sX) = p s+ (1− p) s0 = ps+ (1− p).

• For the Binomial distribution p(x) =

(
n
x

)
px(1 − p)n−x, with p ∈ [0, 1] and x ∈

{0, . . . , n} for some n ∈ N, we have

ϕ(s) =
∑

0≤x≤n

(
n
x

)
sx px(1− p)n−x

=
∑

0≤x≤n

(
n
x

)
(sp)x(1− p)n−x = ((1− p) + ps)

n
.

• For the Poisson distribution p(x) = e−λλx/x!, with λ > 0 and x ∈ N, we have

ϕ(s) = e−λ
∑
x≥0

sx λx/x!

= e−λ
∑
x≥0

(sλ)x/x! = e−λ+sλ = e−λ(1−s).

• For the Geometric distribution p(x) = (1− p)x−1p, with λ > 0 and x ∈ N− {0}, we have

ϕ(s) = p
∑
x≥1

sx (1− p)x−1

= ps
∑
x≥1

sx−1 (1− p)x−1 = ps
∑
x≥0

(s(1− p))x = ps/ (1− s(1− p)) .

This ends the proof of the exercise.

Solution to exercise 12:
By construction, we have

E(Nn+1) = E

E

 ∑
1≤i≤Nn

Xi
n | Nn


= E

 ∑
1≤i≤Nn

E
(
Xi
n | Nn

) = E(Nn) m.
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Var(Nn+1) = E(N2
n+1)− (E(Nn+1))

2

= E

E


 ∑

1≤i≤Nn

Xi
n

2

| Nn


− (E(Nn+1))

2
.

On the other hand, we have

E


 ∑

1≤i≤Nn

Xi
n

2

| Nn

 = NnE(X2) +Nn(Nn − 1) (E(X))
2

= Nn Var(X) +N2
nm

2.

This implies that

Var(Nn+1) = E(Nn) Var(X) + E(N2
n)m2 − (E(Nn+1))

2

= E(Nn) Var(X) + Var(Nn)m2 +
[
(E(Nn) m)

2 − (E(Nn+1))
2
]

= m2 Var(Nn) + E(Nn) Var(X).

We conclude that

Var(Nn+1) = m2
[
m2 Var(Nn−1) + E(Nn−1) Var(X)

]
+ E(Nn) Var(X)

= m4 Var(Nn−1) +
[
m2E(Nn−1) + E(Nn)

]
Var(X)

= m6 Var(Nn−2) +
[
m4E(Nn−2) +m2E(Nn−1) + E(Nn)

]
Var(X)

= . . .

= m2(n+1) Var(N0) + Var(X)
∑

0≤k≤n

m2kE(Nn−k),

so that

Var(Nn+1) = m2(n+1) Var(N0) + Var(X) mn (E(N0))n
∑

0≤k≤n

(m/E(N0))k.

When N0 = 1 we have Var(N0) = 0 and E(N0) = 1. In this case, we have

Var(Nn) = Var(X) mn−1
∑

0≤k<n

mk =

{
n Var(X) when m = 1

Var(X) mn−1 mn−1
m−1 when m 6= 1.

This ends the proof of the exercise.

Solution to exercise 13:
We have

ϕn(s) := E
(
E
(
sNn | Nn−1

))
= E

 ∏
1≤i≤Nn−1

E
(
sX

i
n | Nn−1

)
= E

(
E
(
sX
)Nn−1

)
= E

(
ϕ1(s)Nn−1

)
= ϕn−1 (ϕ1(s)) .
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Recalling that 00 = 1, this implies that

ϕn(0) = E(0Nn) = 1× P(Nn = 0) = P(Nn = 0).

For the Bernoulli o�spring distribution p(x) = pxq1−x, with q := (1 − p), p ∈ [0, 1] and
x ∈ {0, 1}, we have

ϕ1(s) = q + ps

ϕ2(s) = ϕ1 (q + ps) = q + p(q + ps) = q(1 + p) + p2s

ϕ3(s) = ϕ2 (q + ps) = q(1 + p) + p2(q + ps) = q(1 + p+ p2) + p3s

. . . = . . .

ϕn(s) = q(1 + p+ p2 + . . .+ pn−1) + pns =
q

1− p
(1− pn) + pns = (1− pn) + pns.

The last assertion follows from the fact that ϕn(s) = (1−pn)+pns is the moment generating
function of a Bernoulli random variable Nn with parameter pn; that is, we have that

P(Nn = 1) = pn and P(Nn = 0) = 1− pn.

This ends the proof of the exercise.

Solution to exercise 14:
We set gi0 =

(
gi0 (j)

)
j∈S . In this notation, we have

E

 ∑
1≤i≤N1

f(ξ̂i0)
∣∣ gi0, ξ0

 =
∑

1≤i≤N0

gi0
(
ξi0
)
f(ξi0).

This implies that

E

 ∑
1≤i≤N1

f(ξ̂i0) | ξ0

 =
∑

1≤i≤N0

G
(
ξi0
)
f(ξi0)

and therefore

E

 ∑
1≤i≤N1

f(ξ̂i0)

 =
∑

1≤i≤N0

η0(Gf) = N0η0(Gf). (30.18)

In the same vein, we have

E

 ∑
1≤i≤N1

f(ξi1) | N1, ξ̂0

 =
∑

1≤i≤N1

E
(
f(ξi1) | ξ̂i0

)
=

∑
1≤i≤N1

M(f)(ξ̂i0).

Using (30.18), we readily deduce that

E

 ∑
1≤i≤N1

f(ξi1)

 = E

 ∑
1≤i≤N1

M(f)(ξ̂i0)

 = N0 η0(GM(f)). (30.19)

In much the same way, if we set gi1 =
(
gi1 (j)

)
j∈S then we have

E

 ∑
1≤i≤N2

f(ξ̂i1)
∣∣ gi1, ξ1

 =
∑

1≤i≤N1

gi1
(
ξi1
)
f(ξi1).
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This implies that

E

 ∑
1≤i≤N2

f(ξ̂i1) | ξ1

 =
∑

1≤i≤N1

G
(
ξi1
)
f(ξi1).

Using (30.18), we readily deduce that

E

 ∑
1≤i≤N2

f(ξ̂i1)

 = E

 ∑
1≤i≤N1

G
(
ξi1
)
f(ξi1)

 = N0 η0(Q(Gf)). (30.20)

Arguing as above we have

E

 ∑
1≤i≤N2

f(ξi2) | N2, ξ̂1

 =
∑

1≤i≤N2

E
(
f(ξi2) | ξ̂i1

)
=

∑
1≤i≤N2

M(f)(ξ̂i1).

Using (30.20) we deduce that

E

 ∑
1≤i≤N2

f(ξi2)

 = E

 ∑
1≤i≤N2

M(f)(ξ̂i1)

 = N0 η0(Q(GM(f))) = N0 η0(Q2(f)).

(30.21)
The last assertion is proved using induction. This ends the proof of the exercise.

Solution to exercise 15:
By construction, we have

P (Xn+1 = i | X1, . . . , Xn) =
n

n+ α

1

n

∑
1≤p≤n

1Xp(i) +
α

n+ α
µ(i). (30.22)

The number of di�erent tables occupied by the �rst n customers is de�ned by

Tn :=
∑

1≤p≤n

εp

where εn stands for a sequence of independent Bernoulli random variables with distribution

P (εn = 1) = 1− P (εn = 0) =
α

α+ (n− 1)
.

This implies that∑
1≤p<n

∫ p+1

p

dt

1 + (t/α)
≤ E (Tn) =

∑
0≤p<n

α

α+ p
≤

∑
1≤p<n

∫ p

p−1

dy

1 + (t/α)
.

We conclude that∫ n

1

dt

1 + (t/α)
= α log

(
α+ n

α+ 1

)
≤ E (Tn) ≤

∫ n−1

0

dt

1 + (t/α)
= α log (1 + (n− 1)/α).

The formula

P (Xn+1 = i | X1, . . . , Xn) =
αµ(i) + Vn(i)

α+ n
with Vn(i) =

∑
1≤p≤n

1Xp(i)
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is a direct consequence of (30.22).
This ends the proof of the exercise.

Solution to exercise 16:
For each s ∈ S and x = (x1, . . . , xn+1) we let tk(s, x) ∈ {1, . . . , n + 1}, with k =

1, . . . , vn+1(s) be the times at which xtk(s,x) = s. In this notation, we have

P (X1 = x1, . . . , Xn+1 = xn+1) =
∏
s∈S

∏
0≤k<vn+1(s)

αµ(s) + k

α+ (tk(s, x)− 1)

=

 ∏
0≤t≤n

1

α+ t

 ∏
s∈S

∏
0≤k<vn+1(s)

(αµ(s) + k) .

In the last assertion we have used the fact that T (s, x) := {tk(s, x) , k = 1, . . . , vn+1(s)},
with s ∈ S is a partition of the set {1, . . . , n+ 1}

∪s∈ST (s, x) = {1, . . . , n+ 1}.

The formula (2.6) coincides with (4.9) when as = αµ(s). Following the arguments described
on page 79, we conclude that (Xi)i≥1 can be interpreted as a sequence of independent
random variables on the set S := {1, . . . , d} with probability distribution given by (2.7).
By the law of large numbers, given U check that 1

n

∑
1≤p≤n 1Xp(i) converges almost surely

to Ui, as n ↑ ∞. In addition, we have

E

 1

n

∑
1≤p≤n

1Xp(i) | U

 = Ui and Var

 1

n

∑
1≤p≤n

1Xp(i) | U

 =
1

n
(Ui(1− Ui)).

This ends the proof of the exercise.

Solution to exercise 17:
The �rst assertion is immediate. In addition, we have that

Sn(f) =
n

n+ 1

(
1

n

n−1∑
k=0

f(Xk) +
1

n
f(Xn)

)

=
n

n+ 1
Sn−1(f) +

1

n+ 1
f(Xn).

By construction, we have

E(f(Xn+1) | X0, . . . , Xn) = ε Sn(f) + (1− ε) µ(f).

In other words, this yields

E([f(Xn+1)− µ(f)] | X0, . . . , Xn) = ε Sn([f − µ(f)]) .

Thus, for any function f such that µ(f) = 0, we have

E(f(Xn+1) | X0, . . . , Xn) = ε Sn(f) ⇒ ηn+1(f) = ε Sn(f) .

Recalling that
E(f(Xn+1)) = E(E(f(Xn+1) | X0, . . . , Xn))
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we prove that

Sn(f) =
n

n+ 1
Sn−1(f) +

1

n+ 1
E(f(Xn))

=
n+ ε

n+ 1
× Sn−1(f)

=
n+ ε

n+ 1
× (n− 1) + ε

(n− 1) + 1
× Sn−2(f) = . . . =

[
n∏
k=1

k + ε

k + 1

]
× E(f(X0)).

We observe that

k ≤ t ≤ k + 1⇒ log

(
1− (1− ε)

k

)
≤ log

(
1− (1− ε)

t

)
≤ log

(
1− (1− ε)

k + 1

)
.

This implies that ∑
1≤k≤n

∫ k+1

k

log

(
1− (1− ε)

t

)
dt ≤ logαε(n)

and

logαε(n) ≤
∑

1≤k≤n

∫ k+2

k+1

log

(
1− (1− ε)

t

)
dt.

This ends the proof of (2.8). Using the estimates

∀x ∈ [0, 1[ − x

1− x
≤ log (1− x) ≤ −x

we check that ∫ n+2

2

log

(
1− (1− ε)

t

)
dt ≤ −(1− ε) log (1 + n/2)

and ∫ n+1

1

log

(
1− (1− ε)

t

)
dt ≥ −(1− ε) log (1 + n/ε).

The end of the proof of the exercise is immediate.

Solution to exercise 18:
By construction, we have

M(f)(i) = ε K(f)(i) + (1− ε) ν(f) ⇒ [M(f)(i)−M(f)(j)] = ε [K(f)(i)−K(f)(j)]

⇒ osc(M(f)) ≤ ε osc(f).

Assuming that osc(Mn(f)) ≤ εn osc(f) is true at rank n, we have

osc(Mn+1(f)) = osc(Mn(M(f))) ≤ εn osc(M(f)) ≤ εn+1 osc(f).

Recall that

f = 1k ⇒Mn(f)(i) = Mn(i, k) = P(Xn = k|X0 = i).

The end of the proof of the exercise is now clear.
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Solution to exercise 19: The �rst assertion is immediate since dW t

dt = Wt
dWt

dt . To
check the second one, we observe that

Xn = anXn−1 + bn =

[
n∏
p=1

ap

]
X0 +

∑
1≤p≤n

 ∏
n≥q>p

aq

 bp

with the sequence of random variables

an = (1− εn) + εn 4−1 = 4−εn and bn = (1− εn)h

Using the fact that

Law ((a1, . . . , ap+1, . . . , an), (b1, . . . , bp, . . . , bn))
=
Law ((an, . . . , an−p, . . . , a1), (bn, . . . , bn−p+1, . . . , b1)) .

we check that

∑
1≤p≤n

 ∏
n≥q>p

aq

 bp
law
=

∑
1≤p≤n

[a1 . . . an−p] b(n−p)+1 =
∑

0≤p<n

[a1 . . . ap] bp+1

The end of the proof of the exercise is now clear.

Solution to exercise 20:
We have

P(XT = xmax|X0 = x)

= E (P(XT = xmax | X1)|X0 = x)

= p P(XT = xmax | X1 = x+ 1)︸ ︷︷ ︸
:=P (x+1)

+(1− p) P(XT = xmax | X1 = x− 1)︸ ︷︷ ︸
:=P (x−1)

.

On the other hand

P (x) = pP (x) + qP (x) = p P (x+ 1) + q P (x− 1)

⇒ p [P (x+ 1)− P (x)] = q [P (x)− P (x− 1)]

⇒ [P (x+ 1)− P (x)] = p
q [P (x)− P (x− 1)] .

Recalling that P (0) = 0, this yields

[P (2)− P (1)] =
p

q
P (1) ⇒ [P (3)− P (2)] =

p

q
[P (2)− P (1)] =

(
p

q

)2

P (1).

By a simple induction w.r.t. x we �nd that

[P (x)− P (x− 1)] =

(
p

q

)x−1

P (1)

⇒ [P (x+ 1)− P (x)] =
p

q
[P (x)− P (x− 1)] =

(
p

q

)x
P (1).
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On the other hand, we have

P (x+ 1) = [P (x+ 1)− P (0)] =
∑

0≤y≤x

[P (y + 1)− P (y)] = P (1)
∑

0≤y≤x

(
p

q

)y
.

We end the proof using the fact that

x = xmax − 1⇒ P (x+ 1) = P (xmax) = 1 = P (1)
∑

0≤y<xmax

(
p

q

)y
so that

P (1) = 1/
∑

0≤y<xmax

(
p

q

)y
.

This implies that

P (x+ 1) =

∑
0≤y≤x

(
p
q

)y
∑

0≤y<xmax

(
p
q

)y =


1−

(
q
p

)x+1

1−
(
q
p

)xmax if p 6= q

(x+ 1)

xmax
if p = q.

This ends the proof of the exercise.


