Chapter 2

Solution to exercise 11:
e For the Bernoulli distribution p(z) = p*(1 — p)! =%, with p € [0,1] and z € {0, 1}, we have

o(s) = E(s¥)=ps+(1—p)s"=ps+(1-p).

e For the Binomial distribution p(z) = ( Z >px(1 —p)" %, with p € [0,1] and = €

{0,...,n} for some n € N, we have

pls) = Z( . ) pr=pt
- o;n ( Z ) (sp)*(L=p)" " = (L =p) +ps)" .

e For the Poisson distribution p(x) = e *\*/z!, with A > 0 and z € N, we have

o(s) = e Zs"” AT /!

x>0

= e Z(s)\)””/x! =g MsA = A1),
x>0

e For the Geometric distribution p(z) = (1 — p)*~!p, with A > 0 and z € N — {0}, we have

p(s) = py s (1-p"!

r>1
= ps Z 7L (1 —p)" !t =ps Z(s(l —p)*=ps/(1—s(1-p)).
z>1 x>0
This ends the proof of the exercise. ]

Solution to exercise 12:
By construction, we have

E(Nni1) = E[E[ > X [N,
1<i<N,

= E{ Y E(X),|N)|=EWN,)m.

1<i<N,
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Var(Noj1) = E(N2) — (E(Nps1))?
= E|E ( Z Xfl) | No | | = (E(Nns1))?
1<i<N,

On the other hand, we have

2
>ooX N
1<i<Nn

This implies that

NaE(X?) + N (N, — 1) (E(X))?

N,, Var(X) + N2m?

Var(Npss) = E(Ny) Var(X) + E(N2)m? — (B(No1))?
= E(N,) Var(X) + Var(Na)m? + [(E(N,) m)” = (E(Na11)’]
= m? Var(N,) + E(N,) Var(X).
We conclude that
Var(Ny11) = m® [m? Var(Nn 1) + E(Ny—1) Var(X)] + E(N,,) Var(X)
= m* Var(N,_1) + [m°E(N,—1) + E(N,,)] Var(X)
= m® Var(N,_2) + [m*'E(Ny—2) + m*E(N,—1) + E(N,,)] Var(X)

= m*") Var(No) + Var(X) > m>E(N,_),
0<k<n

so that

Var(Np11) = m*"+ Var(No) + Var(X) m™ (E(No)" Y (m/E(No))*.

When Ny =1 we have Var(Np) = 0 and E(Ny) = 1. In this case, we have

n Var(X) when m=1
Var(Nn) = Var(X Z m* { Var(X) m"~' ™=l when m # 1.
0<k<n m=
This ends the proof of the exercise. ]

Solution to exercise 13:

We have

Pn(s) = E(E(s" | Nn_l)):]E( 11 ]E(SXZ,| Nn_1>)

= E(E(s*)") =E(01(9)V) = pu1 (91(5)).
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Recalling that 0° = 1, this implies that
©on(0) = E(0N") =1 x P(N,, = 0) = P(N,, = 0).

For the Bernoulli offspring distribution p(z) = p®¢' %, with ¢ := (1 — p),p € [0,1] and
x € {0,1}, we have

pi(s) = q+ps
©a(s) = @1(g+ps)=q+plg+ps)=q(l+p)+p’s
p3(s) = walg+ps)=q(l+p)+p*(q+ps)=q(l+p+p*) +p°s
' ' B o n— n q n T T T
on(s) = ql+p+p*+...+p" H+p S:ﬂ(l_p)—HD s=(1—p")+p"s.

The last assertion follows from the fact that ¢, (s) = (1—p™)+p™s is the moment generating
function of a Bernoulli random variable N,, with parameter p™; that is, we have that

P(N,=1)=p" and P(N,=0)=1-p".
This ends the proof of the exercise. -

Solution to exercise 14:
We set g = (g6 (j))jes. In this notation, we have

El S0 fE) g &)= > g(&)Fe.

1<i<N; 1<i<No

This implies that

El D> fE@)I&|= > G(&) f&)

1<i<N; 1<i<No
and therefore
El Y fE& )= Y m(Gf) =Now(Gf). (30.18)
1<i<Ny 1<i<No

In the same vein, we have
E( S e IN &)= E(fE)I&)= Y MPHE)
1<i<Ny 1<i<Ny 1<i<Ny
Using (30.18), we readily deduce that
Bl Y SE)|=E| > MAE) | =Nom(GM()). (30.19)
1<i<Ny 1<i<Ny
In much the same way, if we set gi = (g} (j))jeS then we have

El Y r@)lghal= > g (&) e

1<i< Ny 1<i<N,
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This implies that

El X fE) & | = > G&) f&).

El Y fE)|=E| Y G(&) fE) ] = Nom(QGS)). (30.20)

1<i<N, 1<i<N;

Arguing as above we have

El 3 s v &)= Y B(re &)= X ME).

1<i<N 1<i< Ny 1<i<N

Using (30.20) we deduce that

El Y fE) | =B > MUE) | =Nom(QGM(f)) = No no(Q*(f)).

1<i<N, 1<i<N,
(30.21)
The last assertion is proved using induction. This ends the proof of the exercise. [
Solution to exercise 15:
By construction, we have
P (X X X = — 1x, (i) + (i) (30.22)
il =1 X)) = — i 7). .
n+1 Ly--yAn n+an1<p<n Xp n+a'u

The number of different tables occupied by the first n customers is defined by
T, = Z €p
1<p<n

where €, stands for a sequence of independent Bernoulli random variables with distribution
e

a+(n—1)

This implies that

Z/ 1+t/a <E(T) = Z 7< Z/ll+t/a

1<p<n O§p<n 1<p<n

We conclude that

" dt a+n n—1 dt
/1 MW—QIOg(CM)SE(Tn)S/O mzalog(l—i—(n—l)/a),

The formula

ap(i) + Vi (4)

P (X1 =i | Xu,oo, Xn) = =

with V(i) = Y 1x,(i)

1<p<n
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is a direct consequence of (30.22).
This ends the proof of the exercise.

Solution to exercise 16:
For each s € S and = = (z1,...,2n41) we let ti(s,z) € {1,...,n + 1}, with
L,...,vnq1(s) be the times at which z, (, ;) = s. In this notation, we have

au(s) +k
P(X1:$1,...,Xn+1:1~n+1) — H H
SES 0<k<vn41(s) a+ (tg(s,z) — 1)

0<t<n $€S 0<k<vp41(s)

Mo I I e n.
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In the last assertion we have used the fact that 7 (s, x) := {tx(s,2) , k =1,...,v041(9)},

with s € S is a partition of the set {1,...,n+ 1}

UsesT (s,2) ={1,...,n+ 1}

The formula (2.6) coincides with (4.9) when as = au(s). Following the arguments described
on page 79, we conclude that (X;);>1 can be interpreted as a sequence of independent
random variables on the set S := {1,...,d} with probability distribution given by (2.7).
By the law of large numbers, given U check that + >, <p<n 1x, (i) converges almost surely

to U;, as n 1 co. In addition, we have

1 1
E{= > 1x,( =U; ) D S
n Xp (Z) | U U; and Var XP(Z) ‘ U

1
n n
1<p<n 1<p<n

This ends the proof of the exercise.

Solution to exercise 17:
The first assertion is immediate. In addition, we have that

n

S = (; PO EARE f(Xn)>
k=0

1
= o Sn—l(f)"’m f(Xn).

By construction, we have
E(f(Xn41) [ Xo,..., Xn) =€ Su(f) + (1 =€) u(f)
In other words, this yields
E([f (Xn41) = (] | Xo,-.., Xn) = € Su(lf — u()]) -
Thus, for any function f such that zu(f) = 0, we have
E(f(Xnt1) | Xos-o s Xn) =€ Sulf) = mura(f) = € Sulf) -

Recalling that
E(f(Xnt1)) = E(B(f(Xnt1) | Xo, ..., Xn))

(Ui(1 = Uy)).
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we prove that

1
n+1

Sulf) = g Sl
n—+e

= n+1><§n71(f)

_ ont+e_ (n—1)+e 4 | yr k+e
n+1x(n—1)+1XS”Q(f)_"'_[H

E(f(Xn))

We observe that

k§t§k+1¢10g<1(1k6)> §1og(1(1t6)> §log(1(1€)>.

This implies that

Z /:H log (1 _a ; 6)) dt <logac(n)

1<k<n

logae(n) < > /:+2 log (1 _a- 6)) dt.

1<k<n K+l t

and

This ends the proof of (2.8). Using the estimates
Vo € [0,1] —%glog(l—x)g—x

we check that

and

/1% log (1 - (126)) dt > —(1 —€) log (1 +n/e).

The end of the proof of the exercise is immediate.

Solution to exercise 18:
By construction, we have

M(f)(@) = e K(/)(i))+ A —e) v(f) = [M(f)E)—M(f)(G)] =e [K)E) - KF))]
= osc(M(f)) < € osc(f).

Assuming that osc(M"(f)) < €® osc(f) is true at rank n, we have
osc(M™(f)) = ose(M(M(1))) < € ose(M(f)) < ¢+ osc(f).
Recall that
f=1=M"(f)(i) = M"(i,k) = P(X,, = k| X =1).

The end of the proof of the exercise is now clear. [
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Solution to exercise 19: The first assertion is immediate since dgt/t = W; th. To
check the second one, we observe that

Xn =an n1+b [ﬁ

with the sequence of random variables

X0—|- Z H aq bp

1<p<n |n2>g¢>p

an=1—¢€)+e, 4 =47 and b,=(1—¢,)h
Using the fact that

Law ((@1,...,Gpt1,---5an), (b1, .., bp, ..., b))

Law ((an, .-, Gnep,---501), (bny .., bp—py1,...,b1)).
we check that
la
Z H = Z - Op—p b(n p)+1 = Z [al . ~~ap} b;D—i-l
1<p<n n>q>p 1<p<n 0<p<n

The end of the proof of the exercise is now clear. [

Solution to exercise 20:
We have

]P(XT = J}maX‘XQ = .%‘)
= E (P(XT = Tmax | Xl)‘XO = I)

=p P Xr=2max | X1 =2+ 1)+(1 —p) P(Xp =2max | X1 =2—1).

:=P(z+1) =P(z—1)

On the other hand
P(z) =pP(x)+qP(x)=p Plx+1)+q Pz — 1)

= p[P(e +1) - P(2)] = q[P(z) - P(x - 1)
= [P(e +1) - P(2)] = 2 [P() — Pz~ 1)].

Recalling that P(0) = 0, this yields

By a simple induction w.r.t. = we find that

(P(a) — P(r—1)] = (p) ()

q

_Pip) - pa-1) = (P) PO.
[P +1) - P@)] = L Pe) - Pl 1) ()P<1>
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On the other hand, we have

Plo+) = Pat ) - POl = Y Pu+D-Pel-P0) Y (2)"

0<y<z 0<y<z

We end the proof using the fact that

2 =Tmax — 1= P(z+1) = Plomax) =1=P(1) > (p>y

0<y<zmax q
so that y
P\’
rPy=1/ > () :
0<y<zmax q
This implies that
x+1
()
v p
Zo<y<x (q) Tmax U P#(
Pz +1) = ;= 1_(g)
P
ZO<y<a¢ma,X (E) (I + 1) .
if p=gq.
Tmax

This ends the proof of the exercise. ]



