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Chapter 2

Torsion Spring Oscillator with
Dry Friction

2.2 Review of the Principal Formulas
The differential equation of motion of an oscillator acted upon by dry friction:

Jp =—-D(p+ om) for p >0, 2.1
Jp =-—D(p— om) for » <0, (2.2)

where ¢, is the angle corresponding to the boundaries of the dead zone. If in
addition, viscous friction is present, a term proportional to the angular velocity is
also present:

=—wi(e+em)—2y¢ for  $>0, (2.3)

&
¢ =-wip—pm)—2v¢ for $<O, 24
where wy is the natural frequency of oscillations in the absence of friction:

D

2

wp = —. 2.5
i=- (2.5)
The damping factor y that characterizes the viscous friction is related to the quality

factor ) by the equation:
= —. (2.6)

The boundary value of the amplitude that delimits the two cases in which the
effects either of viscous friction or of dry friction predominate:

4oy 4
a = L - 7<pIIlQ ~ QOmQ- (27)
~T T
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22 CHAPTER 2. TORSION SPRING OSCILLATOR WITH DRY FRICTION

2.3 Questions and Problems with Answers and
Solutions

2.3.1 Damping Caused by Dry Friction

The strength of dry friction in the system is characterized by the width of the dead
zone. This interval is defined in the program when you input the value of the angle
©m Which sets the limits of the dead zone on both sides of the middle position at
which the spring is unstrained. Total width of this dead zone is 2¢y,. The value of
(om must be expressed in degrees.

2.3.1.1 Oscillations without Dry Friction. Begin with the value ¢, = 0
corresponding to the absence of dry friction. Show that in this case the system
displays the familiar behavior of a linear oscillator, i.e., simple harmonic oscilla-
tions with a constant amplitude in the absence of friction and with an exponentially
decaying amplitude in the presence of viscous friction. The strength of viscous
friction is characterized by the quality factor .

2.3.1.2 Dry Friction after an Initial Displacement. To display the role of
dry friction clearly, choose a large value of the angle ,,, which determines the lim-
its of the dead zone (say, 15 to 20 degrees), and let viscous friction be zero. Such
conditions are somewhat unrealistic. They are far unlike the situation characteris-
tic of measuring instruments using a needle, such as moving-coil galvanometers.
These instruments are constructed so that the dead zone is as small as possible,
and critical viscous damping is deliberately introduced in order to avoid taking a
reading from an oscillating needle. When an instrument is critically damped, its
moving system just fails to oscillate, and it comes to rest in the shortest possible
time. If the dead zone is narrow, the needle stops at a position very close to the
dial point which gives the true value of the measured quantity. Here, on the other
hand, conditions are chosen to clarify the role of dry friction.

(a) What can you say about the succession of maximal deflections if damping
is caused only by dry friction with the ideal z-characteristic? What is the law
of their diminishing? How is the difference of consecutive maximal deflections
related to the half-width of the dead zone?

When dry friction is described by an idealized z-characteristic, each
half-cycle of oscillations (while the flywheel is rotating in one di-
rection) can be treated as a half-cycle of harmonic (pure sinusoidal)
oscillation about a mid-point which is displaced to one of the bound-
aries of the dead zone. The displacement of the middle point is caused
by the action of constant torque of dry friction. During the next half-
cycle, while the flywheel is rotating in the opposite direction, the
mid-point of sinusoidal oscillation is displaced to the other bound-
ary of the dead zone. This alternation of the mid-points means that
the amplitude of oscillations is reduced during each half-cycle by the
same value. This value equals the width of the dead zone 2¢,,,. The
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2.3. PROBLEMS WITH ANSWERS AND SOLUTIONS 23

succession of maximal displacements from the middle point of the
dead zone forms an arithmetic progression. The oscillations cease
when the next maximal displacement occurs within the dead zone.

(b) Let the angle ¢, that defines the boundaries of the stagnation zone be,
say, 15°, the initial angle of deflection ¢y be 160°, and the initial angular velocity
be zero. Calculate the point of the dial at which the needle eventually comes to
rest. How many semi-ellipses form the phase trajectory of this motion, from its
initial point to the point at which the motion stops? Verify your predictions by
simulating the motion on the computer.

The width of the dead zone 2¢,, is 30°; so after one complete cycle
the maximal deflection is 160° — 60° = 100° to the right side. After
one more full cycle the maximal deflection is 40°. After the next
half-cycle pmax = —10°. At this point the motion ceases. The phase
trajectory consists of five semi-ellipses.

(c) In the graph of the time dependence of the deflection angle, where are
the midpoints of the half-cycles of the sinusoidal oscillations located? Note how
these individual segments of the sine curves are joined to form a continuous plot
of damped oscillations.

All odd half-cycles are described by segments of sine curves the mid-
points of which coincides with the right boundary of the dead zone
(located at ,,, = 15°). The mid-point of the segments of sine curves
for even half-cycles is at the left boundary (—15°) of the dead zone.

(d) In the graph of the angular velocity versus time, note the abrupt bends in
the curve at the instants at which the midpoints abruptly replace one another. What
is the reason for these bends? Prove that these instants are separated by half the
period of harmonic oscillations in the absence of dry friction. (Note that points on
the time scale of the graphs correspond to integral multiples of the period.)

The kinks on the graph of the angular velocity occur when the graph
crosses the abscissa axis, i.e., at instants when the direction of rota-
tion is reversed. At these moments the sign of the torque due to dry
friction changes while the magnitude of the torque remains the same.
The angular acceleration of the flywheel (the slope of the velocity
graph) changes abruptly.

2.3.1.3* Dry Friction after an Initial Push. Choose different initial condi-
tions: let the initial deflection be zero, and the initial angular velocity be, say, 2wg
(where wy is the natural frequency of oscillations). Use the same value ¢, = 15°
as above.

(a) Calculate the maximal deflection of the needle.
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24 CHAPTER 2. TORSION SPRING OSCILLATOR WITH DRY FRICTION

After an initial push to the right, the flywheel rotates clockwise, and
so the torque of dry friction displaces the mid-point of sinusoidal os-
cillation to the left boundary of the dead zone, located at ¢ = —¢,,, =
—15° = —0.26 rad. The motion starts at (o = 0, that is, at the point,
displaced from the mid-point of oscillations by an angle ¢,,, to the
right. The amplitude of this oscillation (i.e., the maximal displace-
ment from the mid-point) is 1/Q2/w3 + ¢2,. Thus, the maximal de-
flection ¢p,.x With respect to the zero point of the dial is:

Omax = \/ Q2 /wd + 02, — pm = Q/wo— pm = 1.75 rad = 100.6°.

(b) To what position on the dial does the needle point when oscillations cease?
How many turns are present in the complete phase trajectory of this motion? Ver-
ify your answer using a simulation experiment on the computer.

After this maximal deflection, further motion has the same character
as in the preceding problem 2.3.1.2. After the next complete cycle
the maximal deflection equals 100.6° — 60° = 40.6°. Then one more
half-cycle of oscillation brings the needle to its greatest deflection to
the left, —10.6°. Here the motion ceases. The entire phase trajectory
makes 1% turns: a quarter of a turn during the first stage of motion
after the initial push to the first maximal deflection, and one-and-a-
half turns during the following three half-cycles.

2.3.1.4* Damping by Dry Friction at Various Initial Conditions. Assum-
ing the same width of the dead zone as above, calculate the maximal angle of
deflection and the final position on the dial to which the needle points when oscil-
lations cease, for the more complicated initial conditions:

(a) The initial deflection angle ¢©(0) = 135°, and the initial angular velocity
$(0) = 1.5wq (wo is the natural frequency of the oscillator). Verify your calcu-
lated values in a simulation experiment on the computer.

Initially the flywheel rotates clockwise, and the constant torque of dry
friction displaces the mid-point of the first half-cycle of sinusoidal
oscillation to the left boundary of the dead zone, i.e., to the point
—@m = —15° = —0.26 rad. In this case the motion starts at ¢ =
135°, that is, at the point, displaced from the mid-point of oscillations
by an angle 135° 4 ¢,,, = 135°415° = 150° = 2.62 rad to the right.
The amplitude of this oscillation (i.e., the maximal displacement from
the mid-point) is v/1.52 + 2.622 = 3.02 rad = 172.9°. Thus, the
maximal deflection ¢, With respect to the zero point of the dial is
172.9° — 15° = 157.9°. After two more complete cycles the needle
reaches the point 157.9° —120° = 37.9°, and after the next half-cycle
it stops dead at the point —7.9° of the dial.
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When the motion starts at ¢ = —135°, the initial point is displaced
from the mid-point of the first sinusoidal oscillation through an angle
—135° + 15° = —120° = —2.09 rad. The maximal displacement
from the mid-point is v/1.52 + 2.092 = 2.58 rad = 147.6°. Hence the
maximal deflection from the zero point of the dial is 147.6° — 15° =
132.6°. After two more complete cycles the motion stops at the point
132.6° — 120° = 12.6° of the dial.

2.3.1.5* Energy Dissipation at Dry Friction.
(a) The graph of the total mechanical energy versus the angle of deflection
consists of rectilinear segments joining the slopes of the parabolic potential well
(when you work in the section “Energy transformations” of the relevant computer
program). Suggest an explanation.

The mechanical energy of the oscillator is dissipated because friction
does work. The magnitude of the torque of dry friction is constant
(it is independent of the angular velocity). Therefore, this work is
proportional to the angular path Ay of the flywheel. The total me-
chanical energy E of the oscillator depends linearly on the angular
path Ay through which the flywheel has passed after the initial mo-
ment:

E(Ayp) = Ey — NpAgp. 2.8)

Here Ej is the initial total energy (when Ay = 0). Since E depends
linearly on Ay the graph of total energy F versus the angle of de-
flection ¢ consists of rectilinear segments lying between the walls of
the parabolic potential well. All the segments have the same inclina-
tion, which is determined by the constant magnitude of the frictional
torque Ny, = Dy,

To estimate the entire angular path Ay of the flywheel after its ex-
citation by an initial push from the mid-point of the dead zone, we
can express in Eq. (2.8) the initial energy E of the oscillator in terms
of its initial angular velocity Q: Ey = JQ2/2. Assuming the final
energy at the end of motion to be zero, we find from Eq. (2.8):

1 1JO2 1/0\° 1
Ap = =—JOV? /N = = AL (LU R
2 2Dy, 2 \ wp Pm

25

(b) The initial deflection angle ¢ (0) = —135°, and the initial angular velocity
$(0) = 1.5wq. Verify your calculated values in a simulation experiment on the
computer.

(b) Letting the initial angular velocity ¢(0) = 2wy, where wy is the natural
frequency, and using energy considerations, calculate the entire angular path of
the flywheel, excited from the midpoint of the dead zone by an initial push if the
half-width of the dead zone ¢, = 10°.
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Substituting 2 = 2wq and ¢, = 10° = 0.175 rad, we find that the
entire angular path Ay = 11.46 rad = 656°.

To solve the problem, we can also use the method described in the
solution of Problem 2.3.1.3. After the initial push, the first maximal
deflection equals 2/wp — @, & 105°, the next one to the left side
equals —85°, and so on. The final position of the flywheel is —5°.
The entire angular path is thus 655°.

2.3.1.6 Oscillations in the Case of a Narrow Dead Zone. Choose a small
value for the angle ¢y, (less than 5°), and set the initial angular displacement to
be many times the width of the dead zone, 2¢,,.

(a) How many cycles does the flywheel execute before stopping?

Let us take ¢,,, = 3°, and the initial angular displacement ¢y = 120°.
After each complete cycle the amplitude is reduced by 4¢,,, = 12°.
Therefore the oscillator will execute 10 cycles before stopping.

(b) When the number of cycles is large, the plots clearly demonstrate the linear
decay of the amplitude and the equidistant character of the loops in the phase dia-
gram. What can you say about the time dependence of the total energy, averaged
over a cycle?

For damping due to dry friction, the amplitude of oscillation de-
creases linearly with time. Averaged over a period, the value of the
total energy is proportional to the square of the amplitude. There-
fore the decrease with time of the averaged total energy during a
large number of cycles is described by a quadratic function: (Ftot) ~
(t; —t)?, where ¢y is the time when the oscillations stop.

2.3.2 Influence of Viscous Friction

2.3.2.1* Transition of the Main Role from Viscous to Dry Friction. When
damping is caused both by dry and viscous friction, it is interesting to observe
the change in the character of damping when the main contribution passes from
viscous to dry friction.

Let the angle ¢, that determines the width of the dead zone be about 1° and
let the quality factor () which characterizes the strength of viscous friction be
about 30. Let the initial angular deflection be 120° and the initial angular velocity
be zero.

(a) Does dry or does viscous friction determine the initial damping effects?

The damping of oscillations is influenced mainly by viscous fric-
tion under conditions in which the amplitude exceeds a value a =
(4/7)Q¢m =~ Q@m. In the case under consideration @ ~ 30°. The
initial displacement from the equilibrium position is 120°. Therefore
the initial damping is determined mainly by viscous friction.
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(b) At what value of the amplitude does the character of damping change?
How does this change manifest itself on the plots of time dependence of the angle
of deflection and of the angular velocity? On the phase trajectory?

During the initial stage of damping the amplitude diminishes almost
exponentially, and the coils of the phase trajectory gradually con-
dense. the character of damping change when the amplitude ap-
proaches the value a ~ gp,, ~ 30°. further damping is determined
mainly by dry friction. the amplitude diminishes almost linearly, the
coils of the phase trajectory become nearly equidistant, and oscilla-
tions cease after a final number of cycles.

2.3.2.2* Both Viscous and Dry Friction. Let the boundaries of the stagnation
interval be at p,, = 10° and the quality factor () = 5. Let the initial velocity be
2wq and the initial deflection be zero.

(a) Calculate the maximal angular deflection of the needle at these initial con-
ditions. Verify your answer experimentally.

(b) What kind of friction, dry or viscous, initially dominates the damping of
oscillations?

(c)** Let the boundaries of the stagnation zone be determined by the angle
©m = 10°. Let the quality factor @) be 3, the initial deflection be 65°, and the
initial angular velocity be —2wjg. Calculate the maximal angular deflection of the
needle in the direction opposite the initial deflection. Verify your answer experi-
mentally.

(a,b,c) When the oscillator experiences both dry and viscous friction,
its motion is described by the following differential equation:

G+ 279+ wi(p £ o) =0, (2.9)

where the sign before ¢,,, depends on the direction of rotation of the
flywheel (on the sign of ¢). The general solution of Eq. (2.9) can be
expressed in the form:

o(t) = Ae 7 cos(wot + ) F P, (2.10)

where the upper sign corresponds to ¢» > 0. Differentiating Eq. (2.10)
with respect to time yields the following expression for the angular
velocity:

@(t) = Ae™ " wp sin(wot + &) + v cos(wot + §)]. (2.11)

The values of the constants A and ¢ are determined by the initial
conditions ¢(0) = ¢g and $(0) = 2

po = Acosd F pm, Q= —A(wpsind + ycosd). (2.12)
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From Egs. (2.12) we obtain the following expressions that are conve-
nient for finding ¢ and A:

tanf;:—l—M:—i—M, A= PoEPm
wo  PoE Ym 2Q0  poxpm cosd
(2.13)

At the instant ¢; of maximal deflection the angular velocity becomes
zero: ¢(t1) = 0. Introducing the notation §; = wot1 +0 for the phase
of sine and cosine functions in Eq. (2.11) at t = ¢;, we obtain from
Eq. (2.11) the following expression for finding 65 :

1
tand, = — - = (2.14)

wo  2Q°
We can substitute the calculated values of A, 61, and t; = (61 —0)/wo
in Eq. (2.10) in order to determine the maximal deflection:

Pmax = @(tl) = Ae_ytl COS 61 + Ym =

Aexp (—512;25> o801 F .  (2.15)

(a) In this case ¢, = 10° = 0.174 rad, Q@ = 5, p(0) = @9 = 0,
©(0) = Q = 2wp. For the initial motion ¢ > 0, and we must
take the upper sign in the above formulas. From Eq. (2.13) we find
tand = —11.56, § = —1.48 rad, A = 2.025 rad. We note that the
value of ¢ is close to —7/2, and the time dependence of the angle
of deflection, according to Eq. (2.10), is approximately described by
the function ¢(t) ~ Ae ' sinwpt + @pm. So the maximal deflec-
tion occurs approximately at wot; = /2, where the sine function
reaches its maximum. Thus, the value of §; = wpt + 0 in Eq. (2.15)
is approximately zero.

To determine the time instant ¢; of maximal deflection more accu-
rately, we should use Eq. (2.14): §; = arctan(—1/10) = —0.1, and
cos 91 = 0.995. Substituting these values into Eq. (2.15), we find the
maximal deflection:

©max = 2.025 - exp(—0.138) - 0.995 — 0.174 = 1.581 rad = 90.6°.

(b) In this case ¢(0) = o = 65° = 1.134 rad, ¢(0) = Q = —2wy.
The motion initially occurs to the left (¢ < 0), and so we must take
the lower sign in the formulas. The amplitude A and the initial phase
§ can be calculated with the help of Egs. (2.13): tand = 1.917,
6 = 1.09, cosd = 0.463, A = 2.075 rad. Then from Eq. (2.14)
we find tand; = —1/6. It is clear from Eq. (2.10) that in this case
we should take the smallest value of §; which is greater than 7/2:
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01 = arctan(—1/6) + 7 = 2.976, cos §; = —0.9864. Substituting
these values into Eq. (2.15), we finally obtain:

1.09 — 2.976

max = 2.075 -
® exp ( 53

) - (—0.9864) +0.174 =

= —1.32rad = —76°.

2.3.2.3 Dry Friction and Critical Viscous Damping.
(a) Choose the quality factor () to be near the critical value 0.5 and investigate
the character of damping experimentally. Where within the limits of the dead zone
is the needle most likely to stop if the quality @ is slightly greater than the critical
value? Give some physical explanation of your observations.

If the quality factor @ is slightly greater than the critical value 0.5,
the needle, being displaced from the equilibrium position beyond the
limits of the dead zone and released without a push, is most likely to
stop almost at once after crossing the nearest boundary of the dead
zone. The same is true if the displaced flywheel is given a push in the
direction of its initial displacement.

The situation may be different if the displaced flywheel is given a
push towards the equilibrium position. The flywheel may pass through
the whole dead zone, if the initial shove is strong enough. Then, after
reaching some extreme point, the needle will move back, and is most
likely to stop within the dead zone almost at once after crossing its
nearest boundary (this boundary lies in the opposite direction with re-
gard to the initial displacement). When the initial shove towards the
equilibrium position is not strong enough for the flywheel to cross the
entire dead zone, the needle may stop at any point of the dead zone.
This point depends on the initial angular velocity.

In general, the behavior of an overdamped system differs from the
situation described above only in one aspect: the needle approaches
the nearest boundary of the dead zone from the outside during an
infinitely long time, but does not cross it. So the needle is most likely
to stop exactly at one of the boundaries, except the cases when the
displaced flywheel is given a shove towards the equilibrium position
strong enough to cross the nearest boundary of the dead zone, but not
strong enough to cross the entire dead zone.

29

(b) Where would the needle stop if the quality factor @ is less than 0.5 (that is,
if the system is overdamped)? Does the answer depend on the initial conditions?
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