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Solutions of the Exercises for Section II  

(Chapters 5-7) 

(For the CRC Book - Nonlinear Filtering: Concepts and Engineering Applications)  

 

II.1 Let  yz ˆˆ    ;   Then,  

}{})ˆ()ˆ{(

})ˆ()ˆ{(})ˆ)(ˆ{(

)ˆ()ˆ(

TT

TT

vvEyyyyE

yvyyvyEzzzzE

yvyzz







                              

covcov

 

Here, we assume that the measurement residuals )ˆ( yy   and measurement noise v are 

uncorrelated. Then, we get Ryyzz  )ˆ()ˆ( covcov  

 

II.2 

!2

22 tA
tAIe tA 
  ;























































210

21

20

20

0

0

10

01

22

2

22

2

/

/

/

/

tata

tat

ta

ta

ta

t


; 













ta

t

10

1
  

 

II.3 Since w is unknown, 
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Since ‘u’ is a deterministic input, it does not appear in covariance equation of the state 

error. The measurement update equations are: 
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II.4 We have 
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Since ija  are unknown parameters, we consider them as extra states: 
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with  113 ax  ,  124 ax  ,  215 ax   and  226 ax   

We finally get, 
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Then wxfx  )( ,  where f is a nonlinear vector valued function. 

 

II.5 Let the linear model be given by 
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By putting the equations for x and v together, we get 
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We see that the vector v, which is correlated noise, is now augmented to the state vector x 

and hence, there is no measurement noise term in the measurement equation. This 

amounts to the situation that the measurement noise in the composite equation is zero, 

leading to 1R , and hence the Kalman gain will be ill-conditioned. Thus, this 

formulation is not directly suitable in KF. 

 

II.6 The residual error is the general term arising from say zz ˆ  (see Chapter 2). 

Prediction error: Consider )(ˆ)(~ kxkx  1  ; Then,  )(~)( 11  kxHkz  is 

the prediction error, since )(~ˆ 1 kxHz  is the predicted measurement based on the 

estimate x~ . 
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Filtering error: Assume that we have already obtained the estimate of the state 

after incorporating the measurement data ))(~)(()(~)(ˆ 1111  kxHkzKkxkx  

Then, the quantity can be considered as filtering error )(ˆ)( 11  kxHkz , since the error 

is obtained after using the )(ˆ 1kx , the filtered state estimate. 

 

II.7 The main reason is that the measurement data occurring at arbitrary intervals can be 

easily incorporated in the Kalman filtering algorithm. 

 

II.8 The quantity ‘S’ is the theoretical (prediction) covariance of the residuals, whereas 

the cov )(
Trr  is the actual computed covariance of the residuals. For proper tuning of 

KF, both should match. In fact the computed residuals should lie within the theoretical 

bounds predicted by ‘S’. 
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If 2
v  is low, then p̂  is low, meaning thereby, we have more confidence in the estimates. 

We can also rearrange p̂  as 
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observation model is strong, then also p̂  is low. 

 

II.10 
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II.11 Std.=
2
x  = x  = RMS if the random variable has zero mean. 

 



 4 

II.12 The residual is given as  )(~)()( kxHkzkr  , where )(~ kx  is the time propagated 

estimates of KF. We see that z(k) is the current measurement and the term )(~ kxH  is the 

effect of past or old information derived from the past measurements. Thus, the term 

)(kr  generates new information and, hence, it is called ‘innovations’ process. 

 

II.13 It is based on the principle that any arbitrary pdf can be approximated by a finite 

sum of weighted Gaussian pdfs.    

 

II.14 It is based on the expansion of the nonlinear function f and h, in terms of Fourier-

Hermite series.   

II.15 A complete expansion can be written as 
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II.16 

21

1

( )1
( )

2 ( )1

1

( )
( ) 2

v m v

vp
p v e

v



 






22

2

( )1
( )

2 ( )2

2 ( ) 2

v m v

vp
e

v



 




 with appropriate means and 

variances of the individual component of v(.).  

II.17 
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II.18 It means number of its all positive, negative and zero eigenvalues.  

 

II.19 One simple way is to factorize the matrix as TP UDU , then since the matrix D is 

diagonal, the number of positive diagonal elements and the negative diagonal elements 

gives the number of positive eigenvalues and negative eigenvalues of the matrix P and 

hence the inertia.  

II.20 It is J-square root of 
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II.21 No. the reason is that ‘d’ is deterministic discrepancy (in the model). It is a time-

history, which is estimated by IE method. As such, it is not a random variable. We can 

regard 1Q , perhaps, as some form of information matrix, deriving a hint from the fact 

that in GLS, W is used and if 1 RW , we get the so-called Markov estimates. And 

since 
1R  can be regarded as some form of information matrix (R being the covariance 

matrix), 1Q  may be called as information matrix. It is very important tuning parameter 

for the algorithm. 
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II.22 The idea is to have correct estimates of the state as the integration of the state’s 

dynamic equation, and simultaneously the correct representation of model error 

estimation ‘d’. In order that both the things happen, the state constraint equation and the 

cost function equation should be satisfied. The estimate should evolve such that by proper 

tuning of Q we obtain good estimate of ‘d’. In J equation, the second term is also to be 

minimized thereby saying that just accurate ‘d’ needs to be obtained by choosing 

appropriate penalty by Q. Too much or too less d will not obtain correct estimate of x. 

 

II.23 Use of 
1R  normalizes the cost function, since })ˆ)(ˆ{(

TyyyyE   is a covariance 

matrix of residuals and R is the measurement noise covariance matrix. Then 

)}ˆ()ˆ{( yyRyyE T  1  will be normalized sum of squares of residuals. 

 

II.24 In order to determine additional model from ‘d’, the LS method will be used and the 

residuals arising from the term will be treated as measurement noise. 

 

II.25 We have the cost function as 
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II.26 The term { ( ( )), ( )}x t N t N  in the cost function can be replaced by 
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II.27 We have 
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It must be noted that since xf  and x  are matrices evaluated at estimated state x̂ , we 

see that the co-state equation has similar structure as the state equation. 

 

II.28 These models are  
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II.29 i) represent the state error covariances by Gaussian pdfs, ii) generate the (N) 

samples of x(k) from the Gaussian pdf., iii) generate the samples of the process noise, iv) 

then obtain the samples at x(k+1), by using the nonlinear system equations, v) then from 

this obtain the sample mean as the state estimate, vi) then {from iv) and v)} obtain the 

sample covariance as P(k+1/k), vii) generate the samples for x(k) from the Gaussian 

distribution, viii) generate the noise samples v(k), ix) from this and the measurement 

model h, obtain the z(k), x) then determine the mean of z(k) by using the data from {ix)}, 

xi) compute the estimate covariances Pxz, and Pzz, the ratio of Pxz/Pzz gives the gain, xii) 

then one can obtain the measurement update using the predicted estimate, the gain and 

residuals.     

  

II.30 It is the maximum singular value/gain of the transfer function matrix, and it 

signifies the maximum transfer of the collective error energies to the output estimation 

error energy. Then main goal in the H-infinity robust model error estimation is to 

minimize this gain. 

=============================================================       


