
Chapter 2

Combinatorial   Methods

2.2 COUNTING PRINCIPLES

1. The total number of six-digit numbers is 9×10×10×10×10×10 = 9×10 5 since the first digit
cannot be 0. The number of six-digit numbers without the digit five is 8×9×9×9×9×9 =
8× 95. Hence there are 9× 105 − 8× 95 = 427, 608 six-digit numbers that contain the digit
five.

2. (a) 55 = 3125. (b) 53 = 125.

3. There are 26× 26 × 26 = 17, 576 distinct sets of initials. Hence in any town with more than
17,576 inhabitants, there are at least two persons with the same initials. The answer to the
question is therefore yes.

4. 415 = 1, 073, 741, 824.

5. 2
223

=
1

222
≈ 0.00000024.

6. (a) 525 = 380, 204, 032. (b) 52× 51× 50× 49× 48 = 311, 875, 200.

7. 6/36 = 1/6.

8. (a) 4 × 3 × 2 × 2
12 × 8 × 8 × 4

=
1
64

. (b) 1 − 8 × 5 × 6 × 2
12 × 8 × 8 × 4

=
27
32

.

9. 1
415

≈ 0.00000000093.

10. 26× 25× 24× 10× 9 × 8 = 11, 232, 000.

11. There are 263 × 102 = 1, 757, 600 such codes; so the answer is positive.

12. 2nm.

13. (2 + 1)(3 + 1)(2 + 1) = 36. (See the solution to Exercise 24.)
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14 Chapter 2 Combinatorial Methods

14. There are (26 − 1)23 = 504 possible sandwiches. So the claim is true.

15. (a) 54 = 625. (b) 54 − 5 × 4 × 3 × 2 = 505.

16. 212 = 4096.

17. 1− 48× 48× 48× 48
52× 52× 52× 52

= 0.274.

18. 10× 9× 8 × 7 = 5040. (a) 9 × 9 × 8 × 7 = 4536; (b) 5040− 1 × 1× 8 × 7 = 4984.

19. 1− (N − 1)n

Nn
.

20. By Example 2.6, the probability is 0.507 that among Jenny and the next 22 people she meets
randomly there are two with the same birthday. However, it is quite possible that one of these
two persons is not Jenny. Let n be the minimum number of people Jenny must meet so that
the chances are better than even that someone shares her birthday. To find n, let A denote the
event that among the next n people Jenny meets randomly someone’s birthday is the same as
Jenny’s. We have

P (A) = 1 − P (Ac) = 1 − 364n

365n
.

To have P (A) > 1/2, we must find the smallest n for which

1 − 364n

365n
>

1
2
,

or
364n

365n
<

1
2
.

This gives

n >

log
1
2

log
364
365

= 252.652.

Therefore, for the desired probability to be greater than 0.5, n must be 253. To some this
might seem counterintuitive.

21. Draw a tree diagram for the situation in which the salesperson goes from I to B first. In
this situation, you will find that in 7 out of 23 cases, she will end up staying at island I . By
symmetry, if she goes from I to H , D, or F first, in each of these situations in 7 out of 23
cases she will end up staying at island I . So there are 4 × 23 = 92 cases altogether and in
4 × 7 = 28 of them the salesperson will end up staying at island I . Since 28/92 = 0.3043,
the answer is 30.43%. Note that the probability that the salesperson will end up staying at
island I is not 0.3043 because not all of the cases are equiprobable.
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Section 2.2 Counting Principle 15

22. He is at 0 first, next he goes to 1 or −1. If at 1, then he goes to 0 or 2. If at −1, then he goes
to 0 or −2, and so on. Draw a tree diagram. You will find that after walking 4 blocks, he is
at one of the points 4, 2, 0, −2, or −4. There are 16 possible cases altogether. Of these 6 end
up at 0, none at 1, and none at −1. Therefore, the answer to (a) is 6/16 and the answer to (b)
is 0.

23. We can think of a number less than 1,000,000 as a six-digit number by allowing it to start
with 0 or 0’s. With this convention, it should be clear that there are 9 6 such numbers without
the digit five. Hence the desired probability is 1− (9 6/106) = 0.469.

24. Divisors ofN are of the form pe1
1 pe2

2 · · ·pek
k ,where ei = 0, 1, 2, . . . , ni, 1 ≤ i ≤ k. Therefore,

the answer is (n1 + 1)(n2 + 1) · · · (nk + 1).

25. There are 64 possibilities altogether. In 54 of these possibilities there is no 3. In 5 3 of these
possibilities only the first die lands 3. In 5 3 of these possibilities only the second die lands 3,
and so on. Therefore, the answer is

54 + 4 × 53

64
= 0.868.

26. Any subset of the set {salami, turkey, bologna, corned beef, ham, Swiss cheese, American
cheese} except the empty set can form a reasonable sandwich. There are 27 − 1 possibilities.
To every sandwich a subset of the set {lettuce, tomato, mayonnaise} can also be added. Since
there are 3 possibilities for bread, the final answer is (27 − 1) × 23 × 3 = 3048 and the
advertisement is true.

27. 11× 10× 9× 8 × 7 × 6 × 5 × 4
118

= 0.031.

28. For i = 1, 2, 3, let Ai be the event that no one departs at stop i. The desired quantity is
P (Ac

1A
c
2A

c
3) = 1− P (A1 ∪ A2 ∪ A3). Now

P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3)
− P (A1A2)− P (A1A3)− P (A2A3) + P (A1A2A3)

=
26

36
+

26

36
+

26

36
− 1

36
− 1

36
− 1

36
+ 0 =

7
27

.

Therefore, the desired probability is 1− (7/27) = 20/27.

29. For 0 ≤ i ≤ 9, the sum of the first two digits is i in (i + 1) ways. Therefore, there are
(i + 1)2 numbers in the given set with the sum of the first two digits equal to the sum of the
last two digits and equal to i. For i = 10, there are 92 numbers in the given set with the sum
of the first two digits equal to the sum of the last two digits and equal to 10. For i = 11, the
corresponding numbers are 82 and so on. Therefore, there are altogether

12 + 22 + · · ·+ 102 + 92 + 82 + · · ·+ 12 = 670
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16 Chapter 2 Combinatorial Methods

numbers with the desired probability and hence the answer is 670/10 4 = 0.067.

30. Let A be the event that the number selected contains at least one 0. Let B be the event that it
contains at least one 1 and C be the event that it contains at least one 2. The desired quantity
is P (ABC) = 1 − P (Ac ∪ Bc ∪ Cc), where

P (Ac ∪ Bc ∪ Cc) = P (Ac) + P (Bc) + P (Cc)

− P (AcBc) − P (AcCc) − P (BcCc) + P (AcBcCc)

=
9r

9 × 10r−1
+

8× 9r−1

9 × 10r−1
+

8 × 9r−1

9 × 10r−1
− 8r

9 × 10r−1
− 8r

9 × 10r−1

− 7× 8r−1

9 × 10r−1
+

7 r

9× 10r−1
.

2.3 PERMUTATIONS

1. The answer is 1
4!

=
1
24

≈ 0.0417.

2. 3! = 6.

3. 8!
3! 5!

= 56.

4. The probability that John will arrive right after Jim is 7!/8! (consider Jim and John as one
arrival). Therefore, the answer is 1 − (7!/8!) = 0.875.

Another Solution: If Jim is the last person, John will not arrive after Jim. Therefore, the
remaining seven can arrive in 7! ways. If Jim is not the last person, the total number of
possibilities in which John will not arrive right after Jim is 7 × 6× 6!. So the answer is

7! + 7 × 6 × 6!
8!

= 0.875.

5. (a) 312 = 531, 441. (b) 12!
6! 6!

= 924. (c) 12!
3! 4! 5!

= 27, 720.

6. 6P2 = 30.

7. 20!
4! 3! 5! 8!

= 3, 491, 888, 400.

8. (5× 4× 7)× (4× 3 × 6) × (3 × 2 × 5)
3!

= 50, 400.
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Section 2.3 Permutations 17

9. There are 8! schedule possibilities. By symmetry, in 8!/2 of them Dr. Richman’s lecture
precedes Dr. Chollet’s and in 8!/2 ways Dr. Richman’s lecture precedes Dr. Chollet’s. So the
answer is 8!/2 = 20, 160.

10. 11!
3! 2! 3! 3!

= 92, 400.

11. 1− (6!/66) = 0.985.

12. (a) 11!
4! 4! 2!

= 34, 650.

(b) Treating all P ’s as one entity, the answer is
10!
4! 4!

= 6300.

(c) Treating all I’s as one entity, the answer is 8!
4! 2!

= 840.

(d) Treating all P ’s as one entity, and all I’s as another entity, the answer is 7!
4!

= 210.

(e) By (a) and (c), The answer is 840/34650 = 0.024.

13.
( 8!

2! 3! 3!

)/
68 = 0.000333.

14.
( 9!

3! 3! 3!

)/
529 = 6.043× 10−13.

15. m!
(n + m)!

.

16. Each girl and each boy has the same chance of occupying the 13th chair. So the answer is
12/20 = 0.6. This can also be seen from

12 × 19!
20!

=
12
20

= 0.6.

17. 12!
1212

= 0.000054.

18. Look at the five math books as one entity. The answer is 5! × 18!
22!

= 0.00068.

19. 1− 9P7

97
= 0.962.

20. 2× 5!× 5!
10!

= 0.0079.

21. n!/nn.
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18 Chapter 2 Combinatorial Methods

22. 1− (6!/66) = 0.985.

23. Suppose that A and B are not on speaking terms. 134P4 committees can be formed in which
neither A serves nor B; 4 ×134 P3 committees can be formed in which A serves and B does
not. The same numbers of committees can be formed in which B serves and A does not.
Therefore, the answer is 134P4 + 2(4×134 P3) = 326, 998, 056.

24. (a) mn. (b) mPn. (c) n!.

25.
(
3 · 8!

2! 3! 2! 1!

)/
68 = 0.003.

26. (a) 20!
39 × 37 × 35 × · · · × 5 × 3 × 1

= 7.61× 10−6.

(b)
1

39× 37× 35× · · · × 5 × 3× 1
= 3.13× 10−24.

27. Thirty people can sit in 30! ways at a round table. But for each way, if they rotate 30 times
(everybody move one chair to the left at a time) no new situations will be created. Thus in
30!/30 = 29!ways 15 married couples can sit at a round table. Think of each married couple
as one entity and note that in 15!/15 = 14! ways 15 such entities can sit at a round table. We
have that the 15 couples can sit at a round table in (2!) 15 · 14! different ways because if the
couples of each entity change positions between themselves, a new situation will be created.
So the desired probability is

14!(2!)15

29!
= 3.23× 10−16.

The answer to the second part is

24!(2!)5

29!
= 2.25× 10−6.

28. In 13! ways the balls can be drawn one after another. The number of those in which the first
white appears in the second or in the fourth or in the sixth or in the eighth draw is calculated
as follows. (These are Jack’s turns.)

8 × 5 × 11! + 8 × 7× 6 × 5 × 9! + 8 × 7× 6 × 5 × 4× 5 × 7!
+ 8 × 7 × 6 × 5× 4 × 3 × 2 × 5 × 5! = 2, 399, 846, 400.

Therefore, the answer is 2, 399, 846, 400/13! = 0.385.
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Section 2.4 Combinations 19

2.4 COMBINATIONS

1.
(

20
6

)
= 38, 760.

2.
100∑
i=51

(
100
i

)
= 583, 379, 627, 841, 332, 604, 080, 945, 354, 060≈ 5.8× 1029.

3.
(

20
6

)(
25
6

)
= 6, 864, 396, 000.

4.

(
12
3

)(
40
2

)

(
52
5

) = 0.066.

5.
(

N − 1
n − 1

)/(
N

n

)
=

n

N
.

6.
(

5
3

)(
2
2

)
= 10.

7.
(

8
3

)(
5
2

)(
3
3

)
= 560.

8.
(

18
6

)
+

(
18
4

)
= 21, 624.

9.
(

10
5

)/(
12
7

)
= 0.318.

10. The coefficient of 23x9 in the expansion of (2 + x)12 is
(

12
9

)
. Therefore, the coefficient of

x9 is 23

(
12
9

)
= 1760.

11. The coefficient of (2x)3(−4y)4 in the expansion of (2x − 4y)7 is
(

7
4

)
. Thus the coefficient

of x3y2 in this expansion is 23(−4)4
(

7
4

)
= 71, 680.

12.
(

9
3

)[(6
4

)
+ 2

(
6
3

)]
= 4620.
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20 Chapter 2 Combinatorial Methods

13. (a)
(

10
5

)/
210 = 0.246; (b)

10∑
i=5

(
10
i

)/
210 = 0.623.

14. If their minimum is larger than 5, they are all from the set {6, 7, 8, . . . , 20}. Hence the answer
is

(
15
5

)/(
20
5

)
= 0.194.

15. (a)

(
6
2

)(
28
4

)

(
34
6

) = 0.228; (b)

(
6
6

)
+

(
6
6

)
+

(
10
6

)
+

(
12
6

)

(
34
6

) = 0.00084.

16.

(
50
5

)(
150
45

)

(
200
50

) = 0.00206.

17.
n∑

i=0

2i

(
n

i

)
=

n∑
i=0

(
n

i

)
2i1n−i = (2 + 1)n = 3n.

n∑
i=0

xi

(
n

i

)
=

n∑
i=0

(
n

i

)
xi1n−i = (x + 1)n.

18.
[(6

2

)
54

]/
66 = 0.201.

19. 212
/(

24
12

)
= 0.00151.

20. Royal Flush: 4(
52
5

) = 0.0000015.

Straight flush: 36(
52
5

) = 0.000014.

Four of a kind:
13 × 12

(
4
1

)

(
52
5

) = 0.00024.
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Section 2.4 Combinations 21

Full house:
13

(
4
3

)
· 12

(
4
2

)

(
52
5

) = 0.0014.

Flush:
4
(

13
5

)
− 40

(
52
5

) = 0.002.

Straight:
10(4)5 − 40(

52
5

) = 0.0039.

Three of a kind:
13

(
4
3

)
·
(

12
2

)
42

(
52
5

) = 0.021.

Two pairs:

(
13
2

)(
4
2

)(
4
2

)
· 11

(
4
1

)

(
52
5

) = 0.048.

One pair:
13

(
4
2

)
·
(

12
3

)
43

(
52
5

) = 0.42.

None of the above: 1− the sum of all of the above cases = 0.5034445.

21. The desired probability is (
12
6

)(
12
6

)

(
24
12

) = 0.3157.

22. The answer is the solution of the equation
(

x

3

)
= 20. This equation is equivalent to

x(x− 1)(x− 2) = 120 and its solution is x = 6.

23. There are 9×103 = 9000 four-digit numbers. From every 4-combination of the set {0, 1, . . . , 9},
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22 Chapter 2 Combinatorial Methods

exactly one four-digit number can be constructed in which its ones place is less than its tens
place, its tens place is less than its hundreds place, and its hundreds place is less than its

thousands place. Therefore, the number of such four-digit numbers is
(

10
4

)
= 210. Hence

the desired probability is 0.023333.

24.

(x + y + z)2 =
∑

n1+n2+n3=2

n!
n1! n2! n3!

xn1yn2zn3

=
2!

2! 0! 0!
x2y0z0 +

2!
0! 2! 0!

x0y2z0 +
2!

0! 0! 2!
x0y0z2

+
2!

1! 1! 0!
x1y1z0 +

2!
1! 0! 1!

x1y0z1 +
2!

0! 1! 1!
x0y1z1

= x2 + y2 + z2 + 2xy + 2xz + 2yz.

25. The coefficient of (2x)2(−y)3(3z)2 in the expansion of (2x − y + 3z)7 is
7!

2! 3! 2!
. Thus the

coefficient of x2y3z2 in this expansion is 22(−1)3(3)2
7!

2! 3! 2!
= −7560.

26. The coefficient of (2x)3(−y)7(3)3 in the expansion of (2x − y + 3)13 is
13!

3! 7! 3!
. Therefore,

the coefficient of x3y7 in this expansion is 23(−1)7(3)3
13!

3! 7! 3!
= −7, 413, 120.

27. In 52!
13! 13! 13! 13!

=
52!

(13!)4
ways 52 cards can be dealt among four people. Hence the sample

space contains 52!/(13!)4 points. Now in 4! ways the four different suits can be distributed
among the players; thus the desired probability is 4!/[52!/(13!) 4] ≈ 4.47× 10−28.

28. The theorem is valid for k = 2; it is the binomial expansion. Suppose that it is true for all
integers≤ k − 1. We show it for k. By the binomial expansion,

(x1 + x2 + · · ·+ xk)n =
n∑

n1=0

(
n

n1

)
xn1

1 (x2 + · · ·+ xk)n−n1

=
n∑

n1=0

(
n

n1

)
xn1

1

∑
n2+n3+···+nk=n−n1

(n − n1)!
n2! n3! · · · nk!

xn2
2 xn3

3 · · ·xnk
k

=
∑

n1+n2+···+nk=n

(
n

n1

)
(n − n1)!

n2! n3! · · · nk!
xn1

1 xn2
2 · · ·xnk

k

=
∑

n1+n2+···+nk=n

n!
n1! n2! · · · nk!

xn1
1 xn2

2 · · ·xnk
k .
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Section 2.4 Combinations 23

29. We must have 8 steps. Since the distance from M to L is ten 5-centimeter intervals and the
first step is made at M, there are 9 spots left at which the remaining 7 steps can be made. So

the answer is
(

9
7

)
= 36.

30. (a)

(
2
1

)(
98
49

)
+

(
98
48

)

(
100
50

) = 0.753; (b) 250
/(

100
50

)
= 1.16× 10−14.

31. (a) It must be clear that

n1 =
(

n

2

)

n2 =
(

n1

2

)
+ nn1

n3 =
(

n2

2

)
+ n2(n + n1)

n4 =
(

n3

2

)
+ n3(n + n1 + n2)

...

nk =
(

nk−1

2

)
+ nk−1(n + n1 + · · ·+ nk−1).

(b) For n = 25, 000, successive calculations of nk’s yield,

n1 = 312, 487, 500,

n2 = 48, 832, 030, 859, 381, 250,
n3 = 1, 192, 283, 634, 186, 401, 370, 231, 933, 886, 715, 625,

n4 = 710, 770, 132, 174, 366, 339, 321, 713, 883, 042, 336, 781, 236,

550, 151, 462, 446, 793, 456, 831, 056, 250.

For n = 25, 000, the total number of all possible hybrids in the first four generations,
n1+n2+n3+n4, is 710,770,132,174,366,339,321,713,883,042,337,973,520,184,337,
863,865,857,421,889,665,625. This number is approximately 710× 10 63.

32. For n = 1, we have the trivial identity

x + y =
(

1
0

)
x0y1−0 +

(
1
1

)
x1y1−1.

K27440_SM_Cover.indd   31 24/11/15   6:49 pm



24 Chapter 2 Combinatorial Methods

Assume that

(x + y)n−1 =
n−1∑
i=0

(
n − 1

i

)
xiyn−1−i.

This gives

(x + y)n = (x + y)
n−1∑
i=0

(
n − 1

i

)
xiyn−1−i

=
n−1∑
i=0

(
n − 1

i

)
xi+1yn−1−i +

n−1∑
i=0

(
n − 1

i

)
xiyn−i

=
n∑

i=1

(
n − 1
i − 1

)
xiyn−i +

n−1∑
i=0

(
n − 1

i

)
xiyn−i

= xn +
n−1∑
i=1

[(n − 1
i − 1

)
+

(
n − 1

i

)]
xiyn−i + yn

= xn +
n−1∑
i=1

(
n

i

)
xiyn−i + yn =

n∑
i=0

(
n

i

)
xiyn−i.

33. The desired probability is computed as follows.
(

12
6

)[(
30
2

)(
28
2

)(
26
2

)(
24
2

)(
22
2

)(
20
2

)(
18
3

)(
15
3

)(
12
3

)(
9
3

)(
6
3

)(
3
3

)]/
1230 ≈ 0.000346.

34. (a)

(
10
6

)
26

(
20
6

) = 0.347; (b)

(
10
1

)(
9
4

)
24

(
20
6

) = 0.520;

(c)

(
10
2

)(
8
2

)
22

(
20
6

) = 0.130; (d)

(
10
3

)

(
20
6

) = 0.0031.

35.

(
26
13

)(
26
13

)

(
52
26

) = 0.218.
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Section 2.4 Combinations 25

36. Let a 6-element combination of a set of integers be denoted by {a 1, a2, . . . , a6}, where a1 <
a2 < · · · < a6. It can be easily verified that the function h : B → A defined by

h
({a1, a2, . . . , a6}

)
= {a1, a2 + 1, . . . , a6 + 5}

is one-to-one and onto. Therefore, there is a one-to-one correspondence between B and A .

This shows that the number of elements in A is
(

44
6

)
. Thus the probability that no con-

secutive integers are selected among the winning numbers is
(

44
6

)/(
49
6

)
≈ 0.505. This

implies that the probability of at least two consecutive integers among the winning numbers
is approximately 1 − 0.505 = 0.495. Given that there are 47 integers between 1 and 49, this
high probability might be counter-intuitive. Even without knowledge of expected value, a
keen student might observe that, on the average, there should be (49− 1)/7 = 6.86 numbers
between each ai and ai+1, 1 ≤ i ≤ 5. Thus he or she might erroneously think that it is
unlikely to obtain consecutive integers frequently.

37. (a) Let Ei be the event that car i remains unoccupied. The desired probability is

P (Ec
1E

c
2 · · ·Ec

n) = 1 − P (E1 ∪ E2 ∪ · · · ∪ En).

Clearly,

P (Ei) =
(n − 1)m

nm
, 1 ≤ i ≤ n;

P (EiEj) =
(n − 2)m

nm
, 1 ≤ i, j ≤ n, i �= j;

P (EiEjEk) =
(n − 3)m

nm
, 1 ≤ i, j, k ≤ n, i �= j �= k;

and so on. Therefore, by the inclusion-exclusion principle,

P (E1 ∪ E2 ∪ · · · ∪ En) =
n∑

i=1

(−1)i−1

(
n

i

)
(n − i)m

nm
.

So

P (Ec
1E

c
2 · · ·Ec

n) = 1 −
n∑

i=1

(−1)i−1

(
n

i

)
(n − i)m

nm
=

n∑
i=0

(−1)i

(
n

i

)
(n − i)m

nm

=
1

nm

n∑
i=0

(−1)i

(
n

i

)
(n − i)m.

(b) Let F be the event that cars 1, 2, . . . , n− r are all occupied and the remaining cars are

unoccupied. The desired probability is
(

n

r

)
P (F ). Now by part (a), the number of ways m
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26 Chapter 2 Combinatorial Methods

passengers can be distributed among n − r cars, no car remaining unoccupied is

n−r∑
i=0

(−1)i

(
n − r

i

)
(n − r − i)m.

So

P (F ) =
1

nm

n−r∑
i=0

(−1)i

(
n − r

i

)
(n − r − i)m

and hence the desired probability is

1
nm

(
n

r

) n−r∑
i=0

(−1)i

(
n − r

i

)
(n − r − i)m.

38. Let the n indistinguishable balls be represented by n identical oranges and the n distinguish-
able cells be represented by n persons. We should count the number of different ways that the
n oranges can be divided among the n persons, and the number of different ways in which
exactly one person does not get an orange. The answer to the latter part is n(n − 1) since
in this case one person does not get an orange, one person gets exactly two oranges, and the
remaining persons each get exactly one orange. There are n choices for the person who does
not get an orange and n − 1 choices for the person who gets exactly two oranges; n(n − 1)
choices altogether. To count the number of different ways that the n oranges can be divided
among the n persons, add n−1 identical apples to the oranges and note that by Theorem 2.4,

the total number of permutations of these n− 1 apples and n oranges is (2n − 1)!
n! (n − 1)!

. (We can

arrange n − 1 identical apples and n identical oranges in a row in (2n − 1)!/
[
n! (n − 1)!

]

ways.) Now each one of these
(2n − 1)!
n! (n− 1)!

=
(

2n − 1
n

)
permutations corresponds to a way

of dividing the n oranges among the n persons and vice versa. Give all of the oranges pre-
ceding the first apple to the first person, the oranges between the first and the second apples
to the second person, the oranges between the second and the third apples to the third person
and so on. Therefore, if, for example, an apple appears in the beginning of the permutation,
the first person does not get an orange, and if two apples are at the end of the permutations,

the (n − 1)st and the nth persons get no oranges. Thus the answer is n(n − 1)
/(

2n − 1
n

)
.

39. The left side of the identity is the binomial expansion of (1 − 1) n = 0.
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40. Using the hint, we have
(

n

0

)
+

(
n + 1

1

)
+

(
n + 2

2

)
+ · · ·+

(
n + r

r

)

=
(

n

0

)
+

(
n + 2

1

)
−

(
n + 1

0

)
+

(
n + 3

2

)
−

(
n + 2

1

)

+
(

n + 4
3

)
−

(
n + 3

2

)
+ · · ·+

(
n + r + 1

r

)
−

(
n + r

r − 1

)

=
(

n

0

)
−

(
n + 1

0

)
+

(
n + r + 1

r

)
=

(
n + r + 1

r

)
.

41. The identity expresses that to choose r balls from n red and m blue balls, we must choose
either r red balls, 0 blue balls or r − 1 red balls, one blue ball or r − 2 red balls, two blue
balls or · · · 0 red balls, r blue balls.

42. Note that 1
i + 1

(
n

i

)
=

1
n + 1

(
n + 1
i + 1

)
. Hence

The given sum =
1

n + 1

[(
n + 1

1

)
+

(
n + 1

2

)
+ · · ·+

(
n + 1
n + 1

)]
=

1
n + 1

(2n+1 − 1).

43.
[(

5
2

)
33

]/
45 = 0.264.

44. (a) PN =

(
t

m

)(
N − t

n − m

)

(
N

n

) .

(b) From part (a), we have

PN

PN−1
=

(N − t)(N − n)
N (N − t − n + m)

.

This implies PN > PN−1 if and only if (N−t)(N−n) > N (N−t−n+m) or, equivalently,
if and only if N ≤ nt/m. So PN is increasing if and only if N ≤ nt/m. This shows that the
maximum of PN is at [nt/m], where by [nt/m] we mean the greatest integer ≤ nt/m.

45. The sample space consists of (n + 1)4 elements. Let the elements of the sample be denoted
by x1, x2, x3, and x4. To count the number of samples (x1, x2, x3, x4) for which x1 + x2 =
x3 + x4, let y3 = n − x3 and y4 = n − x4. Then y3 and y4 are also random elements from
the set {0, 1, 2, . . . , n}. The number of cases in which x1 + x2 = x3 + x4 is identical to
the number of cases in which x1 + x2 + y3 + y4 = 2n. By Example 2.23, the number of
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28 Chapter 2 Combinatorial Methods

nonnegative integer solutions to this equation is
(

2n + 3
3

)
. However, this also counts the

solutions in which one of x1, x2, y3, and y4 is greater than n. Because of the restrictions
0 ≤ x1, x2, y3, y4 ≤ n, we must subtract, from this number, the total number of the solutions
in which one of x1, x2, y3, and y4 is greater than n. Such solutions are obtained by finding
all nonnegative integer solutions of the equation x 1 + x2 + y3 + y4 = n− 1, and then adding
n + 1 to exactly one of x1, x2, y3, and y4. Their count is 4 times the number of nonnegative

integer solutions of x1 + x2 + y3 + y4 = n − 1; that is, 4
(

n + 2
3

)
. Therefore, the desired

probability is (
2n + 3

3

)
− 4

(
n + 2

3

)

(n + 1)4
=

2n2 + 4n + 3
3(n + 1)3

.

46. (a) The n − m unqualified applicants are “ringers.” The experiment is not affected by their
inclusion, so that the probability of any one of the qualified applicants being selected is the
same as it would be if there were only qualified applicants. That is, 1/m. This is because in
a random arrangement of m qualified applicants, the probability that a given applicant is the
first one is 1/m.

(b) Let A be the event that a given qualified applicant is hired. We will show that P (A) =
1/m. Let Ei be the event that the given qualified applicant is the ith applicant interviewed,
and he or she is the first qualified applicant to be interviewed. Clearly,

P (A) =
n−m+1∑

i=1

P (Ei),

where

P (Ei) = n−mPi−1 · 1 · (n − i)!
n!

.

Therefore,

P (A) =
n−m+1∑

i=1

n−mPi−1 · (n − i)!
n!

=
n−m+1∑

i=1

(n − m)!
(n − m − i + 1)!

(n − i)!

n!

=
n−m+1∑

i=1

1
m!

· 1
n!

m! (n− m)!

· (n − i)!
(n − m − i + 1)! (m− 1)!

(m − 1)!
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Section 2.4 Combinations 29

=
n−m+1∑

i=1

1
m

· 1(
n

m

)
(

n − i

m − 1

)

=
1
m

· 1(
n

m

)
n−m+1∑

i=1

(
n − i

m − 1

)
. (4)

To calculate
n−m+1∑

i=1

(
n − i

m − 1

)
, note that

(
n − i

m − 1

)
is the coefficient of xm−1 in the expansion

of (1 + x)n−i. Therefore,
n−m+1∑

i=1

(
n − i

m − 1

)
is the coefficient of xm−1 in the expansion of

n−m+1∑
i=1

(1 + x)n−i =
(1 + x)n − (1 + x)m−1

x
.

This shows that
n−m+1∑

i=1

(
n − i

m − 1

)
is the coefficient of xm in the expansion of

(1 + x)n − (1 + x)m−1, which is
(

n

m

)
. So (4) implies that

P (A) =
1
m

· 1(
n

m

) ·
(

n

m

)
=

1
m

.

47. Clearly, N = 610, N (Ai) = 510, N (AiAj) = 410, i �= j, and so on. So S1 has
(

6
1

)
equal

terms, S2 has
(

6
2

)
equal terms, and so on. Therefore, the solution is

610 −
(

6
1

)
510 +

(
6
2

)
410 −

(
6
3

)
310 +

(
6
4

)
210 −

(
6
5

)
110 +

(
6
6

)
010 = 16, 435, 440.

48. |A0| =
1
2

(
n

3

)(
n − 3

3

)
, |A1| =

1
2

(
n

3

)(
3
1

)(
n − 3

2

)
, |A2| =

1
2

(
n

3

)(
3
2

)(
n − 3

1

)
.

The answer is
|A0|

|A0|+ |A1| + |A2| =
(n − 4)(n− 5)

n2 + 2
.
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30 Chapter 2 Combinatorial Methods

49. The coefficient of xn in (1 + x)2n is
(

2n

n

)
. Its coefficient in (1 + x)n(1 + x)n is

(
n

0

)(
n

n

)
+

(
n

1

)(
n

n − 1

)
+

(
n

2

)(
n

n − 2

)
+ · · ·+

(
n

n

)(
n

0

)

=
(

n

0

)2

+
(

n

1

)2

+
(

n

2

)2

+ · · ·+
(

n

n

)2

,

since
(

n

i

)
=

(
n

n − 1

)
, 0 ≤ i ≤ n.

50. Consider a particular set of k letters. Let M be the number of possibilities in which only

these k letters are addressed correctly. The desired probability is the quantity
(

n

k

)
M

/
n!.

All we got to do is to find M. To do so, note that the remaining n− k letters are all addressed
incorrectly. For these n − k letters, there are n − k addresses. But the addresses are written
on the envelopes at random. The probability that none is addressed correctly on one hand is
M/(n − k)!, and on the other hand, by Example 2.24, is

1 −
n−k∑
i=1

(−1)i−1

i!
=

n∑
i=2

(−1)i−1

i!
.

So M satisfies
M

(n − k)!
=

n∑
i=2

(−1)i−1

i!
,

and hence

M = (n − k)!
n∑

i=2

(−1)i−1

i!
.

The final answer is

(
n

k

)
M

n!
=

(
n

k

)
(n − k)!

n∑
i=2

(−1)i−1

i!

n!
=

1
k!

n∑
i=2

(−1)i−1

i!
.

51. The set of all sequences of H’s and T’s of length i with no successive H’s are obtained either
by adding a T to the tails of all such sequences of length i− 1, or a TH to the tails of all such
sequences of length i − 2. Therefore,

xi = xi−1 + xi−2, i ≥ 2.

Clearly, x1 = 2 and x3 = 3. For consistency, we define x0 = 1. From the theory of recurrence
relations we know that the solution of x i = xi−1 + xi−2 is of the form xi = Ari

1 + Bri
2,
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Section 2.5 Stirling’s Formula 31

where r1 and r2 are the solutions of r2 = r + 1. Therefore, r1 =
1 +

√
5

2
and r2 =

1 −√
5

2
and so

xi = A
(1 +

√
5

2

)i
+ B

(1 −√
5

2

)i
.

Using the initial conditionsx 0 = 1 and x2 = 2, we obtainA =
5 + 3

√
5

10
andB =

5 − 3
√

5
10

.
Hence the answer is

xn

2n =
1
2n

[(5 + 3
√

5
10

)(1 +
√

5
2

)n
+

(5 − 3
√

5
10

)(1 −√
5

2

)n]

=
1

10× 22n

[(
5 + 3

√
5
)(

1 +
√

5
)n +

(
5− 3

√
5
)(

1 −√
5
)n

]
.

52. For this exercise, a solution is given by Abramson and Moser in the October 1970 issue of the
American Mathematical Monthly.

2.5 STIRLING’s FORMULA

1. (a)
(

2n

n

)
1

22n =
(2n)!
n! n!

1
22n

∼
√

4πn (2n)2n e−2n

(2πn) n2n e−2n 22n
∼ 1√

πn
.

(b)
[
(2n)!

]3
(4n)! (n!)2

∼
[√

4πn (2n)2n e−2n
]3

√
8πn (4n)4n e−4n (2πn) n2n e−2n

=
√

2
4n

.

REVIEW PROBLEMS FOR CHAPTER 2

1. The desired quantity is equal to the number of subsets of all seven varieties of fruit minus 1
(the empty set); so it is 27 − 1 = 127.

2. The number of choices Virginia has is equal to the number of subsets of {1, 2, 5, 10, 20}
minus 1 (for empty set). So the answer is 25 − 1 = 31.

3. (6× 5× 4 × 3)/64 = 0.278.

4. 10
/(

10
2

)
= 0.222.

5. 9!
3! 2! 2! 2!

= 7560.
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6. 5!/5 = 4! = 24.

7. 3! · 4! · 4! · 4! = 82, 944.

8. 1−

(
23
6

)

(
30
6

) = 0.83.

9. Since the refrigerators are identical, the answer is 1.

10. 6! = 720.

11. (Draw a tree diagram.) In 18 out of 52 possible cases the tournament ends because John wins
4 games without winning 3 in a row. So the answer is 34.62%.

12. Yes, it is because the probability of what happened is 1/7 2 = 0.02.

13. 9 8 = 43, 046, 721.

14. (a) 26 × 25 × 24 × 23 × 22 × 21 = 165, 765, 600;

(b) 26× 25× 24× 23× 22× 5 = 39, 468, 000;

(c)
(

5
2

)
26

(
3
1

)
25

(
2
1

)
24

(
1
1

)
23 = 21, 528, 000.

15.

(
6
3

)
+

(
6
1

)
+

(
6
1

)
+

(
6
1

)(
2
1

)(
2
1

)

(
10
3

) = 0.467.

Another Solution:

(
6
3

)
+

(
6
1

)(
4
2

)

(
10
3

) = 0.467.

16. 8× 4 ×6 P4

8P6
= 0.571.

17. 1− 278

288
= 0.252.
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18. (3!/3)(5!)3

15!/15
= 0.000396.

19. 312 = 531, 441.

20.

(
4
1

)(
48
12

)(
3
1

)(
36
12

)(
2
1

)(
24
12

)(
1
1

)(
12
12

)

52!
13! 13! 13! 13!

= 0.1055.

21. Let A1, A2, A3, and A4 be the events that there is no professor, no associate professor, no
assistant professor, and no instructor in the committee, respectively. The desired probability
is

P (Ac
1A

c
2A

c
3A

c
4) = 1 − P (A1 ∪ A2 ∪ A3 ∪ A4),

where P (A1 ∪ A2 ∪ A3 ∪ A4) is calculated using the inclusion-exclusion principle:

P (A1 ∪ A2 ∪ A3 ∪ A4) = P (A1) + P (A2) + P (A3) + P (A4)

− P (A1A2) − P (A1A3) − P (A1A4) − P (A2A3) − P (A2A4)− P (A3A4)

+ P (A1A2A3) + P (A1A3A4) + P (A1A2A4) + P (A2A3A4)− P (A1A2A3A4)

=
[
1
/(

34
6

)][(
28
6

)
+

(
28
6

)
+

(
24
6

)
+

(
22
6

)
−

(
22
6

)
−

(
18
6

)
−

(
16
6

)
−

(
18
6

)

−
(

16
6

)
−

(
12
6

)
+

(
12
6

)
+

(
6
6

)
+

(
10
6

)
+

(
6
6

)
− 0

]
= 0.621.

Therefore, the desired probability equals 1 − 0.621 = 0.379.

22. (15!)2

30!/(2!)15
= 0.0002112.

23. (N − n + 1)
/(

N

n

)
.

24. (a)

(
4
2

)(
48
24

)

(
52
26

) = 0.390; (b)

(
40
1

)

(
52
13

) = 6.299× 10−11;

(c)

(
13
5

)(
39
8

)(
8
8

)(
31
5

)

(
52
13

)(
39
13

) = 0.00000261.
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25. 12!/(3!)4 = 369, 600.

26. There is a one-to-one correspondence between all cases in which the eighth outcome obtained
is not a repetition and all cases in which the first outcome obtained will not be repeated. The
answer is

6 × 5 × 5 × 5 × 5× 5 × 5 × 5
6 × 6 × 6 × 6 × 6× 6 × 6 × 6

=
(5

6

)7
= 0.279.

27. There are 9 × 103 = 9, 000 four-digit numbers. To count the number of desired four-digit
numbers, note that if 0 is to be one of the digits, then the thousands place of the number
must be 0, but this cannot be the case since the first digit of an n-digit number is nonzero.
Keeping this in mind, it must be clear that from every 4-combination of the set {1, 2, . . . , 9},
exactly one four-digit number can be constructed in which its ones place is greater than its
tens place, its tens place is greater than it hundreds place, and its hundreds place is greater

than its thousands place. Therefore, the number of such four-digit numbers is
(

9
4

)
= 126.

Hence the desired probability is = 0.014.

28. Since the sum of the digits of 100,000 is 1, we ignore 100,000 and assume that all of the
numbers have five digits by placing 0’s in front of those with less than five digits. The fol-
lowing process establishes a one-to-one correspondence between such numbers, d 1d2d3d4d5,∑5

i=1 di = 8, and placement of 8 identical objects into 5 distinguishable cells: Put d 1 of the
objects into the first cell, d2 of the objects into the second cell, d3 into the third cell, and so on.

Since this can be done in
(

8 + 5 − 1
5 − 1

)
=

(
12
8

)
= 495 ways, the number of integers from

the set {1, 2, 3, . . . , 100000} in which the sum of the digits is 8 is 495. Hence the desired
probability is 495/100, 000 = 0.00495.
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