
Chapter 2

Fourier Trigonometric Series

1. Write y(t) = 3 cos 2t− 4 sin 2t in the form y(t) = A cos(2π f t + φ).
We can determine the constants by expanding the cosine function,

y(t) = A cos(2π f t + φ) = A cos φ cos 2π f t− A sin φ sin 2π f t.

Comparing this to y(t) = 3 cos 2t− 4 sin 2t, we see 2π f = 2 and

A cos φ = 3,

A sin φ = 4.

Adding the squares of these equations,

25 = A2 cos2 φ + A2 sin2 φ = A2,

we obtain A = 5. Dividing the first equation into the second, tan φ = 4/3.
So, we find

y(t) = 3 cos 2t− 4 sin 2t

= 5 cos
(

2t + tan−1(
4
3
)

)
≈ 5 cos (2t + 0.927) .

2. Determine the period of the following functions:

a. f (x) = cos
x
3

.

T =
2π

1
3

= 6π.

b. f (x) = sin 2πx.

T =
2π

2π
= 1.

c. f (x) = sin 2πx− 0.1 cos 3πx.

f (x) = sin 2πx, 0.1 cos 3πx

x
-3 -2 -1 0 1 2 3

f (x) sin 2πx− 0.1 cos 3πx

x
-3 -2 -1 0 1 2 3

Figure 2.1: Plots of f (x) = sin 2πx,
f (x) = 0.1 cos 3πx, and f (x) =
sin 2πx− 0.1 cos 3πx.

Each term has a different period: T =
2π

2π
= 1 and T =

2π

3π
=

2
3

.
Multiples of each give

nT = {1, 2, 3, 4, 5, 6, . . .}

nT = {2
3

,
4
3

, 2,
8
3

,
10
3

, 4, . . .}.

The smallest common value is the period of f (x) = sin 2πx −
0.1 cos 3πx : T = 2. This is seen in Figure 2.1.
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d. f (x) = | sin 5πx|.

The period of f (x) = sin 5πx is T =
2π

5π
=

2
5

. However, the fre-

quency doubles under the absolute value, so T =
1
5

.

e. f (x) = cot 2πx.

The periods of the tan x and cot x are T = π. So, for this function

we have T =
π

2π
=

1
2

.

f. f (x) = cos2 x
2

.

Just like the absolute value, the frequency of the cosine function

doubles when the function is squared. So, T =
π
1
2
= 2π.

g. f (x) = 3 sin
πx
2

+ 2 cos
3πx

4
.

This problem is similar to 2c. Each term has a different period:

T =
2π
π
2

= 4 and T =
2π
3π
4

=
8
3

. Multiples of each give

nT = {4, 8, 12, 16, . . .}

nT = {8
3

,
16
3

, 8,
32
3

,
40
3

, 16, . . .}.

The smallest common value is the period of f (x) = 3 sin
πx
2

+

2 cos
3πx

4
is T = 8. This is seen in Figure 2.2.

Figure 2.2: Plots of f (x) = 3 sin
πx
2

,

f (x) = 2 cos
3πx

4
, and f (x) =

3 sin
πx
2

+ 2 cos
3πx

4
.

f (x) = sin πx
2 , cos 3π

4 x

x
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

f (x) sin 2πx− 0.1 cos 3πx

x
-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
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3. Derive the coefficients bn in Equation (5.24).
This derivation parallels that for the an’s. We begin with the Fourier

series

f (x) ∼ a0

2
+

∞

∑
n=1

[an cos nx + bn sin nx] .

We multiply this Fourier series by sin mx for some positive integer m and
then integrate:∫ 2π

0
f (x) sin mx dx =

∫ 2π

0

a0

2
sin mx dx

+
∫ 2π

0

∞

∑
n=1

[an cos nx + bn sin nx] sin mx dx.

Integrating term by term, the right side becomes∫ 2π

0
f (x) sin mx dx

=
a0

2

∫ 2π

0
sin mx dx

+
∞

∑
n=1

[
an

∫ 2π

0
cos nx sin mx dx + bn

∫ 2π

0
sin nx cos mx dx

]
.

We have shown that
∫ 2π

0 sin mx dx = 0, which implies that the first term
vanishes. Also, we have that∫ 2π

0
cos nx sin mx dx = 0

for integers n and m.
We still need to evaluate

∫ 2π
0 sin nx sin mx dx which was not done in the

book. We compute this integral by using the product identity for sines. We
have for m 6= n that∫ 2π

0
sin nx sin mx dx =

1
2

∫ 2π

0
[cos(m− n)x− cos(m + n)x] dx

=
1
2

[
sin(m− n)x

m− n
− sin(m + n)x

m + n

]2π

0
= 0.

For n = m, we have∫ 2π

0
sin2 mx dx =

1
2

∫ 2π

0
(1− cos 2mx) dx

=
1
2

[
x− 1

2m
sin 2mx

]2π

0

=
1
2
(2π) = π.

Now, we can finish the derivation. We have shown the orthogonality of
the sines, ∫ 2π

0
sin nx sin mx dx = πδnm.
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So,

∫ 2π

0
f (x) sin mx dx =

∞

∑
n=1

bn

∫ 2π

0
sin nx cos mx dx

=
∞

∑
n=1

bnπδnm

= bmπ.

Solving for bm, we have

bm =
1
π

∫ 2π

0
f (x) sin mx dx.

4. Let f (x) be defined for x ∈ [−L, L]. Parseval’s identity is given by

1
L

∫ L

−L
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n + b2

n.

Assuming the Fourier series of f (x) converges uniformly in (−L, L), prove
Parseval’s identity by multiplying the Fourier series representation by f (x)
and integrating from x = −L to x = L. [In Section 5.6.3, we will encounter
Plancherel’s Formula for Fourier transforms, which is a continuous version
of this identity.]

We begin with the Fourier series

f (x) ∼ a0

2
+

∞

∑
n=1

[
an cos

2πnx
L

+ bn sin
2πnx

L

]
.

Multiplying this Fourier series by f (x) and integrating over x ∈ [−L, L], we
obtain∫ L

−L
f 2(x) dx =

∫ L

−L

a0

2
f (x) dx +

∫ L

−L

∞

∑
n=1

[
an cos

2πnx
L

+ bn sin
2πnx

L

]
f (x) dx

=
a0

2

∫ L

−L
f (x) dx

+
∞

∑
n=1

[
an

∫ L

−L
f (x) cos

2πnx
L

dx + bn

∫ L

−L
f (x) sin

2πnx
L

dx
]

Recall the Fourier coefficients are given by

a0 =
1
L

∫ L

−L
f (x) dx

an =
1
L

∫ L

−L
f (x) cos

2πnx
L

dx

bn =
1
L

∫ L

−L
f (x) sin

2πnx
L

dx.

Replacing the integrals in the integrated Fourier series with Fourier coeffi-
cients, we have∫ L

−L
f 2(x) dx =

a0

2
(a0L) +

∞

∑
n=1

[an(anL) + bn(bnL)] ,
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leading to the sought result,

1
L

∫ L

−L
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n + b2

n.

5. Let f (x) be defined for x ∈ [0, L]. Derive the Parseval identities, similar
to Problem 4, for the following series.

a. For the Fourier Cosine series,

f (x) ∼ a0

2
+

∞

∑
n=1

an cos
nπx

L
,

show that
2
L

∫ L

0
[ f (x)]2 dx =

a2
0

2
+

∞

∑
n=1

a2
n.

Multiply the Fourier Cosine series by f (x) and integrate from x =

0 to x = L.∫ L

0
[ f (x)]2 dx =

∫ L

0
f (x)

[
a0

2
+

∞

∑
n=1

an cos
nπx

L

]
dx

=
a0

2

∫ L

0
f (x) dx +

∞

∑
n=1

an

∫ L

0
f (x) cos

nπx
L

dx.

Noting that the integrals are given by∫ L

0
f (x) cos

nπx
L

dx =
L
2

an, n = 0, 1, 2, . . . ,

we have
2
L

∫ L

0
[ f (x)]2 dx =

a2
0

2
+

∞

∑
n=1

a2
n.

b. For the Fourier Sine series,

f (x) ∼
∞

∑
n=1

bn sin
nπx

L
,

show that
2
L

∫ L

0
[ f (x)]2 dx =

∞

∑
n=1

b2
n.

Multiply the Fourier Sine series by f (x) and integrate from x = 0
to x = L. ∫ L

0
[ f (x)]2 dx =

∞

∑
n=1

bn sin
nπx

L
dx

=
∞

∑
n=1

bn

∫ L

0
f (x) sin

nπx
L

dx.

Noting that the integrals are given by∫ L

0
f (x) sin

nπx
L

dx =
L
2

an, n = 1, 2, . . . ,

we have
2
L

∫ L

0
[ f (x)]2 dx =

∞

∑
n=1

b2
n.
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6. Consider the square wave function

f (x) =

{
1, 0 < x < π,
−1, π < x < 2π.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

Since f (x) is an odd function on a symmetric interval, an = 0,
n = 0, 1, . . . . We need only compute the bn’s.

bn =
1
π

∫ π

−π
f (x) sin nx dx

=
2
π

∫ π

0
sin nx dx

= − 2
nπ

(cos nπ − 1).

The Fourier series is then

f (x) ∼
∞

∑
n=1

(
− 2

nπ
(cos nπ − 1)

)
sin nx

=
4
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

The first 50 terms (n = 50) are shown in Figure 2.3.

Figure 2.3: A plot of first terms of the
Fourier series of f (x) in Problem 2.6.

b. Apply Parseval’s identity in Problem 5 to the result in part a.

Parseval’s identity states

1
π

∫ π

−π
f 2(x) dx =

∞

∑
n=1

b2
n.

From part a we have

bn = − 2
nπ

(cos nπ − 1).

Noting that f 2(x) = 1, we have

1
π

∫ π

−π
f 2(x) dx =

∞

∑
n=1

b2
n

1
π

∫ π

−π
dx =

∞

∑
n=1

(
− 2

nπ
(cos nπ − 1)

)2

2 =
∞

∑
k=1

(
4

(2k− 1)π

)2

=
16
π2

∞

∑
k=1

1
(2k− 1)2

=
16
π2

(
1 +

1
32 +

1
52 +

1
72 + · · ·

)
.

Thus, we have

2 =
16
π2

(
1 +

1
32 +

1
52 +

1
72 + · · ·

)
.
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c. Use the result of part b to show π2

8 =
∞

∑
n=1

1
(2n− 1)2 .

Multiplying the series in part b,

2 =
16
π2

∞

∑
k=1

1
(2k− 1)2 ,

by π2/16 yields this result.

7. For the following sets of functions: (i) show that each is orthogonal on
the given interval, and (ii) determine the corresponding orthonormal set.
[See page 288.]

Orthogonality and normalization can be done using simple substitutions
and relating the integrals to the basic orthogonality relations between sines
and cosines,∫ 2π

0
cos nx cos mx dx =

∫ 2π

0
sin nx sin mx dx = πδnm.

a. {sin 2nx}, n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

Let y = 2x, dy = 2 dx. Then,∫ π

0
sin 2nx sin 2mx dx =

1
2

∫ 2π

0
sin ny sin my dy =

π

2
δnm.

These can be normalized by letting φn(x) = A sin 2nx. Then

1 =
∫ π

0
φ2

n(x) dx =
∫ π

0
A2 sin2 2nx dx =

π

2
A2.

So, we have A =
√

2
π and the orthonormal set is given by {

√
2
π sin 2nx},

n = 1, 2, 3, . . . , 0 ≤ x ≤ π.

b. {cos nπx}, n = 0, 1, 2, . . . , 0 ≤ x ≤ 2.

Let y = πx, dy = π dx. Then,∫ 2

0
cos nπx cos mπx dx =

1
π

∫ 2π

0
cos ny cos my dy = δnm.

These functions are already orthonormal.

c. {sin nπx
L }, n = 1, 2, 3, . . . , x ∈ [−L, L].

Let y = πx/L, dy = π/L dx. Then,∫ L

−L
sin

nπx
L

sin
mπx

L
dx =

L
π

∫ π

−π
sin ny sin my dy = Lδnm.

These can be normalized by letting φn(x) = A sin nπx
L . Then

1 =
∫ L

−L
φ2

n(x) dx =
∫ L

−L
A2 sin2 nπx

L
dx = LA2.

So, we have A = 1√
L

and the orthonormal set is given by { 1√
L

sin nπx
L },

n = 1, 2, 3, . . . , x ∈ [−L, L].
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8. Consider f (x) = 4 sin3 2x.

a. Derive the trigonometric identity giving sin3 θ in terms of sin θ and
sin 3θ using DeMoivre’s Formula.

We note that e3iθ = (eiθ)3. Writing both sides of this equation in
terms of trigonometric functions, we have

e3iθ = (eiθ)3

cos 3θ + i sin 3θ = (cos θ + i sin θ)3

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

Equating the real and imaginary parts we have

cos 3θ = cos3 θ − 3 cos θ sin2 θ,

sin 3θ = 3 cos2 θ sin θ − sin3 θ.

The second equation can be rearranged to get the result.

sin 3θ = 3 cos2 θ sin θ − sin3 θ

= 3(1− sin2 θ) sin θ − sin3 θ

= 3 sin θ − 4 sin3 θ.

Therefore,

sin3 θ =
3
4

sin θ − 1
4

sin 3θ.

b. Find the Fourier series of f (x) = 4 sin3 2x on [0, 2π] without com-
puting any integrals.

We need only let θ = 2x in part a. Then,

f (x) = 4 sin3 2x = 3 sin 2x− sin 6x.

9. Find the Fourier series representations of the following:

a. f (x) = x, x ∈ [0, 2π].

We first compute the Fourier coefficients. Note that we compute a0

separately from an.

The a0’s are computed separately from
an’s when determining the Fourier coef-
ficients.

a0 =
1
π

∫ 2π

0
x dx =

x2

2π

∣∣∣2π

0
= 2π.

an =
1
π

∫ 2π

0
x cos nx dx

=
1
π

[
1
n

x sin nx +
1
n2 cos nx

]2π

0
= 0.

bn =
1
π

∫ 2π

0
x sin nx dx

=
1
π

[
− 1

n
x cos nx +

1
n2 sin nx

]2π

0
= − 2

n
.
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The Fourier series is given by

f (x) ∼ π − 2
∞

∑
n=1

sin nx
n

.

A plot of the first terms of the series is given in Figure 2.4.

b. f (x) =
x2

4
, |x| < π.

Figure 2.4: A plot of first terms of the
Fourier series of f (x) in Problem 2.9a.

f (x) is an even function on |x| < π. So, bn = 0 for all n. We only
need the an’s.

a0 =
1
π

∫ π

−π

x2

4
dx =

2
4π

∫ π

0
x2 dx =

π2

6
.

an =
1
π

∫ π

−π

x2

4
cos nx dx

=
1

2π

∫ π

0
x2 cos nx dx

=
1

2π

[
1
n

x2 sin nx +
2
n2 x cos nx− 2

n3 sin nx
]π

0

=
1

2π

(
2
n2 π cos nπ

)
=

cos nπ

n2 =
(−1)n

n2 .

Then,the Fourier series is given as

f (x) ∼ π2

12
+

∞

∑
n=1

(−1)n

n2 cos nx.

A plot of the first terms of the series is given in Figure 2.5.

Figure 2.5: A plot of first terms of the
Fourier series of f (x) in Problem 2.9b.

c. f (x) =

{
π
2 , 0 < x < π,
−π

2 , π < x < 2π.
We first compute the Fourier coefficients.

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0

(π

2

)
dx +

1
π

∫ 2π

π

(
−π

2

)
dx

=
1
2

x
∣∣∣π
0
− 1

2
x
∣∣∣2π

π

=
π

2
− (π − π

2
) = 0.

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
1
π

∫ π

0

(π

2

)
cos nx dx +

1
π

∫ 2π

π

(
−π

2

)
cos nx dx

=
1

2n
sin nx

∣∣∣π
0
− 1

2n
sin nx

∣∣∣2π

π
= 0.

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

∫ π

0

(π

2

)
sin nx dx +

1
π

∫ 2π

π

(
−π

2

)
sin nx dx

= − 1
2n

cos nx
∣∣∣π
0
+

1
2n

cos nx
∣∣∣2π

π

=
1− cos nπ

n
.
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The resulting Fourier series is

f (x) ∼
∞

∑
n=1

1− cos nπ

n
sin nx = 2

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

A plot of the first terms of the series is given in Figure 2.8.

d. f (x) =

{
x, 0 < x < π,
π, π < x < 2π.

Figure 2.6: A plot of first terms of the
Fourier series of f (x) in Problem 2.9c.

We first compute the Fourier coefficients.

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0
x dx +

1
π

∫ 2π

π
π dx

=
1
π

x2

2

∣∣∣π
0
+ x
∣∣∣2π

π

=
π

2
+ (2π − π) =

3
2

π.

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
1
π

∫ π

0
x cos nx dx +

1
π

∫ 2π

π
π cos nx dx

=
1
π

[
1
n

x sin nx +
1
n2 cos nx

]π

0
+

1
n

sin nx
∣∣∣2π

π

=
cos nπ − 1

πn2 .

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

∫ π

0
x sin nx dx +

1
π

∫ 2π

π
π sin nx dx

=
1
π

[
− 1

n
x cos nx +

1
n2 sin nx

]π

0
− 1

n
cos nx

∣∣∣2π

π

= − 1
n

.

The resulting Fourier series is

f (x) ∼ 3π

4
+

∞

∑
n=1

[
cos nπ − 1

πn2 cos nx− 1
n

sin nx
]

.

A plot of the first terms of the series is given in Figure ??.

Figure 2.7: A plot of first terms of the
Fourier series of f (x) in Problem 2.9d.

e. f (x) =

{
π − x, 0 < x < π,

0, π < x < 2π.
We first compute the Fourier coefficients.

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0
π − x dx

= − 1
π

(π − x)2

2

∣∣∣π
0
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=
π

2
.

an =
1
π

∫ 2π

0
f (x) cos nx dx

=
1
π

∫ π

0
(π − x) cos nx dx

=
1
π

[
1
n
(π − x) sin nx− 1

n2 cos nx
]π

0

=
1− cos nπ

πn2 .

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

∫ π

0
(π − x) sin nx dx

=
1
π

[
− 1

n
(π − x) cos nx− 1

n2 sin nx
]π

0

=
1
n

.

The resulting Fourier series is

f (x) ∼ π

4
+

∞

∑
n=1

[
1− cos nπ

πn2 cos nx +
1
n

sin nx
]

.

A plot of the first terms of the series is given in Figure ??.

Figure 2.8: A plot of first terms of the
Fourier series of f (x) in Problem 2.9e.

10. Find the Fourier series representations of each function f (x) of period
2π. For each series, plot the Nth partial sum,

SN =
a0

2
+

N

∑
n=1

[an cos nx + bn sin nx] ,

for N = 5, 10, 50 and describe the convergence (Is it fast? What is it con-
verging to?, etc.) [Some simple Maple , MATLAB, and Python code for
computing partial sums is shown in the notes.]

a. f (x) = x, |x| < π.

Since f (x) = x is an odd function on |x| < π, the an’s vanish for
all n. So, we just compute the bn’s.

bn =
1
π

∫ π

−π
x sin nx dx

=
2
π

∫ π

0
x sin nx dx

=
2
π

[
− 1

n
x cos nx +

1
n2 sin nx

]π

0

= −2 cos nπ

n
= 2

(−1)n+1

n
.

The resulting Fourier series is

f (x) ∼ 2
∞

∑
n=1

(−1)n+1 sin nx
n

.
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As seen in Figure 2.9 the convergence is slow as the terms decay
like 1

n . The discontinuities in the periodic extension also are an
indication.

Figure 2.9: A plot of first terms of the
Fourier series of f (x) in Problem 2.10a.

b. f (x) = |x|, |x| < π.

Since f (x) = |x| is an even function on |x| < π, the bn’s vanish for
all n. We compute a0 and an.

a0 =
1
π

∫ π

−π
|x| dx

=
2
π

∫ π

0
x dx = π

an =
1
π

∫ π

−π
|x| cos nx dx

=
2
π

∫ π

0
x cos nx dx

=
2
π

[
1
n

x sin nx +
1
n2 cos nx

]π

0

=
2

πn2 (cos nπ − 1).

The resulting Fourier series is

f (x) ∼ π

2
+

∞

∑
n=1

2(cos nπ − 1)
πn2 cos nx

=
π

2
− 4

π

∞

∑
k=1

cos(2k− 1)x
(2k− 1)2 .

The convergence is fast as the terms decay like 1
n2 . There are not

discontinuities in the periodic extension. See Figure 2.10.
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Figure 2.10: A plot of first terms of the
Fourier series of f (x) in Problem 2.10b.

c. f (x) = cos x, |x| < π.

While one can compute the Fourier coefficients by carrying out
integrations, it should be noticed that this is a truncated Fourier
series and no integration is needed. The result is f (x) = cos x.

d. f (x) =

{
0, −π < x < 0,
1, 0 < x < π.

We need to compute all of the Fourier coefficients.

a0 =
1
π

∫ π

−π
f (x) dx

=
1
π

∫ π

0
dx = 1.

an =
1
π

∫ π

−π
f (x) cos nx dx

=
1
π

∫ π

0
cos nx dx

=
1

nπ
sin nx

∣∣∣π
0
= 0.

bn =
1
π

∫ π

−π
f (x) sin nx dx

=
1
π

∫ π

0
sin nx dx

= − 1
nπ

cos nx
∣∣∣π
0

=
1− cos nπ

nπ
.

The resulting Fourier series is

f (x) ∼ 1
2
+

∞

∑
n=1

1− cos nπ

nπ
sin nx

=
1
2
+

2
π

∞

∑
k=1

sin(2k− 1)x
2k− 1

.

The convergence is slow as the terms decay like 1
n . There are dis-

continuities in the periodic extension as seen in Figure 2.11.

11. Find the Fourier series representation of f (x) = x on the given interval.
Plot the Nth partial sums and describe what you see.
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Figure 2.11: A plot of first terms of the
Fourier series of f (x) in Problem 2.10c.

a. 0 < x < 2.

We compute the Fourier coefficients:

a0 =
2
2

∫ 2

0
x dx =

x2

2

∣∣∣2
0
= 2.

an =
2
2

∫ 2

0
x cos

2nπx
2

dx

=
∫ 2

0
x cos nπx dx

=

[
1

nπ
x sin nπx +

1
n2π2 cos nπx

]2

0
= 0.

bn =
2
2

∫ 2

0
x sin

2nπx
2

dx

=
∫ 2

0
x sin nπx dx

=

[
− 1

nπ
x cos nπx +

1
n2π2 sin nπx

]2

0

= − 2
nπ

.

Figure 2.12: A plot of first terms of the
Fourier series of f (x) in Problem 2.11a.

The Fourier series representation is given by

f (x) ∼ 1− 2
π

∞

∑
n=1

sin nπx
n

.

A plot of the Fourier series is shown in Figure 2.12.

b. −2 < x < 2.

Since f (x) = x is an odd function on −2 < x < 2, we only need
the bn’s.

bn =
2
4

∫ 2

−2
x sin

2nπx
4

dx

=
∫ 2

0
x sin

nπx
2

dx

=

[
− 2

nπ
x cos

nπx
2

+
4

n2π2 sin
nπx

2

]2

0

= − 4
nπ

cos nπ.
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The Fourier series is

f (x) ∼ 4
π

∞

∑
n=1

(−1)n+1

n
sin

nπx
2

.

A plot of this Fourier series is shown in Figure 2.13.

Figure 2.13: A plot of first terms of the
Fourier series of f (x) in Problem 2.11b.

c. 1 < x < 2.

The Fourier coefficients are found as

a0 = 2
∫ 2

1
x dx = x2

∣∣∣2
1
= 3.

an = 2
∫ 2

1
x cos 2nπx dx

=

[
1

2nπ
x sin 2nπx +

1
4n2π2 cos 2nπx

]2

1
= 0.

bn = 2
∫ 2

1
x sin 2nπx dx

=

[
− 1

2nπ
x cos 2nπx +

1
4n2π2 sin 2nπx

]2

1

= − 1
nπ

.

Figure 2.14: A plot of first terms of the
Fourier series of f (x) in Problem 2.11c.

This gives the Fourier series

f (x) ∼ 3
2
− 1

π

∞

∑
n=1

sin 2nπx
2

.

A plot of this Fourier series is shown in Figure 2.14.

12. The result in Problem 9b above gives a Fourier series representation of
x2

4
. By picking the right value for x and a little arrangement of the series,

show that [See Example 2.6.]

a.
π2

6
= 1 +

1
22 +

1
32 +

1
42 + · · · .

Using the results in Problem 5.12b, one has that

x2

4
=

π2

12
+

∞

∑
n=1

(−1)n

n2 cos nx.

Letting x = π, we have

π2

4
=

π2

12
+

∞

∑
n=1

(−1)n

n2 cos nπ

=
π2

12
+

∞

∑
n=1

1
n2 .

Then,
∞

∑
n=1

1
n2 =

π2

4
− π2

12
=

π2

6
.
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b.
π2

8
= 1 +

1
32 +

1
52 +

1
72 + · · · .

Hint: Consider how the series in part a. can be used to do this.

Let
S = 1 +

1
32 +

1
52 +

1
72 + · · · .

Note that

π2

6
=

∞

∑
n=1

1
n2

= 1 +
1
22 +

1
32 +

1
42 + · · ·

= S +
1
22 +

1
42 +

1
62 + · · ·

= S +
1
4

(
1 +

1
22 +

1
32 + · · ·

)
= S +

1
4

(
π2

6

)
= S +

π2

24
.

Therefore, we have

S = 1 +
1
32 +

1
52 +

1
72 + · · ·

=
π2

6
− π2

24
=

π2

8
.

c. Use the Fourier series representation result in Problem 9e. to ob-
tain the series in part b.

The result of Problem 9e is

f (x) ∼ π

4
+

∞

∑
n=1

[
1− cos nπ

πn2 cos nx +
1
n

sin nx
]

.

Setting x = π, we have

0 ∼ π

4
+

∞

∑
n=1

1− cos nπ

πn2 cos nπ

=
π

4
− 2

π

∞

∑
k=1

1
(2k− 1)2 .

Therefore,
∞

∑
k=1

1
(2k− 1)2 =

π2

8
.

13. Sketch (by hand) the graphs of each of the following functions over
four periods. Then sketch the extensions each of the functions as both an
even and odd periodic function. Determine the corresponding Fourier sine
and cosine series and verify the convergence to the desired function using
Maple.
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For these problems we make use of the Fourier cosine series,

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
,

where

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx,

and the Fourier sine series,

f (x) =
∞

∑
n=1

bn sin
nπx

L
,

where

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx.

a. f (x) = x2, 0 < x < 1.

The given function is shown in Figure 2.15. In Figure 2.16 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
2.17 the function is reflected about the origin and the new function
is then periodically extended to give the odd periodic extension.

f (x)

x
0 1

Figure 2.15: Function given in Problem
2.13a.

f (x)

x

1

−4 −3 −2 −1 0 1 2 3 4

Figure 2.16: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13a.

f (x)

x

1

−1

−4 −3 −2 −1 0 1 2 3 4

Figure 2.17: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13a.

The Fourier cosine series coefficients are given by

a0 = 2
∫ 1

0
x2 dx =

2
3

.

an = 2
∫ 1

0
x2 cos nπx dx

= 2
[

1
nπ

x2 sin nπx +
2

n2π2 x cos nπx +
2

(nπ)3 sin nπx
]1

0

=
4(−1)n

n2π2 .
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The resulting Fourier cosine series is given by

f (x) =
1
3
+

4
π2

∞

∑
n=1

(−1)n

n2 cos nπx.

A plot of this series representation is shown in Figure 2.18.

The Fourier sine series coefficients are given by

bn = 2
∫ 1

0
x2 sin nπx dx

= 2
[
− 1

nπ
x2 cos nπx +

2
n2π2 x sin nπx +

2
(nπ)3 cos nπx

]1

0

= − 2
nπ

cos nπ +
4

(nπ)3 (cos nπ − 1).

The resulting Fourier sine series is given by

f (x) =
∞

∑
n=1

(− 2
nπ

cos nπ +
4

(nπ)3 (cos nπ − 1)) sin nπx.

A plot of this series representation is shown in Figure 2.19.

Figure 2.18: A plot of first terms of the
Fourier cosine series of f (x) in Problem
2.13a.

Figure 2.19: A plot of first terms of the
Fourier sine series of f (x) in Problem
2.13a.
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b. f (x) = x(2− x), 0 < x < 2. f (x)

x
0 1 2

Figure 2.20: Function given in Problem
2.13b.

The given function is shown in Figure 2.20. In Figure 2.21 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
2.22 the function is reflected about the origin and the new function
is then periodically extended to give the odd periodic extension.

f (x)

x
1

−4−3−2−1 0 1 2 3 4

Figure 2.21: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13b.

f (x)

x
1

−1
−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8

Figure 2.22: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13b.

The Fourier cosine series coefficients are given by

a0 =
∫ 2

0
x(2− x) dx =

(
x2 − x3

3

)2

0
=

4
3

.

an =
∫ 2

0
x(2− x) cos

nπx
2

dx

=

[
2

nπ
x(2− x) sin

nπx
2
− 2(1− x)

(
2

nπ

)2
cos

nπx
2

+ 2
(

2
nπ

)3
sin

nπx
2

]
_02

=
8

(nπ)2 (cos nπ − 1).

The resulting Fourier cosine series is given by

f (x) =
2
3
+

∞

∑
n=1

8
(nπ)2 (cos nπ− 1) cos

nπx
2

=
2
3
− 16

π2

∞

∑
k=1

cos (2k−1)πx
2

(2k− 1)2 .

A plot of this series representation is shown in Figure 2.23.

Figure 2.23: A plot of first terms of the
Fourier cosine series of f (x) in Problem
2.13b.
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The Fourier sine series coefficients are given by

bn =
∫ 2

0
x(2− x) sin

nπx
2

dx

=

[
− 2

nπ
x(2− x) cos

nπx
2

+ 2(1− x)
(

2
nπ

)2
sin

nπx
2
− 2

(
2

nπ

)3
cos

nπx
2

]
_02

= − 16
(nπ)3 (cos nπ − 1).

The resulting Fourier sine series is given by

f (x) = −
∞

∑
n=1

16
(nπ)3 (cos nπ − 1) sin

nπx
2

=
32
π3

∞

∑
k=1

sin (2k−1)πx
2

(2k− 1)3 .

A plot of this series representation is shown in Figure 2.24.

Figure 2.24: A plot of first terms of the
Fourier sine series of f (x) in Problem
2.13b.

c. f (x) =

{
0, 0 < x < 1,
1, 1 < x < 2.

f (x)

x

1

0 1 2

Figure 2.25: Function given in Problem
2.13c. The given function is shown in Figure 2.25. In Figure 2.26 this func-

tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
2.27 the function is reflected about the origin and the new function
is then periodically extended to give the odd periodic extension.

Figure 2.26: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13c.

f (x)

x
1

−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8

Figure 2.27: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13c.

f (x)

x
1

−1
−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8
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The Fourier cosine series coefficients are given by

a0 =
∫ 2

0
f (x) dx =

∫ 2

1
dx = 1.

an =
∫ 2

0
f (x) cos

nπx
2

dx

=
∫ 2

1
cos

nπx
2

dx

=
2

nπ
sin

nπx
2

∣∣∣2
1
= − 2

nπ
sin

nπ

2
.

The resulting Fourier cosine series is given by

f (x) =
1
2
−

∞

∑
n=1

2
nπ

sin
nπ

2
cos

nπx
2

.

A plot of this series representation is shown in Figure 2.28.

Figure 2.28: A plot of first terms of the
Fourier cosine series of f (x) in Problem
2.13c.

The Fourier sine series coefficients are given by

bn =
∫ 2

0
f (x) sin

nπx
2

dx

=
∫ 2

1
sin

nπx
2

dx

= − 2
nπ

cos
nπx

2

∣∣∣2
1
=

2
nπ

(
cos

nπ

2
− cos nπ

)
.

The resulting Fourier sine series is given by

f (x) =
∞

∑
n=1

(
cos

nπ

2
− cos nπ

)
sin

nπx
2

.

A plot of this series representation is shown in Figure 2.29.
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Figure 2.29: A plot of first terms of the
Fourier sine series of f (x) in Problem
2.13c.

d. f (x) =

{
π, 0 < x < π,

2π − x, π < x < 2π.

f (x)

x

π

0 π 2π

Figure 2.30: Function given in Problem
2.13d.

The given function is shown in Figure 2.30. In Figure 2.31 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
2.32 the function is reflected about the origin and the new function
is then periodically extended to give the odd periodic extension.

Figure 2.31: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13d.

f (x)

x
π

0 π 2π 3π 4π 5π 6π 7π 8π−π−2π−3π−4π−5π−6π−7π−8π

Figure 2.32: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13d.

f (x)

x
π

−π
0 π 2π 3π 4π 5π 6π 7π 8π−π−2π−3π−4π−5π−6π−7π−8π

The Fourier cosine series coefficients are given by

a0 =
2

2π

∫ 2π

0
f (x) dx

=
1
π

∫ π

0
π dx +

1
π

∫ 2π

π
(2π − x) dx

=
3π

2
.

an =
1
π

∫ 2π

0
f (x) cos

nx
2

dx

=
1
π

∫ π

0
π cos

nx
2

dx +
1
π

∫ 2π

π
(2π − x) cos

nx
2

dx

=
2
n

sin
nx
2

∣∣∣π
0
+

1
π

[
2
n
(2π − x) sin

nx
2
− 4

n2 cos
nx
2

]2π

π

= − 4
n2 (cos nπ − cos

nπ

2
).

The resulting Fourier cosine series is given by

f (x) =
3π

4
− 4

∞

∑
n=1

cos nπ − cos nπ
2

n2 cos
nx
2

.
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A plot of this series representation is shown in Figure 2.33.

Figure 2.33: A plot of first terms of the
Fourier cosine series of f (x) in Problem
2.13d.

The Fourier sine series coefficients are given by

bn =
1
π

∫ 2π

0
f (x) sin

nx
2

dx

=
1
π

∫ π

0
π sin

nx
2

dx +
1
π

∫ 2π

π
(2π − x) sin

nx
2

dx

= − 2
n

cos
nx
2

∣∣∣π
0
+

1
π

[
− 2

n
(2π − x) cos

nx
2

+
4
n2 sin

nx
2

]2π

π

=
2
n
+

4
πn2 sin

nπ

2
.

The resulting Fourier sine series is given by

f (x) =
∞

∑
n=1

(
2
n
+

4
πn2 sin

nπ

2
) sin

nx
2

.

A plot of this series representation is shown in Figure 2.34.

Figure 2.34: A plot of first terms of the
Fourier sine series of f (x) in Problem
2.13d.

14. Consider the function f (x) = x, −π < x < π.

a. Show that x = 2 ∑∞
n=1(−1)n+1 sin nx

n .

Since f (x) = x is an odd function on |x| < π, the an’s vanish for
all n.

The Fourier sine series coefficients are

bn =
1
π

∫ π

−π
x sin nx dx

=
2
π

∫ π

0
x sin nx dx
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=
2
π

[
− 1

n
x cos nx +

1
n2 sin nx

]π

0

= −2 cos nπ

n
= 2

(−1)n+1

n
.

This gives the Fourier sine series representation

f (x) ∼ 2
∞

∑
n=1

(−1)n+1 sin nx
n

.

b. Integrate the series in part a and show that x2 = π2

3 − 4 ∑∞
n=1(−1)n+1 cos nx

n2 .

For f (x) = x, we consider the integral

∫ x

0
f (ξ) dξ =

x2

2
.

Integrating the series as well, we have

∫ x

0
f (ξ) dξ ∼ 2

∞

∑
n=1

(−1)n+1
∫ x

0

sin nξ

n
dξ.

= 2
∞

∑
n=1

(−1)n cos nξ

n2

∣∣∣x
0

= 2
∞

∑
n=1

(−1)n cos nx
n2 − 2

∞

∑
n=1

(−1)n 1
n2

Therefore,

x2 = C + 4
∞

∑
n=1

(−1)n cos nx
n2 ,

where

C = −2
∞

∑
n=1

(−1)n 1
n2 .

We still need to evaluate C. We can use the results in Problem 15

to do this.

C = −4
∞

∑
n=1

(−1)n 1
n2

= 4
(

1− 1
22 +

1
32 −

1
42 +

1
52 −

1
62 +

1
72 − · · ·

)
= 4

(
1 +

1
32 +

1
52 +

1
72 + · · ·

)
− 4

(
1
22 +

1
42 +

1
62 + · · ·

)
= 4

(
π2

8

)
− 4

(
π2

24

)
=

(
π2

3

)
.

Therefore, we have that

x2 =
π2

3
+ 4

∞

∑
n=1

(−1)n cos nx
n2 .
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c. Find the Fourier cosine series of f (x) = x2 on [0, π] and compare
to the result in part b.
We first determine the Fourier cosine series coefficients.

a0 =
2
π

∫ π

0
x2 dx =

2π2

3
.

an =
2
π

∫ π

0
x2 cos nx dx

=
2
π

[
1
n

x2 sin nx +
2
n2 x cos nx− 2

n3 sin nx
]π

0

=
2
π

(
2
n2 π cos nπ

)
=

4
n2 cos nπ =

4
n2 (−1)n.

This gives the Fourier cosine series representation

x2 =
π2

3
+ 4

∞

∑
n=1

(−1)n cos nx
n2 .

d. Apply Parseval’s identity in Problem 5 to the series in part a. for
f (x) = x on −π < x < π. This gives another means to finding the
value ζ(4), where the Riemann zeta function is defined by

ζ(s) =
∞

∑
n=1

1
ns .

From the Parseval identity, we have

2
L

∫ L

0
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n

2
π

∫ π

0
x4 dx =

2π4

9
+ 16

∞

∑
n=1

1
n4

2
π

π5

5
=

2π4

9
+

∞

∑
n=1

1
n4 .

This gives

16
∞

∑
n=1

1
n4 =

2π4

5
− 2π4

9
=

8π4

45
,

resulting in
∞

∑
n=1

1
n4 =

π4

90
.

15. Consider the function f (x) = x, 0 < x < 2.

a. Find the Fourier sine series representation of this function and plot
the first 50 terms.
The Fourier sine series coefficients are

bn =
∫ 2

0
x sin

nπx
2

dx

=

[
− 2

πn
x cos

nπx
2

+

(
2

nπ

)2
sin

nπx
2

]2

0

= −4 cos nπ

nπ
=

4
nπ

(−1)n+1.
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This gives the Fourier sine series representation

f (x) ∼ 4
π

∞

∑
n=1

(−1)n+1

n
sin

nπx
2

.

The first few terms of this series are shown in Figure 2.35.

Figure 2.35: A plot of first terms of the
Fourier sine series of f (x) in Problem
2.15a.

b. Find the Fourier cosine series representation of this function and
plot the first 50 terms.

The Fourier cosine series coefficients are

a0 =
∫ 2

0
x dx = 2.

an =
∫ 2

0
x cos

nπx
2

dx

=

[
2

πn
x sin

nπx
2

+

(
2

nπ

)2
cos

nπx
2

]2

0

=
4

n2π2 (cos nπ − 1).

This gives the Fourier cosine series representation

f (x) ∼ 1 +
4

π2

∞

∑
n=1

cos nπ − 1
n2 cos

nπx
2

= 1− 8
π2

∞

∑
k=1

1
(2k− 1)2 cos

(2k− 1)πx
2

.

The first few terms of this series are shown in Figure 2.36.

Figure 2.36: A plot of first terms of the
Fourier cosine series of f (x) in Problem
2.15b.

c. Apply Parseval’s identity in Problem 5 to the result in part b.

Parseval’s identity can be extended to Fourier cosine series by
slightly modifying the derivation in Problem 5.8.
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We begin with the Parseval identity

2
L

∫ L

0
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n.

Applying this result to f (x) = x, x ∈ [0, 2]. From part b, we have
a0 = 2 and

an =
4

n2π2 (cos nπ − 1), n = 1, 2, . . . .

Then,

2
L

∫ L

0
f 2(x) dx =

a2
0

2
+

∞

∑
n=1

a2
n

∫ 2

0
x2 dx =

22

2
+

∞

∑
n=1

(
4

n2π2 (cos nπ − 1)
)2

8
3

= 2 +
64
π

4 ∞

∑
k=1

1
(2k− 1)4 .

This gives the sum

π4

96
=

∞

∑
k=1

1
(2k− 1)4

= 1 +
1
34 +

1
54 +

1
74 + · · · .

d. Use the result of part c. to find the sum ∑∞
n=1

1
n4 .

The result in part c is not quite the sum we seek as the terms
involve only the odd terms. We can rearrange the series to make
use of the result in part c and solve for S = ∑∞

n=1
1

n4 :

S =
∞

∑
n=1

1
n4

= 1 +
1
24 +

1
34 +

1
44 +

1
35 +

1
46 + · · ·

=

(
1 +

1
34 +

1
54 + · · ·

)
+

(
1
24 +

1
44 +

1
64 + · · ·

)
=

π4

96
+

1
24

(
1 +

1
24 +

1
34 + · · ·

)
=

π4

96
+

1
16

S

15
16

S =
π4

96

S =
π4

90
.

Therefore, we have shown that ∑∞
n=1

1
n4 = π4

90 .
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16. Differentiate the Fourier sine series term-by-term in the last problem.
Show that the result is not the derivative of f (x) = x..

The Fourier sine series is given by

f (x) ∼ 4
π

∞

∑
n=1

(−1)n+1

n
sin

nπx
2

.

A simple term by term differentiation gives

4
π

∞

∑
n=1

(−1)n+1

n
d

dx

(
sin

nπx
2

)
= 2

∞

∑
n=1

(−1)n+1 cos
nπx

2
.

However, this is a divergent series and cannot sum to f ′(x) = 1.

Figure 2.37: Plot of first 50 terms of (left)
the Fourier sine series of f (x) = x and
(right) the derivative of these terms from
Problem 2.16.

17. Consider the function f (x) = x sin x.

a. Find the Fourier series representation of this function if f (x) is
defined on [0, 2π] and plot the first 50 terms.

We compute the Fourier coefficients:

a0 =
1
π

∫ 2π

0
f (x) dx

=
1
π

∫ 2π

0
x sin x dx

=
1
π
[−x cos x + sin x]

∣∣∣2π

0
= −2.

an =
1
π

∫ 2π

0
f (x) cos nx dx, n > 1,

=
1
π

∫ 2π

0
x sin x cos nx dx

=
1

2π

∫ 2π

0
x[sin(n + 1)x− sin(n− 1)x] dx

=
1

2π

[
−x cos(n + 1)x

n + 1
+

sin(n + 1)x
(n + 1)2

−−x cos(n− 1)x
n− 1

− sin(n− 1)x
(n− 1)2

]2π

0
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=
2

n2 − 1
.

a1 =
1

2π

∫ 2π

0
x sin 2x dx

=
1

2π

[
−1

2
x cos x +

1
4

sin 2x
]2π

0

= −1
2

.

bn =
1
π

∫ 2π

0
f (x) sin nx dx

=
1
π

∫ 2π

0
x sin x sin nx dx, n > 1,

=
1

2π

∫ 2π

0
x[cos(n− 1)x− cos(n + 1)x] dx

=
1

2π

[
x sin(n + 1)x

n + 1
+

cos(n + 1)x
(n + 1)2

− x sin(n− 1)x
n− 1

− cos(n− 1)x
(n− 1)2

]2π

0
= 0.

b1 =
1
π

∫ 2π

0
x sin2 x dx,

=
1

2π

∫ 2π

0
x(1− cos 2x) dx,

=
1

2π

[
x2

2
− 1

2
x sin 2x− 1

4
cos 2x

]2π

0
= π.

Figure 2.38: A plot of first terms of the
Fourier series of f (x) in Problem 2.17a.

The Fourier series representation is given by

f (x) ∼ −1− 1
2

cos x + π sin x + 2
∞

∑
n=2

cos nx
n2 − 1

.

The Fourier series representation is shown in Figure 2.38.

b. Find the Fourier series representation of this function if f (x) is
defined on [−π, π] and plot the first 50 terms.

We compute the Fourier coefficients:

a0 =
1
π

∫ π

−π
f (x) dx

=
1
π

∫ π

−π
x sin x dx

=
2
π
[−x cos x + sin x]

∣∣∣π
0

= 2.

an =
1
π

∫ π

−π
f (x) cos nx dx, n > 1,

=
1
π

∫ π

−π
x sin x cos nx dx

=
1
π

∫ π

0
x[sin(n + 1)x− sin(n− 1)x] dx
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=
1
π

[
−x cos(n + 1)x

n + 1
+

sin(n + 1)x
(n + 1)2

−−x cos(n− 1)x
n− 1

− sin(n− 1)x
(n− 1)2

]π

0

=
2(−1)n+1

n2 − 1

a1 =
1

2π

∫ π

−π
x sin 2x dx

=
1
π

∫ π

0
x sin 2x dx

=
1
π

[
−1

2
x cos 2x +

1
4

sin 2x
]π

0

= −1
2

bn =
1
π

∫ π

−π
f (x) sin nx dx

=
1
π

∫ π

−π
x sin x sin nx dx

= 0.

Figure 2.39: A plot of first terms of the
Fourier series of f (x) in Problem 2.17b.

The Fourier series representation is given by

f (x) ∼ 1− 1
2

cos x + 2
∞

∑
n=2

(−1)n+1 cos nx
n2 − 1

.

The Fourier series representation is shown in Figure 2.39.

18. Consider the function f (x) =

{
x, 0 < x < 1

1− x, 1 < x < 2.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

We compute the Fourier coefficients:

a0 =
2
L

∫ L

0
f (x) dx

=
∫ 1

0
x dx +

∫ 1

0
x dx +

∫ 2

1
1− x dx

=
x2

2

∣∣∣1
0
− (1− x)2

2

∣∣∣2
1

=
1
2
− 1

2
= 0.

an =
2
L

∫ L

0
f (x) cos

2nπx
L

dx

=
∫ 1

0
x cos nπx dx +

∫ 2

1
(1− x) cos nπx dx

=

[
1

nπ
x sin nπx +

1
n2π2 cos nπx

]1

0

+

[
1

nπ
(1− x) sin nπx− 1

n2π2 cos nπx
]2

1
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= 2
cos nπ − 1

n2π2 .

bn =
2
L

∫ L

0
f (x) sin

2nπx
L

dx

=
∫ 1

0
x sin nπx dx +

∫ 2

1
(1− x) sin nπx dx

=

[
− 1

nπ
x cos nπx +

1
n2π2 sin nπx

]1

0

+

[
− 1

nπ
(1− x) cos nπx− 1

n2π2 sin nπx
]2

1

=
1− cos nπ

nπ
.

The Fourier series representation is given by

f (x) ∼
∞

∑
n=1

[
2

cos nπ − 1
n2π2 cos nπx +

1− cos nπ

nπ
sin nπx

]
=

∞

∑
k=1

[
− 4
(2k− 1)2π2 cos(2k− 1)πx +

2
(2k− 1)π

sin(2k− 1)πx
]

.

The Fourier series representation is shown in Figure 2.40.

Figure 2.40: A plot of first terms of the
Fourier series of f (x) in Problem 2.18.

b. Use the result of part a. to show that

1
12 +

1
32 +

1
52 + · · · = π2

8
.

[Hint: Be careful using the discontinuity at x = 1 by noting that
the Fourier series converges to f (1) = 1

2 ( f (1+) + f (1−)).]

Setting x = 1 in the previous result and noting that

f (1) =
1
2
( f (1+) + f (1−)) =

1
2

,
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we have

1
2
∼

∞

∑
k=1
− 4
(2k− 1)2π2 cos(2k− 1)π

π2

8
=

∞

∑
k=1

1
(2k− 1)2 .

19. The temperature, u(x, t), of a one-dimensional rod of length L satisfies
the heat equation,

∂u
∂t

= k
∂2u
∂x2 .

a. Show that the general solution,

u(x, t) =
∞

∑
n=1

bn sin
nπx

L
e−n2π2kt/L2

,

satisfies the one-dimensional heat equation and the boundary con-
ditions u(0, t) = 0 and u(L, t) = 0.

Computing ut and uxx, we have

∂u
∂t

= −k
∞

∑
n=1

n2π2

L2 bn sin
nπx

L
e−n2π2kt/L2

.

∂u
∂x

=
∞

∑
n=1

nπ

L
bn cos

nπx
L

e−n2π2kt/L2
.

∂2u
∂x2 = −

∞

∑
n=1

n2π2

L2 bn sin
nπx

L
e−n2π2kt/L2

,

Comparing these derivatives, we see that ut = kuxx. Note that
the vanishing of the function at the interval endpoints allows the
differentiation of the sine series.

Furthermore, we have

u(0, t) =
∞

∑
n=1

bn sin 0e−n2π2kt/L2
= 0,

u(L, t) =
∞

∑
n=1

bn sin nπe−n2π2kt/L2
= 0.

b. For k = 1 and L = π, find the solution satisfying the initial con-
dition u(x, 0) = sin x. Plot six solutions on the same set of axes for
t ∈ [0, 1].

For k = 1 and L = π, the general solution is

u(x, t) =
∞

∑
n=1

bn sin nxe−n2t.

Using the initial condition, u(x, 0) = sin x, we have

sin x =
∞

∑
n=1

bn sin nx.
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The Fourier coefficients are easily found without integration as
b1 = 1 and bn = 0, n > 1. Then, the solution to the initial-boundary
value problem is

u(x, t) = sin xe−t.

This solution at six times is shown in Figure 2.41.

Figure 2.41: A plot of solutions for the
heat equation in Problem 2.19b for t =
0, 1/6, . . . , 1.

c. For k = 1 and L = 1, find the solution satisfying the initial condi-
tion u(x, 0) = x(1− x). Plot six solutions on the same set of axes
for t ∈ [0, 1].

For k = 1 and L = 1, the general solution is

u(x, t) =
∞

∑
n=1

bn sin nπxe−n2π2t.

Using the initial condition, u(x, 0) = x(1− x), we have

x(1− x) =
∞

∑
n=1

bn sin nπx.

We need to determine the Fourier sine coefficients:

bn = 2
∫ 1

0
x(1− x) sin nπx dx

= 2
[
− 1

nπ
x(1− x) cos nπx +

1
n2π2 (1− 2x) sin nπx

− 2
(nπ)3 cos nπx

]1

0

=
4

(nπ)3 (1− cos nπ).

So,

u(x, 0) =
∞

∑
n=1

4
(nπ)3 (1− cos nπ) sin nπx,

or

u(x, 0) =
∞

∑
k=1

8
((2k− 1)π)3 sin(2k− 1)πx.

The solution to the initial-boundary value problem is

u(x, t) =
∞

∑
k=1

8
((2k− 1)π)3 sin(2k− 1)πxe−(2k−1)2π2t.

This solution at six times is shown in Figure 2.42.

Figure 2.42: A plot of solutions for the
heat equation in Problem 2.19c for t =
0, 1/6, . . . , 1.

20. The height, u(x, t), of a one-dimensional vibrating string of length L
satisfies the wave equation,

∂2u
∂t2 = c2 ∂2u

∂x2 .
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a. Show that the general solution,

u(x, t) =
∞

∑
n=1

An cos
nπct

L
sin

nπx
L

+Bn sin
nπct

L
sin

nπx
L

,

satisfies the one-dimensional wave equation and the boundary con-
ditions u(0, t) = 0 and u(L, t) = 0.

In order to verify that this is a solution, we compute a few deriva-
tives:

∂u
∂t

= −
∞

∑
n=1

An
nπc

L
sin

nπct
L

sin
nπx

L

+Bn
nπc

L
cos

nπct
L

sin
nπx

L
.

∂2u
∂t2 = −

∞

∑
n=1

An

(nπc
L

)2
cos

nπct
L

sin
nπx

L

−Bn

(nπc
L

)2
sin

nπct
L

sin
nπx

L
.

∂u
∂x

=
∞

∑
n=1

An
nπ

L
cos

nπct
L

cos
nπx

L

+Bn
nπ

L
sin

nπct
L

cos
nπx

L
.

∂2u
∂x2 = −

∞

∑
n=1

An

(nπ

L

)2
cos

nπct
L

sin
nπx

L

−Bn

(nπ

L

)2
sin

nπct
L

sin
nπx

L
.

Comparing derivatives, we have

utt = c2uxx.

Note that the vanishing of the function at the interval endpoints
allows the differentiation of the sine series.

We also can verify the boundary conditions:

u(0, t) =
∞

∑
n=1

An cos
nπct

L
sin 0

+Bn sin
nπct

L
sin 0 = 0.

u(L, t) =
∞

∑
n=1

An cos
nπct

L
sin nπ

+Bn sin
nπct

L
sin nπ = 0.

b. For c = 1 and L = 1, find the solution satisfying the initial con-
ditions u(x, 0) = x(1− x) and ut(x, 0) = 0. Plot five solutions for
t ∈ [0, 1].
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For this problem, the general solution takes the form

u(x, t) =
∞

∑
n=1

An cos nπt sin nπx + Bn sin nπt sin nπx.

The initial conditions give

x(1− x) =
∞

∑
n=1

An sin nπx,

0 =
∞

∑
n=1

Bnnπ sin nπx.

The second equation gives Bn = 0, n = 1, 2, . . . .

From the previous problem we have

An =
4

(nπ)3 (1− cos nπ), n = 1, 2, . . . .

Therefore, the solution to the initial-boundary value problem is

u(x, t) =
∞

∑
k=1

8
((2k− 1)π)3 sin(2k− 1)πx cos(2k− 1)πt.

This solution at five times is shown in Figure 2.43.

Figure 2.43: A plot of solutions for the
wave equation in Problem 2.20b for t =
0, 1/8, . . . , 1/2.

c. For c = 1 and L = 1, find the solution satisfying the initial condi-
tion

u(x, 0) =

{
4x, 0 ≤ x ≤ 1

4 ,
4
3 (1− x), 1

4 ≤ x ≤ 1,

and ut(x, 0) = 0. Plot five solutions for t ∈ [0, 0.5].

For this problem, the general solution takes the form

u(x, t) =
∞

∑
n=1

An cos nπt sin nπx + Bn sin nπt sin nπx.

The initial conditions give

u(x, 0) =
∞

∑
n=1

An sin nπx,

0 =
∞

∑
n=1

Bnnπ sin nπx.

The second equation gives Bn = 0, n = 1, 2, . . . .

The remaining Fourier sine coefficients can be computed using

An = 2
∫ 1

0
u(x, 0) sin nπx dx.

Thus,

An = 8
∫ 1

4

0
x sin nπx dx +

8
3

∫ 1

1
4

(1− x) sin nπx dx
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= 8
[
− 1

nπ
x cos nπx +

1
n2π2 sin nπx

] 1
4

0

+
8
3

[
− 1

nπ
(1− x) cos nπx− 1

n2π2 sin nπx
]1

1
4

= 8
[
− 1

4nπ
cos

nπ

4
+

1
n2π2 sin

nπ

4

]
−8

3

[
− 3

4nπ
cos

nπ

4
− 1

n2π2 sin
nπ

4

]
=

32
3n2π2 sin

nπ

4
.

So, the solution to the initial-boundary value problem is

u(x, t) =
∞

∑
n=1

32
3n2π2 sin

nπ

4
sin nπx cos nπt.

This solution at five times is shown in Figure 2.44.

Figure 2.44: A plot of solutions for the
wave equation in Problem 2.20c for t =
0, 1/8, . . . , 1/2.

21. Show that

u(x, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin
nπx

L
sin

mπy
H

,

where

ωnm = c

√(nπ

L

)2
+
(mπ

H

)2
,

satisfies the two-dimensional wave equation

utt = c2(uxx + uyy), t > 0, 0 < x < L, 0 < y < H,

and the boundary conditions,

u(0, y, t) = 0, u(L, y, t) = 0, t > 0, 0 < y < H,

u(x, 0, t) = 0, u(x, H, t) = 0, t > 0, 0 < x < L,

Computing the needed second parital derivatives of u(x, y, t), we have

utt = −
∞

∑
n=1

∞

∑
m=1

ω2
nm(anm cos ωnmt + bnm sin ωnmt) sin

nπx
L

sin
mπy

H

uxx = −
∞

∑
n=1

∞

∑
m=1

(nπ

L

)2
(anm cos ωnmt + bnm sin ωnmt) sin

nπx
L

sin
mπy

H

uyy = −
∞

∑
n=1

∞

∑
m=1

(
Mπ

H

)2
(anm cos ωnmt + bnm sin ωnmt) sin

nπx
L

sin
mπy

H

Inserting these derivatives into the the two-dimensional wave equation, we
find

ω2
nm = c2

(nπ

L

)2
+
(mπ

H

)2
.

The solution easily satisfies the boundary conditions. For example,

u(0, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin 0 sin
mπy

H
= 0,

u(L, y, t) =
∞

∑
n=1

∞

∑
m=1

(anm cos ωnmt + bnm sin ωnmt) sin nπ sin
mπy

H
= 0.
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The boundary conditions, u(x, 0, t) = 0, u(x, H, t) = 0, follow in the same
way.

22. Find the double Fourier sine series representation of the following:

A function f (x, y) defined on the rectangular region [0, L]× [0, H] has
a double Fourier sine series representation,

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin
nπx

L
sin

mπy
H

,

where

bnm =
4

LH

∫ H

0

∫ L

0
f (x, y) sin

nπx
L

sin
mπy

H
dxdy n, m = 1, 2, . . . .

This representation will be used to obtain the series in this problem.

a. f (x, y) = sin πx sin 2πy on [0, 1]× [0, 1].

The series expansion for this problem is given by

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin nπx sin mπy.

It is easy to see that the is only nonzero term, for n = 1 and m = 2.
Thus, b12 = 1 and bnm = 0, for n 6= 1 and m 6= 2.

b. f (x, y) = x(2− x) sin y on [0, 2]× [0, π].

The series expansion for this problem is given by

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin
nπx

2
sin my,

Here bnm = 0 for m 6= 1. We need only compute the bn1 terms.

bn1 =
2
π

∫ 2

0

∫ π

0
f (x, y) sin

nπx
2

sin y dxdy

=
2
π

∫ 2

0

∫ π

0
x(2− x) sin

nπx
2

sin2 y dxdy

=
∫ 2

0
x(2− x) sin

nπx
2

dx

=

[
− 2

nπ
x(2− x) cos

nπx
2

+
4

n2π2 (2− 2x) sin
nπx

2
− 16

n3π3 cos
nπx

2

]2

0

=
16

n3π3 (1− cosnπ).

This gives the series expansion

f (x, y) =
∞

∑
n=1

16
n3π3 (1− cosnπ) sin

nπx
2

sin y,

=
∞

∑
k=1

32
(2k− 1)3π3 sin

(2k− 1)πx
2

sin y.
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c. f (x, y) = x2y3 on [0, 1]× [0, 1].

The series expansion for this problem is given by

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin nπx sin mπy,

The Fourier coefficients can be computed directly:

bnm = 4
∫ 1

0

∫ 1

0
x2y3 sin nπx sin mπy dxdy n, m = 1, 2, . . . .

= 4
(∫ 1

0
x2 sin nπx dx

)(∫ 1

0
y3 sin mπy dy

)
.

Each integral can be computed separately:∫ 1

0
x2 sin nπx dx =

[
− 1

nπ
x2 cos nπx +

2
n2π2 x sin nπx

+
2

n3π3 cos nπx
]1

0

=
2

n3π3 (cos nπ − 1)− cos nπ

nπ
.

∫ 1

0
y3 sin mπy dy =

[
− 1

mπ
y3 cos mπy +

3
m2π2 y2 sin mπy

+
6

m3π3 y cos mπy− 6
m4π4 sin mπy

]1

0

=
6 cos mπ

m3π3 − cos mπ

mπ
.

This gives

bnm = 4
(

2
n3π3 (cos nπ − 1)− cos nπ

nπ

)(
6 cos mπ

m3π3 − cos mπ

mπ

)
.

The resulting Fourier series is

f (x, y) =
∞

∑
n=1

∞

∑
m=1

bnm sin nπx sin mπy.

23. Derive the Fourier coefficients in the double Fourier trigonometric series
in Equation (2.124).

The double Fourier trigonometric series in Equation (2.124) is given by

f (x, y) ∼ a00

4
+

1
2

∞

∑
n=1

[
an0 cos

2nπx
L

+ dn0 sin
2nπx

L

]
+

1
2

∞

∑
m=1

[
a0m cos

2mπy
H

+ c0m sin
2mπy

H

]
+

∞

∑
n=1

∞

∑
m=1

anm cos
2nπx

L
cos

2mπy
H

,
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+
∞

∑
n=1

∞

∑
m=1

bnm sin
2nπx

L
sin

2mπy
H

,

+
∞

∑
n=1

∞

∑
m=1

cnm cos
2nπx

L
sin

2mπy
H

,

+
∞

∑
n=1

∞

∑
m=1

dnm sin
2nπx

L
cos

2mπy
H

.

In order to prove this, one needs to consider the Fourier basis on the rectan-
gular region [0, L]× [0, H],

φ00 = 1,

φn0 =

{
cos

2nπx
L

, sin
2nπx

L
,
}

, n = 1, 2, . . . ,

φ0n =

{
cos

2nπy
H

, sin
2nπy

H
,
}

, n = 1, 2, . . . ,

φnm =

{
cos

2nπx
L

cos
2mπy

H
, cos

2nπx
L

sin
2mπy

H
,

sin
2nπx

L
cos

2mπy
H

, sin
2nπx

L
sin

2mπy
H

,
}

, n, m = 1, 2, . . . .

Sample computations are below, using the orthogonality of the trigono-
metric functions. ∫ L

0

∫ H

0
f (x, y) dxdy =

∫ L

0

∫ H

0

a00

4
dxdy =

a00LH
4

.∫ L

0

∫ H

0
f (x, y) cos

2nπx
L

dxdy =
an0

2

∫ L

0

∫ H

0
cos2 2nπx

L
dxdy =

an0LH
4

.∫ L

0

∫ H

0
f (x, y) cos

2nπx
L

cos
2mπy

H
dxdy = anm

∫ L

0

∫ H

0
cos2 2nπx

L
cos2 2mπy

H
dxdy =

anmLH
4

.

This gives the Fourier coefficients as

anm =
4

LH

∫ L

0

∫ H

0
f (x, y) cos

2nπx
L

cos
2mπy

H
dxdy, n, m = 0, 1, 2, . . . ,

bnm =
4

LH

∫ L

0

∫ H

0
f (x, y) sin

2nπx
L

sin
2mπy

H
dxdy, n, m = 1, 2, . . . ,

cnm =
4

LH

∫ L

0

∫ H

0
f (x, y) cos

2nπx
L

sin
2mπy

H
dxdy, n = 0, 1, 2, . . . , m = 1, 2, . . . ,

dnm =
4

LH

∫ L

0

∫ H

0
f (x, y) sin

2nπx
L

cos
2mπy

H
dxdy, n = 1, 2, . . . , m = 0, 1, 2, . . . .


