Chapter 2

Fourier Trigonometric Series

1. Write y(t) = 3 cos 2t — 4sin 2t in the form y(t) = Acos(27tft + ¢).
We can determine the constants by expanding the cosine function,

y(t) = Acos(2rtft + ¢) = Acos¢pcos2mft — Asin¢gsin27ft.
Comparing this to y(t) = 3cos 2t — 4sin2t, we see 27tf = 2 and

Acos¢p = 3,
Asing = 4.

Adding the squares of these equations,
25 = A% cos? ¢+ A2 sin? ¢ = Az,

we obtain A = 5. Dividing the first equation into the second, tan¢ = 4/3.
So, we find

y(t) = 3cos2t—4sin2t
4
= 5cos (2t+tanl(3)>
~ 5cos (2t +0.927).

2. Determine the period of the following functions:

a. f(x)=cos %
27'[

T=—— =67
3
b. f(x)=sin2mx.
27
T=—=1
27

c. f(x)=sin27mx — 0.1 cos37x.

Each term has a different period: T = m land T = m g
27 37 3
Multiples of each give
nT:{123456...}
8 10
nT = 4.}
{ 2354
The smallest common Value is the period of f(x) = sin2mx —

0.1cos3mx : T = 2. This is seen in Figure 2.1.
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LA

sl

Y

Y

x) sin27tx — 0.1 cos 37tx

A/\A

AL

Y

\/‘W

Figure 2.1: Plots of f(x) = sin2my,

f(x) = 0.1cos3mx,
sin27tx — 0.1 cos 37tx.

and flx) =
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d. f(x)=|sin5mx|.

The period of f(x) = sinbnx is T = E—Z = g However, the fre-

quency doubles under the absolute value,so T = —.

e. f(x) = cot2mx.

The periods of the tanx and cotx are T' = 7. So, for this function

e 1
h T=—=2-.
we have x =2

f. f(x) = cos? g

Just like the absolute value, the frequency of the cosine function

doubles when the function is squared. So, T = ? = 21
2
g f(x)= 3sin% +2cos ?
This problem is similar to 2c. Each term has a different period:
2 2
T= ?H =4and T = 3; = g Multiples of each give
nT = {4,8,12,16,...}
8 16 _ 32 40
nT = {g, ?,8, 5 ?,16, S

The smallest common value is the period of f(x) = 3sin = +

3
2 cos % is T = 8. This is seen in Figure 2.2.

. . TIX
Figure 2.2: Plots of f(x) = 3sin X f(x) — sin %,COS
f(x) = 2cos %, and f(x) =
. TIX 3rx
351n7+2c0sT. N ,

f(x)sin2mx — 0.1 cos 37rx
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3. Derive the coefficients b, in Equation (5.24).

This derivation parallels that for the a,’s. We begin with the Fourier
series

ap d .
~— b .
f(x) > T ’; [an cos nx + by, sin nx]
We multiply this Fourier series by sinmx for some positive integer m and
then integrate:
27 ag

27
; f(x)sinmxdx = /0 5smmxdx

2
+ / Y [an cos nx + by sinnx] sinmx dx.
0
n=1

Integrating term by term, the right side becomes

27
/ f(x) sinmxdx
0
27
= % sinmx dx
2 Jo

27T 27
cos nx sinmx dx -+ by, / sinnx cosmxdx| .
Jo

+ Z [un /

n=1 0

We have shown that fozn sinmxdx = 0, which implies that the first term
vanishes. Also, we have that

27
/ cosnxsinmxdx =0
0

for integers n and m.

We still need to evaluate fom sin nx sin mx dx which was not done in the
book. We compute this integral by using the product identity for sines. We
have for m # n that

27 1 2n
/ sinnx sinmx dx 3 / [cos(m — n)x — cos(m + n)x| dx
0 0

2

1 [sin(m —n)x  sin(m+n)x
2 m—n m-+n 0

= 0.

For n = m, we have

27T ” 1 27
/ sinmxdx = f/ (1 — cos2mx)dx
0 2 Jo
= 1 x—isianx o
2 2m 0
1
= — 2 = .
S(2n) =

Now, we can finish the derivation. We have shown the orthogonality of
the sines,

27
/ sinnxsinmx dx = oy
0

21
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So,

27
by / sin nx cos mx dx
0

agh

27 .
/0 f(x)sinmxdx =

3
Il
—_

by Tt00um

I I
S =

s | 3
il

Solving for b;;, we have

27
by = — f(x)sinmxdx.

T Jo
4. Let f(x) be defined for x € [—L, L]. Parseval’s identity is given by
2 00

L/ A (x dx-EOJrZa,%

Assuming the Fourier series of f(x) converges uniformly in (—L,L), prove
Parseval’s identity by multiplying the Fourier series representation by f(x)

+ b2

and integrating from x = —L to x = L. [In Section 5.6.3, we will encounter
Plancherel’s Formula for Fourier transforms, which is a continuous version
of this identity.]

We begin with the Fourier series

27tnx . 2mnx
f(x)~2+2{ancos T + by sin T ]

Multiplying this Fourier series by f(x) and integrating over x € [—L, L], we
obtain

/ifz(x)dx = l dx+/ Z [ancos +bn inznnx}f(x)dx
= 2 fx
+ i |:ﬂn LLf(X)C 0S d + by, / f(x)sin 27nx dx}
n=1 -

Recall the Fourier coefficients are given by

%/L f(x)dx

apg =

27mx
a, = L/ flx dx
by — f/ f(x)sinznnxdx
T L)L L :

Replacing the integrals in the integrated Fourier series with Fourier coeffi-

cients, we have

/ F(x)dx = aOL i [an(anL) + by (byL)],
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leading to the sought result,

L/ fA(x)dx = °+Za + b7,

5. Let f(x) be defined for x € [0, L]. Derive the Parseval identities, similar
to Problem 4, for the following series.

a. For the Fourier Cosine series,

a ad nmx
f(x) ~ EO +n§‘1a”COST'

show that

2 [rwpar="2+ 1

L 0 a 2 n=1 "
Multiply the Fourier Cosine series by f(x) and integrate from x =
Otox=1L.

L 2d
|| tp2ax

e

L 0 L
= %0/0 f(x)dx—i—nZ:lun/O f(x)cos?dx.

Noting that the integrals are given by

a > nrix
?0 +y§ancosL1 dx

L
/f cosn—nxdx—in, n=0,1,2,...,

we have )
2 (L a ad
= [ rerdr=2+ Y el
b. For the Fourier Sine series,
(e}
x) ~ 2 b, sin Lﬂx’
n=1 L
show that
2
. / 2 4y = Z 2.

Multiply the Fourier Sine series by f (x) and integrate from x = 0
tox=L.

/()L[f(x)]zdx = i by sinn—;fxdx

n=1
a L . n7X
= gbn/o f(x)sdex.
n=1
Noting that the integrals are given by
L
/ f(x sm—dx = Ea”' n=12,...,

we have

L/ dx—ZbZ

23
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6. Consider the square wave function

f(x):{ 1, O0<x<m,

-1, m<x<2m.

a. Find the Fourier series representation of this function and plot the
first 50 terms.

Since f(x) is an odd function on a symmetric interval, a, = 0,
n=20,1,.... We need only compute the b,’s.

1 T

—/ f(x)sinnxdx

T J—m

2 T

—/ sinnx dx

7T JO
2

= —— nmw—1).
nn(cos )
The Fourier series is then

flx

2 .
—(cosnm —1) | sinnx
nm
0.51

A= T2

=
i sin(2k — 1)x '

2k—1

SR

The first 50 terms (n = 50) are shown in Figure 2.3.
o3 b. Apply Parseval’s identity in Problem 5 to the result in part a.

Parseval’s identity states

%/j;fz(x) dx = ébfl.

From part a we have

Figure 2.3: A plot of first terms of the
Fourier series of f(x) in Problem 2.6.

2
by = ——(cosnm —1).
nr

Noting that f?(x) = 1, we have

~rmar = Lw

n=1
1 " TT (o] 2 2
—/ dx = Z((cosnnl))
wJ—n n—1 nrt
, _ oo( 4 )2
S\ (2k-1)m
RN
n? = (2k —1)?
16 11 1
= Slltgptmgtst

Thus, we have
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c. Use the result of part b to show %2 =) %
= (2n-1)
Multiplying the series in part b,
16 & 1
2=— s
2 k; (2k—1)2

by 72 /16 yields this result.

7. For the following sets of functions: (i) show that each is orthogonal on
the given interval, and (ii) determine the corresponding orthonormal set.
[See page 288.]

Orthogonality and normalization can be done using simple substitutions
and relating the integrals to the basic orthogonality relations between sines
and cosines,

27 27
/ Ccos nx cos mx dx = / sinnxsinmxdx = 7wuy.
0 0

a. {sin2nx}, n=1,23,..., 0<x<m.
Let y = 2x, dy = 2dx. Then,

T 1 r2m T
/ sin2nxsin2mx dx = E/ sinnysinmy dy = E(Snm.
0 0

These can be normalized by letting ¢, (x) = Asin2nx. Then

T 7T
1:/ ¢3(x)dx:/ Azs'mZandngA?
0 0

So, we have A = \/% and the orthonormal set is given by {\/% sin2nx},
n=123,...,0<x <.

b. {cosnnx}, n=0,1,2,..., 0<x<2.
Let y = nx, dy = rwdx. Then,

2 1 r2m
/ COS N7TX COS MTTX dX = %/ cosny cos my dy = Spm.
0 0

These functions are already orthonormal.
c {sin™®}, n=123,.., xc[-LL]
Lety = nx/L, dy = /Ldx. Then,

L nnx | mnx L/t . .
/7Lsstm T dx = g/ﬂrsmnysmmydy:L(Snm.

These can be normalized by letting ¢,,(x) = A sin “J*. Then
L L nmx
1:/ 2xalx:/ A?sin? ——= dx = LAZ
[ Gwax= [ a2 T

So, we have A = - and the orthonormal set is given by {\% sin 17X 1

VL
n=123,...,x€[-L,L].

25
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8. Consider f(x) = 4sin®2x.

a. Derive the trigonometric identity giving sin® § in terms of sin § and

The ag’s are computed separately from
a,’s when determining the Fourier coef-
ficients.

sin 30 using DeMoivre’s Formula.

We note that e¥® = (¢/%)3. Writing both sides of this equation in
terms of trigonometric functions, we have

631'9 — (ei9)3

cos 30 + isin 36 (cos§ +isin6)*

= cos’0 + 3icos?fsinh — 3cosfsin®f — isin® 0
Equating the real and imaginary parts we have

cos 30 cos® 0 — 3 cos 0sin 6,

sin30 = 3cos?fsinf —sin’ 6.
The second equation can be rearranged to get the result.

sin30 = 3cos?fsinf —sin®0
3(1 — sin? @) sinf — sin®f

= 3sinf —4sin’ 6.

Therefore,

3 1
sin®9 = 1 sinf — 1 sin 36.

. Find the Fourier series of f(x) = 4sin®2x on [0,27] without com-

puting any integrals.

We need only let 6 = 2x in part a. Then,

f(x) = 4sin®2x = 35sin2x — sin 6x.

9. Find the Fourier series representations of the following:

a. f(x) =x,x€l0,2m].

We first compute the Fourier coefficients. Note that we compute ag
separately from a;,.

1 27 x2 |27
apg = —/ xdx = — = 271.
T Jo 27 lo
1 27
a, = —/ xcosnxdx
7T Jo
171 . 1 2
= — |-xsinnx+ — cosnx =0.
TN n 0
1 27
b, = —/ xsinnx dx
7T JO
17 1 1 . 2 2
= — ——xcosnx—l——zsmnx = ——.
T| n n 0 n




The Fourier series is given by

f(x)rvﬂr—ZEZ1

n

X sinnx

A plot of the first terms of the series is given in Figure 2.4.

b. f(x) =

f(x) is an even function on |x| < 7. So, b, = 0 for all n. We only

—, x| < m.

need the a,’s.

ap

an

1 (7 2

p— — 7d pr—
71'/—71’ 4 X
1 7 x2

= —/ — cosnxdx
T J—rm 4

1 7T
= — / x% cos nx dx
27T Jo

1 [1 5 2
= x“sinnx +
27 n?

2
—5 X COSNX — — sinnx
n

(1"

2 7 2
—/ Pdx =1
47 Jo

T

0

1 (2 ) cos N7t
= TTCOSNTT | = =

27 n?

Then,the Fourier series is given as

2 ©
fm~g+;(

cosnx.

n2

A plot of the first terms of the series is given in Figure 2.5.

e f(x) =

Z, 0<x<m,

-7, m<x<2m.

We first compute the Fourier coefficients.

ap

an

by

l/an(x)dx

f/ d 4+ /2” _
ax\o—%x!m
g—(n—z):o.

1 /an(x) cos nx dx

/ cos nxdx + — /

21

—smnx‘ ——sinnx’ =0.
2n 0 2n

T

1 27
= f(x)sinnxdx

7T JOo
—/ smnxdx + = /
7T 271
—— Ccosnx
2n ’0 ’

1—cosnrm

1
+ n cosnx

7T

n

) cosnxdx

) sinnx dx

FOURIER TRIGONOMETRIC SERIES 27

Figure 2.4: A plot of first terms of the
Fourier series of f(x) in Problem 2.9a.

0.5

Figure 2.5: A plot of first terms of the
Fourier series of f(x) in Problem 2.9b.
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EJ ’W\ANWNVWNW\/\ﬂ The resulting Fourier series is
2

= 1—cosnm in sin(2k — 1)x
f<x>’“n§f = 22 2% —1

A plot of the first terms of the series is given in Figure 2.8.
x, O0<x<m,

2 d. f(x)=
f (%) T, < x<2m.
We first compute the Fourier coefficients.

T 1 27
2 ay = ;/0 f(x)dx

. . 1 T 1 21
Figure 2.6: A plot of first terms of the - - / xdx + = / Tdx
Fourier series of f(x) in Problem 2.9c. 7T Jo T Jr

N‘ﬁ«

2r
;7’0 ‘n
3

= g+(2n—n):§n.

1 T J

an = — A f(x) cosnxdx

1 T 1 27

= —/ xcosnxdx+—/ Tcosnx dx
7T JOo T Jr
1|1 . 1 L

= — fxs1nnx+—zcosnx + —sinnx
T n n o N s

21

cosnm —1

nin?
b 1 27 . i
n= ) f(x)sinnxdx

1 T 1 27

= —/ xsinnxdx+—/ msinnxdx
7T JO T Jr
1 7T

1 1 1
= ——XCcosnx + — smnx — — COSNnx
7T n 1’l 0 n 7T

2

-

The resulting Fourier series is

3 & [cosnm—1
—l

1 .
5—— COsnx — —sinnx| .
el n

n=1

A plot of the first terms of the series is given in Figure ??.

T—x, 0<x<m,

: . . , e. X) =
L fx) 0, me<x<on
2 N 2 We first compute the Fourier coefficients.
27
Figure 2.7: A plot of first terms of the apg = — /
Fourier series of f(x) in Problem 2.9d. 1
7T
= = / T—xdx
7T Jo
_ —x) ‘”
o 2 o



N
3

f(x) cosnxdx

(7t — x) cosnx dx

)_\o\:‘o\

S IS

1—cosnrm
2
T
— x)sinnxdx
=
1 T

T Jo

R

1

(rr — x) sinnxdx

T| n n?
1

n

The resulting Fourier series is

1—cosn7r 1 .
~f+z ——————cosnx + —sinnx| .
n

A plot of the first terms of the series is given in Figure ??.

10. Find the Fourier series representations of each function f(x) of period

27t. For each series, plot the Nth partial sum,

Z ay cos nx + by, sinnx]|,

N\O

1
— (T — x)sinnx — — cosnx
n n?

7T
Cosnx — — sin nx]

FOURIER TRIGONOMETRIC SERIES 29

7T

0

0

S

; T 3n vi“ n
2

NER]

Figure 2.8: A plot of first terms of the
Fourier series of f(x) in Problem 2.ge.

for N = 5,10,50 and describe the convergence (Is it fast? What is it con-
verging to?, etc.) [Some simple Maple , MATLAB, and Python code for

computing partial sums is shown in the notes.]

a. f(x)=x, |x| <m.

Since f(x) = x is an odd function on |x| < 7, the a,’s vanish for

all n. So, we just compute the b,’s.
1 7T

b, — / xsinnxdx
7T J—m

2 T
—/ xsinnxdx
T Jo

2 [ 1 1 .

= — |——xcosnx -+ —5 sinnx
T n n

_ 2cosnm 2(—1)”+1

N n N no

The resulting Fourier series is

ad sinnx
2 2 (_1>n+17_

T

0
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As seen in Figure 2.9 the convergence is slow as the terms decay
like % The discontinuities in the periodic extension also are an

indication.
Figure 2.9: A plot of first terms of the -
Fourier series of f(x) in Problem 2.10a.
T |
2
T
BEEINNE S n ELISVCL NN T ST
2 2 2 2 2
n | X,
2

b. f(x)=|x], |x| < 7.
Since f(x) = |x| is an even function on |x| < 7, the b,,’s vanish for
all n. We compute a9 and ay,.

1 /7

ay = —/ |x| dx
T J—m
2 T

= —/ xdx =1

T Jo
1 7T

ap = —/ |x| cosnx dx
T J—m

2 7T
= —/ x cosnxdx
7T JO

2 [1 . 1 &
= — |-XsInnx+ — cosnx
TN n 0
2
= ﬁ(cosnrf—l).
The resulting Fourier series is
= -1
flx) ~ g Zcoizz)cosnx
T 4 & cos 2k—1)
T2 E; (2k —1)2

The convergence is fast as the terms decay like % There are not
discontinuities in the periodic extension. See Figure 2.10.
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™ Figure 2.10: A plot of first terms of the
Fourier series of f(x) in Problem 2.10b.

y
ooz

c. f(x) =cosx, |x| < .
While one can compute the Fourier coefficients by carrying out
integrations, it should be noticed that this is a truncated Fourier
series and no integration is needed. The result is f(x) = cos x.

d f(x):{ 0, —mT<x<0,

1, O0<x<m
We need to compute all of the Fourier coefficients.

1 T

ay = ;Lﬂf(x)dx
7T

= l/ dx = 1.
7T Jo

1 T
a, = —/ f(x) cos nx dx
TJ—mn

1 7T
= —/ cosnxdx
7T JO
1 . s
= —smnx’
nrt 0
1 (7
by = = f(x)sinnxdx
T J—m
1 T
= = sinnx dx
7T JO
1 n
= ——cosnx‘
0

1—cosnrm
nmt

The resulting Fourier series is

X 1—cosnm
Y ———

flx) ~ + sinnx

=1

Ei sin 2k—1)
i 2k—1

N\»—\ N =
3

The convergence is slow as the terms decay like 1. There are dis-
continuities in the periodic extension as seen in Figure 2.11.

11. Find the Fourier series representation of f(x) = x on the given interval.
Plot the Nth partial sums and describe what you see.
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Figure 2.11: A plot of first terms of the | I,I\WNWVWWWM,\ﬂ

Fourier series of f(x) in Problem 2.10c.
08|

0.6

0.4 4

0.2 1

Il ) l
V' T Vi T LI T V! T LA T I T 1
dr sn bx sx ko x 0 x A sx e osn oan
2 2 2 2 2 2
X
a. 0<x<2

We compute the Fourier coefficients:

2 2 x22
= — d = — :2.
ag 2/Oxx 2 1o
a, = g/Zxcoszmrxalx
" 2/ 2
2

= /xcosnnxdx
0
1. 1 2

= —xsmnnx+ﬁcosn7tx =0.
nrm N4

2 (2 . 2nmx
b, = E/OXSIH > dx

2
= / xsinnsx dx
0

2
1.5 1 1 )
= ——Xxcosnrmx + —5— SINNTX
ni N7 0
11 . 2
o nr’

03] The Fourier series representation is given by

: : : , 2 & sinnmx
° 05 I 15 2 f(X)Nl—fZT.

t n=1

Figure 2.12: A plot of first terms of the A plot of the Fourier series is shown in Figure 2.12.
Fourier series of f(x) in Problem 2.11a. b

—2<x <2

Since f(x) = x is an odd function on —2 < x < 2, we only need

the b,’s.
2 (2 2
b, = l/_szin nfx dx

/2 . nmx

= x sin —— dx
0 2

_ —ixcos nnx+ 4 Sinnmc 2

o ni 2 n272 2 |,

4
= ———COosnr.
nm
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The Fourier series is

R )”Jr1 . N7X
— Z s .
= 2

A plot of this Fourier series is shown in Figure 2.13.

c l<x<2
The Fourier coefficients are found as

2 2
ag = 2/ xdx:x2’ =3.
1 1

2
a, = 2/ xcos2nmx dx
1

2

1 1
= [znnxsinZnnx + 22 cosZnnx} ) =0.

2
b, = 2/ xsin2n7mx dx
1

= ! X Cos2nx + ! sin2n7rx2
B 2nm 4n?m? 1

1

nrt

This gives the Fourier series

f(x)

I\J\OJ

1 & 1n2n7rx
Taho2

A plot of this Fourier series is shown in Figure 2.14.

12. The result in Problem gb above gives a Fourier series representation of
2

X C 1. . . .

—. By picking the right value for x and a little arrangement of the series,

show that [See Example 2.6.]

a.
LSRN S I S
6 22 " 32 42
Using the results in Problem 5.12b, one has that

2

x 22 (-~
— ==+ Z Ccos nx.
n=1
Letting x = 7, we have
2
— = COSNTT
4

Then,

Figure 2.13: A plot of first terms of the
Fourier series of f(x) in Problem 2.11b.

1.6
1.44

1.29

Figure 2.14: A plot of first terms of the
Fourier series of f(x) in Problem 2.11c.
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LD R S N S
8 nTRTR

Hint: Consider how the series in part a. can be used to do this.

Let
1 1 1

S=ltmtgtomt

Note that

Therefore, we have

1 1 1

S =1
+32+52—|—7
2

n?

6 24 8

c. Use the Fourier series representation result in Problem ge. to ob-
tain the series in part b.
The result of Problem ge is

1—cosn7r 1 .
N——i-z cosnx + —smnx| .
n

Setting x = 71, we have

> 1
— COS N7t
+ Z ————— COSNnm
—

3

=R e

BRI
= (2k—1)2
Therefore,

R SR
(2k—-1)2 8"

T

13. Sketch (by hand) the graphs of each of the following functions over
four periods. Then sketch the extensions each of the functions as both an
even and odd periodic function. Determine the corresponding Fourier sine
and cosine series and verify the convergence to the desired function using

Maple.



For these problems we make use of the Fourier cosine series,

a o0 nrix
f(x) = EO +;ancos -

where
2 (L nrix
ay = Z ‘/0 f(x) COs T dx,

and the Fourier sine series,

nrix

= 3 b, sin ——,
f2) = 3 busin ]

where

a. f(x)=x%0<x<1.

The given function is shown in Figure 2.15. In Figure 2.16 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
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2.17 the function is reflected about the origin and the new function 0 1

is then periodically extended to give the odd periodic extension.

The Fourier cosine series coefficients are given by

1 2

ag = 2/ x2dx = =,

0 0 3
1

a, = 2/ x% cos nmx dx
0
1 5. 2

= 2|—x“sinnmx + ——5XCoOSNITX + ——=

nrw n2m? (nm)3

4(-1)"
n?m?

1

sin nrrx
0

Figure 2.15: Function given in Problem
2.13a.

Figure 2.16: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13a.

Figure 2.17: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13a.



36 FOURIER ANALYSIS SOLUTIONS

Figure 2.18: A plot of first terms of the
Fourier cosine series of f(x) in Problem
2.13a.

Figure 2.19: A plot of first terms of the
Fourier sine series of f(x) in Problem
2.13a.

The resulting Fourier cosine series is given by
4 v (="
T le n?
n=

A plot of this series representation is shown in Figure 2.18.

f(x) =

COSMn7rx.

ST

The Fourier sine series coefficients are given by

1
b, = 2/ x?% sin n7tx dx
0
1, 2 2 !
= 2|——x COS NTIX + —5—5 X SINNTTX + ——= COS NTTX
nm n?rm (nm) 0
= —lcosnrt—l—i(cosnn—l)
- onm (nm)3 '

The resulting Fourier sine series is given by
flx) = i( 2 cosnm + 4 (cosnm — 1)) sinnmx
=T (nm)3 '
A plot of this series representation is shown in Figure 2.19.
] -
0.8
0.6

0.4

0.54

(SO
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b. f(x)=x(2—x),0<x<2 fx)
The given function is shown in Figure 2.20. In Figure 2.21 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure

f t u X

2.22 the function is reflected about the origin and the new function 0 1 2
is then periodically extended to give the odd periodic extension. Figure 2.20: Function given in Problem
2.13b.
f( x Figure 2.21: Sketch of the even periodic
extension of the function given in Prob-
X lem 2.13b.

—4-3-2-101 2 3 4

f ( xf Figure 2.22: Sketch of the odd periodic
extension of the function given in Prob-
x lem 2.13b.
—8-7-6-5 4—3—% 1 23/4 5 6\7/8
The Fourier cosine series coefficients are given by
2 ©Y\2 4
= 2—x)dx= (¥ —= ) =-.
a9 /0 x(2—x)dx (x 3 )0 3
2
ay, = / x(2—x)cos@dx
0 2
2 2\? 2\’
_ lmx(z —x) sin% —2(1-x) (m) Cos? +2 < n) sin ”27”‘] 02
8
= ()2 (cosnm —1).

The resulting Fourier cosine series is given by

(2k— 1)

2 & 8 nmx 2 cos
f(x)—§+z (cosnm — 1)cos? = Z 2k—1

Figure 2.23: A plot of first terms of the
Fourier cosine series of f(x) in Problem
2.13b.
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Figure 2.24: A plot of first terms of the
Fourier sine series of f(x) in Problem
2.13b.

1 f x

0 1 2
Figure 2.25: Function given in Problem
2.13C.

Figure 2.26: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13c.

Figure 2.27: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13c.

The Fourier sine series coefficients are given by

2 . NTX
by /0 x(2—x) sdex

The resulting Fourier sine series is given by

(2k— 1)

nmx sm
Z

-1
(cosnm )sm = 1)

_ i 16
= (nm)3
A plot of this series representation is shown in Figure 2.24.

11

0.5 1

-0.5

. f(x)_{ 0, 0<x<1,

1, T<x<2.
The given function is shown in Figure 2.25. In Figure 2.26 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
2.27 the function is reflected about the origin and the new function
is then periodically extended to give the odd periodic extension.

f(xfT -

—8-7-6-5—-4-3-2-101 2 3 45 6 7 8

X




The Fourier cosine series coefficients are given by

ay = /Ozf(x)dx:/lzdle.

2 nrix
= —d
ap /Of(x)cos 5 dx
2 nrx
= —d
/1 cos 5 x
2 . nmx)|? 2 nrm
= —sin—| = ——sin—.
nr 2 I nrm 2

The resulting Fourier cosine series is given by

N\*—‘

flx

x 2 nrix
Z = 1n—cos—
=1 N7 2

A plot of this series representation is shown in Figure 2.28.

1.59

0.54

-0.5-

The Fourier sine series coefficients are given by

2 nmx
b :/ in "7 4
n 0f(x)sm 5 dx
2 nmx
= i 7d
/1s1n 5 dx
2 nrx |2 2 nrm
= ——cos—| = (cos——cosnn)
nr 2 b am 2

The resulting Fourier sine series is given by

flx)=13 (cos % - cosnn) sin nzﬂ

n=1

A plot of this series representation is shown in Figure 2.29.
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Figure 2.28: A plot of first terms of the
Fourier cosine series of f(x) in Problem
2.13C.
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Figure 2.29: A plot of first terms of the
Fourier sine series of f(x) in Problem
2.13¢C.

f } x

0 T 2m
Figure 2.30: Function given in Problem
2.13d.

Figure 2.31: Sketch of the even periodic
extension of the function given in Prob-
lem 2.13d.

Figure 2.32: Sketch of the odd periodic
extension of the function given in Prob-
lem 2.13d.

-1.5-

d f(x)— T, O<x<m,
' ] 2r—x, m<=x<2m.

The given function is shown in Figure 2.30. In Figure 2.31 this func-
tion is reflected about the y-axis and the new function is then pe-
riodically extended to give the even periodic extension. In Figure
2.32 the function is reflected about the origin and the new function
is then periodically extended to give the odd periodic extension.

f(x)
VAR VA VAR VAl

x
—8A7mb6mAbmdr3m2mre=m 0 T 2n3ndnbn6m7m 8

~_ "
—8%7%%5@4%3%@ nz%an@\Ln

The Fourier cosine series coefficients are given by

ay = %/Oznf(x)dx

1 T 1 [2m

= —/ ndx—i——/ (2m — x)dx
7T Jo T Jr
3

7-
1

o= | f( )c057dx

1 T 1 27
= —/ ncosgdx—k—/ (27‘(—x)cosﬂdx
T Jo 2 T 2

= gsinn—x‘n—i-l E(Zn—x)sinﬂ—icosn—x M
on 21lo 7 |n 2 n? 2],

= ——(cosnm— cos E)
- on? 27

The resulting Fourier cosine series is given by

37 ® cosnm — cos Mt nx
=" 4 2 7 2 )
f(x) 4 nz 2

n=1
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A plot of this series representation is shown in Figure 2.33.

VY

-8n -7n -6m -5m -4n -3m -2m - 0 T 2n 3m 4m Sm 6m  Imn 8w

Figure 2.33: A plot of first terms of the
Fourier cosine series of f(x) in Problem
2.13d.

The Fourier sine series coefficients are given by

by = 1 f()sm?dx

T Jo

1 T 1 2m
= —/ nsinn—xdx—l——/ (27T—x)sin%dx
7T Jo 2 TJr 2

= —Zcosnxn—l—l[—2(2n—x)cosnx+4s'mnx 27T
n 2lo 7| n 2 n? 2],

2 4 nm

= a T

The resulting Fourier sine series is given by

> 2 4 | nnm nx
)—’;(E—i—ﬁsm 5 )sm7.

A plot of this series representation is shown in Figure 2.34.

Figure 2.34: A plot of first terms of the

Fourier sine series of f(x) in Problem
2.13d.
‘ ‘ ‘ ‘
—8n —7 —Sn 31: 2% -n 0 T ZUK s GUK

14. Consider the function f(x) = x, - < x < 7.

a. Show thatx =2)" ;(— )n+1 smnnx
Since f(x) = x is an odd function on |x| < 7, the a,’s vanish for
all n.

The Fourier sine series coefficients are
1 T
b, = — / x sinnx dx
T J—m

2 7T
= —/ xsinnxdx
7T JO
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21 1 1. §
= — ——xcosnx—l——zsmnx
7T n n 0
2cosnm 2(—1)’“rl
n n

This gives the Fourier sine series representation

ni1Sinnx
-

f@~zivn

. Integrate the series in part a and show that x> = %2 —4y > (1)

For f(x) = x, we consider the integral

- ; 2
| f@de =3
Integrating the series as well, we have

(_1)n+1 '/Ox Sinn‘: d@.

n

e

| f@ae ~

n=1
> cosné |x
= 2 —1)"
Er=
> Ccosnx > 1
= 2) (-1" 3 —22(—1)”ﬁ
n=1 n=1
Therefore,
[e¢]
2 , COS X
=C+14 1) —,
x + n;l( ) "
where

d 1
C=-2 -1,
Lz

n+1 cosnx
n?z -

We still need to evaluate C. We can use the results in Problem 15

to do this.

C = —4 i(—m"%

n=1

B 1 1 1 1 1 1
= tlteteretr et

B 1 1 1 1 1 1
= 4 1+372+572+ﬁ+”. —4 272+472+672+”'

- o(3)()-3)

Therefore, we have that
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c. Find the Fourier cosine series of f(x) = x?

on [0, 1] and compare
to the result in part b.

We first determine the Fourier cosine series coefficients.

2 [ ’ 272
a = — xtdx = —.
0 7T/0 3
2 [
an = —/ x% cos nx dx
7T JO
21, . 2 2 T
= — |—x“sinnx+ —XCcosnx — — sinnx
T |n n2 nd 0
2 (2 4 4
= —(Smcosnm | = —<cosnm=—(—1)".
7T<n2 > n2 n2( )

This gives the Fourier cosine series representation

2 (]
T cosnx
2= a Y ()
3 = n

d. Apply Parseval’s identity in Problem 5 to the series in part a. for
f(x) =xon —m < x < 7. This gives another means to finding the
value (4), where the Riemann zeta function is defined by

(6= L o

From the Parseval identity, we have

%/()sz(x)dx = Lf—l—rila%

T 4 o0
%/0 hdx = 279-[—1—167;’114

2r ot &1

5 9  Ent

This gives

P SR Vi)

- I

resulting in
o
= nt 90
15. Consider the function f(x) =x,0 < x < 2.

a. Find the Fourier sine series representation of this function and plot
the first 50 terms.

The Fourier sine series coefficients are

2
b, = /xsin@dx
0 2
2
2 nrx 2 2, nrix
= ——XC0S———+ | — | sin——
™ 2 nrw 2 0
_ _4cosn7'c:i(_1)n+1.

nrt nrt
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This gives the Fourier sine series representation

4 2 (-1 nnx
f(x)NEnZ o sin——.

=1
The first few terms of this series are shown in Figure 2.35.
Figure 2.35: A plot of first terms of the

Fourier sine series of f(x) in Problem
2.15a.

b. Find the Fourier cosine series representation of this function and
plot the first 50 terms.

The Fourier cosine series coefficients are

2
ag = /xdx:Z.
0

/‘2 nrx
a, = X cos — dx
0 2
5 2
2 . nITX 2 nmx
= —xsin——+ | — | cos——
mnm 2 nrt 2 0
= W(cosnn -1).
This gives the Fourier cosine series representation
4 & cosnm—1 nrix
flx) ~ 1+¥n§1 2 cos —
8 & 1 (2k —1)mtx
= 1—-— .
2 k; 2k—12°° 7 2

The first few terms of this series are shown in Figure 2.36.

Figure 2.36: A plot of first terms of the
Fourier cosine series of f(x) in Problem
2.15b.

c. Apply Parseval’s identity in Problem 5 to the result in part b.

Parseval’s identity can be extended to Fourier cosine series by
slightly modifying the derivation in Problem 5.8.



We begin with the Parseval identity

2 L, ”(2)
Z/o f(x)dx—i

[ee]
+ Z a%l.
n=1

FOURIER TRIGONOMETRIC SERIES

Applying this result to f(x) = x, x € [0,2]. From part b, we have

ap =2 and
4
an—nz 2(cosnn—l) n=1,2,
Then,
2 ko, g S
Z/Of(x)dx = ?—i—n;lan
2 22 X 4
2
xtdx = —+
J >+ L (7
8 644 & 1
- = 24 =
3 T ,{;(Zk—l)‘*
This gives the sum
R
9 = (2k—1)*
R R |
= l+gtgtot

. Use the result of part c. to find the sum ), ; n%

(cosnm — 1))2

The result in part c¢ is not quite the sum we seek as the terms

involve only the odd terms. We can rearrange the series to make

1
S = Zi
n=1
B 11 1 1 1
= ltogtgtp +§+@+
B 1 1 1
- 1+¥+§+MA%%+ +@+
= £4+l1+1+1+
96 24 34
a1
= 96t 1g°
15 ﬁ
6 = 9%
4
7T
S = .
90

Therefore, we have shown that } > %

I
18

S

use of the result in part c and solve for S =} ;7 4 ’11—4 :

)

45
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16. Differentiate the Fourier sine series term-by-term in the last problem.
Show that the result is not the derivative of f(x) = x..
The Fourier sine series is given by

4 i sin 17X
Y 2
A simple term by term differentiation gives

4 & (-1t d (. nmx i nmx
; ; g (57 ) =2 L (1) eos .

However, this is a divergent series and cannot sum to f’(x) = 1.

Figure 2.37: Plot of first 50 terms of (left) 201
the Fourier sine series of f(x) = x and 2]
(right) the derivative of these terms from
Problem 2.16. 104
1.54
1 . /\/\/\/\/\/\/\/\/\/\/\/\/\MM(\ |
0.5 U 2
X
0.5
,10,
0 ;
0 0.5 1 L5 2

17. Consider the function f(x) = xsinx.

a. Find the Fourier series representation of this function if f(x) is
defined on [0, 277] and plot the first 50 terms.

We compute the Fourier coefficients:

ay = %/Ohf(x)dx

1 27
= —/ xsin x dx
7T Jo

1 2
= —[—xcosx+sinx]

T 0
= -2

L d 1

an = A f(x)cosnxdx, n>1,

1 [2r
= —/ x sin x cos nx dx

T Jo

L s 1 i 1)x|d
= E/o x[sin(n 4+ 1)x — sin(n — 1)x] dx
1 [—xcos(n+1)x  sin(n+1)x
27 n+1 (n+1)2

_ —xcos(n—T)x sin(n—1)x 2

n—1  (n-1)2 |,




a

_2
n2—1"
1 27
E/ xsin2x dx

0
27

i —lx x—i—1 in2x
o > Ccos 4s .

27
- i d
p f(x)sinnxdx
1 [2rm
—/ xsinxsinnxdx, n>1,
7T Jo
L 1)x]d
— —1Dx —
27r/o x[cos(n —1)x — cos(n + 1)x] dx
1 [xsin(n+1)x cos(n+1)x

(n+1)2

_xsin(n—1)x  cos(n—1)x
n—1 (n—1)2 |,

27 n+1
27

0.

1 27

—/ xsin? x dx,
7T Jo

1
27 .
1 [«2 1
o {xzzxsin2x4c052x .
TT.

27
/ x(1 — cos2x) dx,
0

21

The Fourier series representation is given by

1 .
flx) ~ —1- Ecosx+7rsmx+2n§2

The Fourier series representation is shown in Figure 2.38.

b. Find the Fourier series representation of this function if f(x)

2 cosnx
n2—1"

defined on [—7t, 71] and plot the first 50 terms.

We compute the Fourier coefficients:

ag

an

L[ e

1 7T
—/ xsinxdx
T )1
T

2 .
—[—xcos x + sin x]
T 0

2.

1 T

= f(x)cosnxdx, n>1,
T J—m

1 T

—/ xsin x cos nx dx

T J—m

1 T

ey x[sin(n +1)x —sin(n — 1)x] dx
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SIE

ISTERE

Figure 2.38: A plot of first terms of the

. Fourier series of f(x) in Problem 2.17a.
1S
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B 1[—xcos(n+1)x sin(n+1)x

us n+1 (n+1)2
—xcos(n—1)x sin(n—1)x]"
n—1 (n—12% |,
B 2(_1)n+1
n?z—1
1 /T
a = E/ﬁﬂxstxdx

1 7T
= —/ xsin2x dx
7T JO

1 1 1 &
= — |—=xcos2x + - sin2x
7T 2 4 0

1

2
1 7T
by = —/ f(x)sinnxdx
T J—m
1 7T
= —/ xsin xsinnx dx
wTJ—m

= 0.

SIE

The Fourier series representation is given by

441 COS 11X
n2—1"

EESIERE

Flx) ~ 1—%cosx+2i(—1)
n=2

Figure 2.39: A plot of first terms of the The Fourier series representation is shown in Figure 2.39.
Fourier series of f(x) in Problem 2.17b.

X, 0<x<1

18. Consider the function f(x) = { Iy lez<?

a. Find the Fourier series representation of this function and plot the
first 50 terms.

We compute the Fourier coefficients:
2 L
a = /0 f(x)dx

1 1 2
= /xdx+/ xdx+/ 1—xdx
0 0 1

1_(1—x)2‘2
2 1

[
[

S— TN NI=
S—

(e}
I
e

SN

2nmx

f(x)cos dx

a, =

—_

2
x cosnrx dx + / (1 —x)cosnmxdx
N

1

I
| —
S

. 1
xsinnrmx + —5 5 COSNTX
n7 0

_|_

2
1 . 1
— (1 —x)sinnmx — —— cosnmx
n2m 1

=
B
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cosnm —1
n2m2

b, = L/ fx sm
= /xsmnmcdx—i—/ (1 —x)sinnmxdx
0

= 2

1

1
= ———XCOSNITX + 2 2smm'[x
nr 0
1 2
+ |—==(1—x)cosnmx — ——5 sinnmx
nm n2sm 1
~ 1l—cosnm
o nr

The Fourier series representation is given by

> —1 1-—-
flx) ~ Z[Zwsnncosnﬂx+cosnnsinnnx}

n=1 n?m nmw
o s 2

= E —m COS(Zk—l)T[x—‘rmSln(Zk—l)ﬂx .
k=1

The Fourier series representation is shown in Figure 2.40.

14 Figure 2.40: A plot of first terms of the
Fourier series of f(x) in Problem 2.18.

0.51
0 ‘ 1 ‘ ‘
0.5 1 1.5 2
X
-0.5

-1

b. Use the result of part a. to show that

1 1.1 _

12732 "5 8’

[Hint: Be careful using the discontinuity at x = 1 by noting that
the Fourier series converges to (1) = 3(f(11) + f(17)).]

Setting x = 1 in the previous result and noting that

F) = (AN +£07) = 5,
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we have
1 [ee)
5 ~ Z k=1 1 cos(2k -1
72 ad
8 ; 2k —1)2

19. The temperature, u(x,t), of a one-dimensional rod of length L satisfies
the heat equation,
ou  %u

ot ox?

a. Show that the general solution,
[e9)
Z sm e 272kt / L2

satisfies the one-dimensional heat equation and the boundary con-
ditions #(0,t) = 0 and u(L,t) = 0.

Computing u; and uyy, we have

o 2.2
ou _ Z nem b, sin "7 MY _w2n2ki/L2
ot 2 L
ou 2 nrm nrmx 24 /12
— = b, cos —= —n mekt/ LS
ox ;1 L™ L
o%u _ i n’m? nx 2 72kt/ 12
dx? L

Comparing these derivatives, we see that u; = kuyy. Note that
the vanishing of the function at the interval endpoints allows the
differentiation of the sine series.

Furthermore, we have

u(0,t) = Z b, sin 0Tk LE 0,

n=1
> 2,204 /12
u(L,t) = Y bysinnme " TR/ =
n=1
b. For k = 1and L = , find the solution satisfying the initial con-
dition u(x,0) = sin x. Plot six solutions on the same set of axes for
€ [0,1].

For k =1 and L = 7, the general solution is

o
t) =) bysin nxe "t
n=1

Using the initial condition, #(x,0) = sin x, we have

(e}
sinx = 2 b, sinnx.
n=1
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The Fourier coefficients are easily found without integration as
b1 = 1and b, = 0, n > 1. Then, the solution to the initial-boundary
value problem is

u(x,t) = sinxe™".

This solution at six times is shown in Figure 2.41.

c. Fork =1 and L = 1, find the solution satisfying the initial condi-
tion u(x,0) = x(1 — x). Plot six solutions on the same set of axes
for t € [0,1].

For k = 1 and L = 1, the general solution is

u(x, t) =Y by sinnmxe 7,
n=1

Using the initial condition, u(x,0) = x(1 — x), we have
x(1—x) =) bysinnmx.
n=1

We need to determine the Fourier sine coefficients:

1
b, = 2/ x(1 — x) sinnrmx dx
0
B 1 1 .
= 2 —Ex(l — x)cosnmx + nTrcz(l — 2x) sinnrx

So,
4
nm)3

(1 —cosnm)sinnmx,

3
Il

—_
~—

or

u(x,0) = k; ((2k81)7_[)3 sin(2k — 1) 7x.

The solution to the initial-boundary value problem is

5 sin(2k — 1)7'cxe_(2k_1)2”2t.

> 8
u(x,t) =) —————=
k; (2k—1)m)
This solution at six times is shown in Figure 2.42.

20. The height, u(x,t), of a one-dimensional vibrating string of length L
satisfies the wave equation,

Pu  ,0%u
= =C"—.
ot2 dx2

0.84
0.61
u(x t)

0.41

0.2

0 . . .
0 1 2 3
X

Figure 2.41: A plot of solutions for the
heat equation in Problem 2.19b for t =
0,1/6,...,1.

0.251
0.20
0.151

0.10

0 012 014 016 018 l
X

Figure 2.42: A plot of solutions for the

heat equation in Problem 2.19c for t =

0,1/6,...,1.
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a. Show that the general solution,

u(x, t)

ad nret . nrmx

= A, cos sin ——
— L L
n=1

7tct . nmx
SN ——
L L’

+B;; sin 1

satisfies the one-dimensional wave equation and the boundary con-
ditions #(0,t) = 0 and u(L,t) = 0.
In order to verify that this is a solution, we compute a few deriva-

tives:

ou
ot

#u
ot?

u
ox

%u

ox2

> nrec . nrct . nnx
— Z A, —— sin sin ——
— L L
n=1

L

4B nrc nrmct . nmax
—— COS sin —.
"L L L

_iA (nrm)zcos nrct sin niTx
=N L L L

nmeN2 . nmct | nnux
< sin sin —.

L L
iA Ecos nrct nrix
"L L L

cosS —
1B nmw . nrct nix
— sin cos —.
"L L L

nrmy 2 nrct . nmx
n T cos s ——

L L
iy () i i

LSlnL

Comparing derivatives, we have

2
Ut = C Uxx.

Note that the vanishing of the function at the interval endpoints
allows the differentiation of the sine series.

We also can verify the boundary conditions:

(e}
t
u(0,t) = 2 A, cos n7£c sin0
n=1
+Bysin 7 gino = 0.
ad t
u(L,t) = Y Aycos % sinnrm
n=1

sinnmt = 0.

t
+B;; sin n7£c

b. For c = 1 and L = 1, find the solution satisfying the initial con-
ditions u(x,0) = x(1 — x) and u(x,0) = 0. Plot five solutions for

t e [0,1].
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For this problem, the general solution takes the form

[0 9)

u(x, t) = E A, cosnrtt sinnzmtx + By, sin ntt sinnx.
n=1

The initial conditions give

[e)
x(1—x) = Ay, sinnrx,
n=1
oo
0 = ) Bunmsinnmx.
n=1

The second equation gives B, =0,n =1,2,....
From the previous problem we have
4

= (nn)?’(l —cosnm), n=12,....

Therefore, the solution to the initial-boundary value problem is
u( ) =Y B in(2k — 1)mxcos(2k — 1),
= ((2k—1)m)

This solution at five times is shown in Figure 2.43.

. For c =1and L =1, find the solution satisfying the initial condi-
tion

4x, 0<x
u(x,O)_{ =101 1 <
31-x), <«

and u;(x,0) = 0. Plot five solutions for t € [0,0.5].

7

IA A
IR

7

For this problem, the general solution takes the form

[ee)
u(x,t) = Y Aycosnmtsinnmx + B, sinntsinnmx.
n=1

The initial conditions give

[e)

u(x,0) = A, sinnmx,
n=1
o

0 = ZBnnnsinnnx.
n=1

The second equation gives B, =0, n =1,2,....

The remaining Fourier sine coefficients can be computed using

1
Ay = 2/ u(x,0) sinnrx dx.
0

Thus,

NI

An=8/
0

1
xsinnnxa’x—i—g/1 (1 —x)sinnmxdx
1

0.251

0.20

0.151

0.10

0.051

0
0 0.2 0.4 0.6 0.8 1

X
Figure 2.43: A plot of solutions for the
wave equation in Problem 2.20b for t =
0,1/8,...,1/2.
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1 1 . 4
= 8 ——XCOSNTIX + —5—5 SINNTX
nrm n2m

8 1 1 !
+- | ——(1—x)cosnmx — —— sinnmx

3| nm n2m? 1
nri 1
= {—4cos n +n2 5 S 4}
8 3 nri 1 nri
3 [_47171 4 n2n? 4 ]
081 32 | nm

0.6

So, the solution to the initial-boundary value problem is

0.4 > 32 . nro .
u(x,t) = Y —5—5 sin — sinnmx cos nt.
0.2 =1 3nsm 4

This solution at five times is shown in Figure 2.44.

x 21. Show that

-0.24

mry

2 2 nrix
u(x,y,t) = nX::l mX::l(anm €08 Wyt + by Sin wyyt) sin - sin 0

=y () 4 (B,

satisfies the two-dimensional wave equation

Figure 2.44: A plot of solutions for the
wave equation in Problem 2.20c for t =
0,1/8,...,1/2. where

uttzcz(uxx+uyy), t>0,0<x<L,0<]/<H,
and the boundary conditions,

u(0,y,6) =0, u(Lyt)=0, t>0, 0<y<H,
u(x,0,t) =0, u(x,Ht)=0, t>0, 0<x<IL,

Computing the needed second parital derivatives of u(x, y,t), we have

o0 o0
. . N7X ., M
Uy = —Z Zw,%m(anmcoswnmt—t—bnmsmwnmt)sstmTy
n=1m=1
o0 o0 2
nrm ) . MTX . M
Uy = — Y. ). <T) (anmcoswnmt—l—bnmsmwnmt)sstmTy
n=1m=1
© 2
Mr . . nmIX ., miT
Uy = —Z Z (H> (anmcoswnmt+bnmsmwnmt)sstmTy
n=1m=1

Inserting these derivatives into the the two-dimensional wave equation, we

find
5 5 (NTTN\2 mr\2
=< () + ()
The solution easily satisfies the boundary conditions. For example,

[e ol o]

u(,y,t) = Y, Y (aumcos Wumt + by sin wymt) sin O sin miy _ 0,
n=1m=1 H
u(L,y,t) = 2 Z (@nm cOs Wymt + by, Sin wyyt) sin nt sin 0= 0.

n=1m=1
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The boundary conditions, u(x,0,t) =0, u(x,H,t) =0, follow in the same
way.

22. Find the double Fourier sine series representation of the following:

A function f(x,y) defined on the rectangular region [0, L] x [0, H] has
a double Fourier sine series representation,

o0 [ee)
X mrr
= Z Z bum sm—sm y,
— = H
n=1m=1

where

4 H (L
bnm:m/o /0 f(x,y)sin?sinm;;ydxdy nm=12,....
This representation will be used to obtain the series in this problem.

a. f(x,y) =sinmxsin27my on [0,1] x [0,1].

The series expansion for this problem is given by

fry) =Y ) bumsinnmxsinmmy.

n=1m=1

It is easy to see that the is only nonzero term, for n = 1 and m = 2.
Thus, b1 =1 and by, =0, for n # 1 and m # 2.

b. f(x,y) = x(2—x)siny on [0,2] x [0, 7T].

The series expansion for this problem is given by

o0 [ee) x
X, Y) = Z Z - s1n— sinmy,
n=1m=1

Here by, = 0 for m # 1. We need only compute the b,,; terms.

2 T
by = E/ / flx,y) sin?sinydxdy
= —/ / 2—x sm?sm ydxdy

nmx
= /0 x(2—x)sdex

2 nrix 4 Y54 16 nrx]?
- [_mx(Z—x)cosvanznz(z_zx)sm 2 ndrd 2 ]y
16

= n377'c3(1 — COSNT).

This gives the series expansion

flxy) = i

. nmX
(1 — cosnr) sin —5 - siny,

32 . (2k—1)mx .
sim Sll’ly.

55
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c. f(x,y) =%y on [0,1] x [0,1].

The series expansion for this problem is given by

fx,y) =Y ) bunsinnmxsinmmy,

n=1m=1

The Fourier coefficients can be computed directly:

1 41
by = 4/ / x2y3sinnnxsinmnydxdy nm=12,....
0 Jo

1 1
= 4 (/ x? sinnx dx> </ v sinmnydy) .
0 0

Each integral can be computed separately:

L, . 1 , 2 .
x“sinnmtxdx = |——x COSNTIX + ——5 X SINN7TX
0 nr n27

) 1
+ —5—5 COSNTIX
n> 7T 0

2 CcosS N7t
= —1)— .
n3n3(cosn7t ) nrw
/1 Ssinmmydy = ——1 3 cosmrr +73 2sinmr
Jo Y yay mny Y mznzy y

+ 6 mrt 6 inmrt 1
———=1/ COS — ———sin
m3m3? Y y 0
6cosmm  Ccosmr

m3 3 mrt

This gives

2 CcosS N7t 6cosmm  cosmrt
bum =4 | —5—(cosnm —1) — ol .
n3m nr m3 7 mit

The resulting Fourier series is
[e9) [0 9)
f(x,y) =Y ) buusinnmxsinmmy.
n=1m=1
23. Derive the Fourier coefficients in the double Fourier trigonometric series

in Equation (2.124).

The double Fourier trigonometric series in Equation (2.124) is given by

a 1 2n7Tx . 2nmx
flx,y) ~ 00+22{an0cos 7 + d0 sin T }
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—0—2 Ebnmsm LGN 2m7ry’

n=1m= H
S 2nmx . 2mir
+ Z Z Cnm COS I sin Ty'

n=1m=
2 2
+ Z Z dy Sin —— i osﬂ.
n=1m=1 H

In order to prove this, one needs to consider the Fourier basis on the rectan-
gular region [0, L] x [0, H],

$oo = 1,
_ . S2n7'tx s 2nmx W12
(PnO - L 7 L 7 7 — Ls4s - 7
2 2
don = {cos nI_?ITy,sin 711_71Tyl } , n=12,...,
= Jos 2nrx cos 2mrmy cos 2nrx sin 2mmy
Prm = L H ’ L H ’
. 2nmx 2mmry . 2nmx |, 2mmy _
sin I Ccos 2 ,sin 7 sin 2 ,}, nm=12,....

Sample computations are below, using the orthogonality of the trigono-

metric functions.
L H
//f(x,y)dxdy // 0 dxay —“OOLH
o Jo

L H
/0./0 f(x,y)cosznnxdxdy = %0/ / dxdy:

L rH 2ntx  2mmy 22n71x 22m7ry B
/O/Of(x,y)cos [0S — dxdy anm// o dxdy =

This gives the Fourier coefficients as

4 (L rH 2nmx  2mmy
Apm = m/o /0 f(x,y) cos T cosdedy, n,m=0,12,...,

4 L (H . 2nmx . 2mrm
bym = m/0 /0 f(x,y)sin T st L

4 (L rH 2nmtx ., 2mmy
Com = m/o /0 f(x,y) cos T sdexd

nix 2mmy

p 4 L rH . 2
nm = m/o /O f(x,y)sm 7

dxdy, nm=12,...,

ﬂnoLH
i

dxdy, n=12,...,m=0,1,2,....

auymLH
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