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Figure 2.1: Plots of y(t) = A sin(2π ft) on [0, 5] for f = 2 Hz and f = 5 Hz.
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Figure 2.2: Problems can occur while plotting. Here we plot the function y(t) = 2 sin 4πt using N = 201, 200, 100, 101 
points.
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Figure 2.3: Superposition of several sinusoids.
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Figure 2.4: Plot of the functions y(t) = 2 sin(4πt) and y(t) = 2 sin(4πt + 7π/8) and their sum.
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Figure 2.5: Plot of the function f (t) defined on [0, 2π] and its periodic extension.
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Figure 2.6: Plot of discontinuous function in Example 2.3.
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Figure 2.7: A sketch of the transformation between intervals x ∈ [0, 2π] and t ∈ [0, L].
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Figure 2.8: Plot of the first fifty terms of the Fourier series representation for f (x) = sin x, x ∈ [0, π].
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Figure 2.9: Area under an even function on a symmetric interval, [–a, a].
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Figure 2.10: Area under an odd function on a symmetric interval, [–a, a].
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Figure 2.11: Plot of the first partial sums of the Fourier series representation for f (x) = |x| on the interval x ∈[–π, 
π].
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Figure 2.12: Plot of the first 10 terms of the Fourier series representation for f (x) = |x| on the interval x ∈ [–2π, 4π].
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Figure 2.13: Plot of the first 10 terms and 200 terms of the Fourier series representation for f (x) = x on the interval x 
∈ [–2π, 4π].
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Figure 2.14: Plot of f (x) = 9 – x2 for x ∈ [–3, 3].
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Figure 2.15: Plot of the first fifty terms of the Fourier series representation of f(x) = 9 – x2 for x ∈[–3,3].
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Figure 2.16: Plot of the periodic extension of the Fourier series representation of f(x) = 9 – x2 for x ∈[–3,3].
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Figure 2.17: Plot of the first fifty terms of the Fourier series representation for f (x) = x, x ∈ [1, 2].

002x017.eps



Courtesy of CRC Press/Taylor & Francis Group

Figure 2.18: This is a sketch of a function and its various extensions. The original function f (x) is defined on [0, 1] 
and graphed in the upper left corner. To its right is the periodic extension, obtained by adding replicas. The two lower 
plots are obtained by first making the original function even or odd and then creating the periodic extensions of the 
new function.
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Figure 2.19: The periodic extension of f (x) = x2 on [0, 1].
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Figure 2.20: The even periodic extension of f (x) = x2 on [0, 1].
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Figure 2.21: The odd periodic extension of f (x) = x2 on [0, 1].
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Figure 2.22: Plot of the first fifty terms of the Fourier Cosine Series representation for Example 2.14.
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Figure 2.23: Plot of the first fifty terms of the Fourier Cosine Series representation for Example 2.14 for x ∈ [–6, 6]..
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Figure 2.24: Plot of the first fifty terms of the Fourier Sine Series representation for Example 2.15.
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Figure 2.25: Plot of the first fifty terms of the Fourier Sine Series representation for Example 2.15 for x ∈ [–6, 6].
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Figure 2.26: The Fourier series representation of a step function on [π, π] for N = 10.
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Figure 2.27: The Fourier series representation of a step function on [– π, π] for N = 10 plotted on [–3π, 3π] displaying 
the periodicity.
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Figure 2.28: The Fourier series representation of a step function on [– π, π] for N = 20.
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Figure 2.29: The Fourier series representation of a step function on [– π, π] for N = 100.
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Figure 2.30: The Fourier series representation of a step function on [– π, π] for N = 500.
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Figure 2.31: The rectangular membrane of length L and width H. There are fixed boundary conditions along the edges.
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Figure 2.32: Nth Dirichlet Kernel for N=25.
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Figure 2.33: Nth Dirichlet Kernel for N=50.
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Figure 2.34: Nth Dirichlet Kernel for N=100.
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Figure 2.35: Nth Partial Sum in Maple.
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Figure 2.36: Nth Partial Sum done in MATLAB.
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Figure 2.37: Nth Partial Sum.
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Figure 2.38: Nth Partial Sum for f(x) = x2 on x ∈ [0,1] as found in MATLAB using symbolic computation of the Fourier 
coefficients.
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