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Chapter 2 

Problem 2.1 Two infinitely long, parallel wires carry currents 
1I   and 

2I  (Fig. 2S.1).  The 

distance between the two wires is equal to b . Determine the magnetic field at a point lying on 

the line connecting the two wires at the distance 
1r  from the first wire. Consider two cases:  a) 

the currents are flowing in opposite directions and b) the currents are flowing in the same 

direction.  

Solution a) In the case of the currents flowing in opposite directions let us assume that the 

current 
1I is directed out of the page and the current 

2I into the page (Fig. 2S.1). The total 

magnetic field B  at point А is equal to the vector sum 
1 2B B B=  of the magnetic fields 

generated by each current.  

  

 

 

 

 

 

 

 

 

Figure 2S.1 Magnetic field of two parallel wires. 

 

Using the right-hand rule we find that the field lines of the magnetic field created by the current 

1I is directed counter-clockwise and the one created by the current 2I – clockwise. Each of the 

vectors 1B  and 2B  at the point А is directed along the tangent to the corresponding field line at 

this point. Since vectors 1B  and 2B  have the same direction we get for the total magnetic field:                                                   

1 2В В В    . 

The magnetic field created by current I can be calculated using the equation  
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0

2π

mμ I
В=

r


  , 

where 
0μ  is permeability of free space, 

m  is magnetic permeability of the medium where the 

wire is immersed, and r is the distance from the wire to the point where the magnetic field is 

determined. Therefore,  

0 0 01 2 1 2

1 2 1 12π 2π 2π

m m mμ μ μI I I I
В= + = +

r r r b r

    
 

 
. 

For the magnetic field intensity we get the following expressions:  

0 1 2 0 1 2/ ( ) / ,m m       H В В В H H  

1 2 1 2

1 2 1 1

1

2π 2π 2π

I I I I
H = + = +

r r r b r

 
 

 
. 

b) In the case of the currents directed in the same direction we get:  

0 1 2
1 2

1 12π

mμ I I
В B B =

r b r


  


,    1 2

1 2

1 1

1

2π

I I
H H H =

r b r
  


. 

As the magnitude of the magnetic field and the magnetic field intensity are determined by the 

difference of contributions from each wire, the direction of total vectors В  and В  in this case 

must coincide with the direction of the largest iВ  and correspondently iH  that are determined 

by the largest magnitude 1 1/I r  or 2 1/ ( )I b r  in the above equations. 

 

Problem 2.2 A long thin conductor is bent as shown in Fig. 2S.2. The coil in the 0x z  plane 

consists of three quarters of a full circle of radius R . The conductor carries a current I . Find the 

vector B  and its magnitude at the center O of the coil, assume that the coil is in vacuum.  

Solution The current in the coil generates the magnetic field whose vector at the center of the 

coil (point O) is directed along the y -axis and its magnitude is equal to 3/4 of the value of Eq. 

(2.14) of the text:  

0 033
.

4 2 8
y

I I
B

R R

 
    
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Each of the semi-infinite straight wires with current I  generates at the point O a magnetic field 

of magnitude:  

0 01
.

2 2 4

I I
B

R R

 

 
    

 

 

 

 

 

 

 

Figure 2S.2 Magnetic field of three quarters of a circle of radius R . 

 

The upper part of the wire (lies in Ox y -plane) will create at the point O a magnetic field 

directed along the negative z -axis.  Therefore, at point O there is a z -component of the 

magnetic field:  

0

4
z

I
B

R




   . 

The lower part of the wire (lies in the Oy z -plane) generates at point O a magnetic field directed 

along the negative x -axis. Therefore, at point O there is an x -component of magnetic field:  

0

4
x

I
B

R




   . 

Thus, the net magnetic field vector is equal to:  

0 3
( ),

4 2

I

R





   B i j k  

where ,i j  and k are unit vectors along x -, y -, and z -axes.  
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The magnitude of the field is: 
20 03

1 ( ) 1 4.92 .
4 2 4

I I
B

R R

 


 
     

 

Problem 2.3 A charged particle moves with constant velocity 
62.00 10  m/sv    in a uniform 

magnetic field 0.50 TB   on a circular orbit whose plane is perpendicular to the magnetic 

field. The radius of the orbit is equal to 2.00 cmR   and the kinetic energy of the particle 

42.00 10  eVW   . Determine: a) the charge of the particle, b) the potential difference which 

accelerates the particle from rest to 
62.00 10  m/sv    before entering into the magnetic field, 

and c) the magnetic moment 
m  of the cyclotron orbit.   

Solution a) The magnetic force, which is exerted on the charged particle by the magnetic field, is 

given by the equation:  

sin ,LF qВv   

where q  is the charge of the particle and  is the angle between vectors of velocity and 

magnetic field.  Since the trajectory of the particle is a circle, then the particle enters the 

magnetic field perpendicular to its field lines. Therefore, / 2   and sin 1  . 

The magnetic force results in a centripetal acceleration directed radially towards the center of the 

circle:  

2

L n

mv
F = ma =

R
 , 

where m  is the particle’s mass. Let us equate the right-hand parts of these two equations:  

2
/qВv mv R .  

As a result, we find the following expression for the charge of the particle: 

/q = mv BR  . 

The moving particle possesses kinetic energy 
2 / 2 W mv . Taking into account this expression 

we get the following equation for the particle’s charge: 

2W
q

BRv
 . 
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The kinetic energy of the particle in SI units is equal to: 

4 15 152.00 10 eV  2.00 1.60 10 J  3.20 10 J.W           

By substituting numerical values, we get:  

15
19

6

2 2.00 1.60 10
3.20 10 C

0.50 0.020 2.00 10
q


  

  
  

. 

b) The work that the electric field has done to accelerate the charged particle is equal to the 

kinetic energy which the particle has gained, i.e. 

2 / 2W mv . 

On the other hand, the work of the electric field done moving the charge q  between two points 

of potential difference V is given by the equation: 

 W qV , 

where V is the accelerating potential difference. By taking into account these expressions we get:  

6 2/ / 2  2.00 10 2.00 10 0.50 / 2 10.0kVV W q vRB         . 

c) The magnetic moment of a closed plane loop with the current I is given by the expression 

 m I A  , where A is the area of the loop.  In this problem 
2A R , and 

2

q qv
I

T R
  , 

where Т is the period of particle’s rotation around its circular path. Taking into account the 

equations that describe cyclotron motion we get:  

13 2/ 2 6.40 10 Amm qvR    . 

Problem 2.4 A long cylindrical uniform solenoid is filled by two magnetic materials as shown in 

Fig. 2S.3. A current I  is flowing in the solenoid’s windings. The number of turns per unit length 

in the winding is equal to n . The magnetic permeability of the inner magnetic material is equal 

to 1m  and that of the external equal to 2m . The radius of the inner cylinder is equal to 1R  and 

that of the external is equal to 2R . Determine the density of the microscopic surface currents in 

the magnetic materials (consult Eqs. (2.27) and (2.38) of the text).  



 

 

24 

Solution The magnetic field intensity inside of the long solenoid does not depend on the material 

filling the solenoid but depends only on the current: 

.H n I  

In contrast, the magnetic field depends on the properties of magnetic material filling of solenoid:           

0 .mB H   

 

 

 

 

 

 

 

 

 

 

 

Figure 2S.3 Solenoid filled by two different magnetic materials with magnetic permeabilities 

1m  for the inner material and 2m for the outer shell. 

 

Since the solenoid is filled with materials that have different magnetic permeabilities, then:  

1 1 0 1

2 2 0 1 2

, ,

, .

m

m

B nI r R

B nI R r R

 

 

 

  
 

From the relationship  

0

B
H M


   
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we find the magnetization:   

( 1)mM nI  . 

Thus, the microscopic current at the interface of the magnetic materials is equal to:  

1 2 1 2( )m m mJ M M nI        at   r = R1. 

And for 
2r R  we have:  

2 2( 1) .m mJ M nI    

The microscopic currents flow along the curved faces of the cylinders with radii 
1   r R  and  

2   r R  . Please note, surface currents have dimensionality A/m . 

 

Problem 2.5 Can the magnetic field in vacuum depend on coordinates as:  

(a) ( , , ) (2 4 )x y z x y z  B i j k  or (b) ( , , ) ( 2 3 )x y z x y z  B i j k  ? 

Here   is a constant with the dimension ( T / m ) and ,i j  and k are the unit vectors of 

Cartesian system of coordinates. Find the spatial distribution of the current density.  

Solution The magnetic field vector must satisfy the equation:   

div 0. B B  

This is one of the Maxwell’s equations known as “Gauss law for the magnetic field”. In 

Cartesian coordinates it has the form:  

0
yx z

BB B

x y z

 
  

  
. 

In the first case:  

           (a)   ( , , ) (2 4 )x y z x y z  B i j k  and   

(2 1 4) 0
yx z

BB B

x y z


 
     

  
. 

Thus, the magnetic field cannot have such a dependence on coordinates.    
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In the second case: 

            (b)   ( , , ) ( 2 3 )x y z x y z  B i j k  and  

(1 2 3) 0.
yx z

BB B

x y z


 
     

  
 

Thus, the magnetic field can have such a dependence on coordinates.    

Let us find for this case the spatial distribution of current density j :  

0 0

0

1 1
curl 

1
0.

x y z

y yx xz z

x y z

B B B

B BB BB B

y z z x x y

 



  
      

  

        
           

          

i j k

j H H B

i j k

 

 

Problem 2.6. Find the magnetic field generated by an infinitely long (ideal) solenoid with n  

turns per unit length and current I  using Ampere’s law (hint, consult Fig. 2S.4).  

Solution. The field of an infinitely long solenoid is composed of the fields created by individual 

coils. Since the coils are tightly wound and their planes are almost perpendicular to the solenoid 

axis, the resultant field exhibits axial symmetry and may have only one component that is 

parallel to the solenoid axis (Fig. 2S.4.). To determine the magnetic field within the solenoid let 

us calculate the line integral for vector B  in the path AE1C1DA that encloses N  turns carrying a 

current I : 

1 1 1 1

0 .
L AE E C C D DA

d d d d d N I        B l B l B l B l B l   

Only the first integral (in segment 1 1E C ) is nonzero, hence 

1 1 1 10 0 ,E C E CBl N I nl I    

where 
1 1

/ E Cn N l . From the last equation we can see that the field within the solenoid is 

independent of coordinates (i.e. it is homogeneous) and its magnitude is equal to: 
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0B n I .   

 

 

 

 

 

 

 

Figure 2S.4 Calculation of a magnetic field of a solenoid. 

 

If the plane of coils is assumed to be perpendicular to the solenoid axis, there is no field outside 

the solenoid. If we write the loop integral for the loop AECDA it is easy to see that for each 

positive current in the lower part of the loop there is an equal current of the opposite sign in the 

upper part of the loop, so the total current in the right side of such equation is zero. So we can 

conclude that magnetic field outside of the ideal solenoid is zero. 

 

Problem 2.7 A long thin wire is carrying a current 
1I . A loop with current 

2I  is located in the 

vicinity of the wire with its plane perpendicular to the wire, as shown in Fig.2S.5. The loop 

consists of two circular arcs 4 – 1 and 3 – 2 with radii a  and b  (a b ), connected by straight 

lines 1 – 2 and 3 –  4. Both arcs have a common center located on the wire. The angle between 

the straight lines is 2 . Find the torque acting on the loop by the wire. Reminder: Torque or 

moment of force, M ,  is the tendency of force f  to rotate the object to which the force is 

applied and magnitude of the torque is equal to sin ,M fr   where r  is the vector from the 

axis of rotation to the point of force application and   is the angle between the force vector and 

the vector .r  

Solution Current 1I (see Fig. 2S.5) generates a magnetic field   

0 1
1 1 1 10, .

2
z r

I
B B B B

r





     
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The net force acting on the loop is equal to zero. 

The force acting on an element of the straight section 1-2 of this loop (see Fig. 2S.5) is equal to: 

0 1 2
12 2 1

2

I I dr
df I drB

r




  . 

The total force acting on the section 1-2 is equal to: 

0 1 2 0 1 2
12 ln .

2 2

b

a

I I I Idr b
f

r a

 

 
   

The force is directed along the axis z. 

 

 

 

 

 

 

 

 

 

 

Figure 2S.5 Calculation of the torque acting on the frame 1-2-3-4 by the magnetic field 

generated by current 
1I .  

 

The force 34f , which is acting on a straight section 3-4 of the loop can be calculated in the same 

way. The force acting on the element on this section is equal to: 

0 1 2
34 2 1 .

2

I I dr
df I drB

r




     
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The total force acting on the section 3-4 is equal to: 

0 1 2 0 1 2
34 ln .

2 2

a

b

I I I Idr b
f

r a

 

 
    

This force is equal in the magnitude to the force 
12f  but it is directed against the axis z .  

Forces 
12df and 

34df  form a pair of forces and create a torque around the x  axis. Let us find 

torque of elementary force 
12df : 

0 1 2
12 12 sin sin .

2

I I
dM df r dr


 


   

The net torque is equal to: 

 0 1 2 sin .
I I

M b a





   

 

Problem 2.8  A ring ABCD consists of two metal half rings of radius a , joined at points A  and 

C . The diameter of the wire’s cross-section of lower half-ring ADC  is double that of the 

diameter of the wire’s cross-section of upper half-ring ABC . The current in the straight sections 

is equal to I .   Find the magnitude of the magnetic field at the center of the ring (point O in the 

Fig. 2S.6). 

 

 

 

 

 

 

 

Figure 2S.6 calculation of the magnetic field of two semi-rings.  
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Solution The resistance R of a conductor is inversely proportional to its cross-sectional area A , 

i.e. inversely proportional to the square of the diameter d  of the conductor:  

2

2

4
,

4

l d l
R A R

A d


 


     , 

where l  is the length of the conductor and    is electrical resistivity of the material. 

Since the diameters of the sections of the two half-rings differ by a factor of 2, the resistances of 

half-rings differs by a factor of four: 
2 1   4R R . Accordingly, along wires ADC and ABC we will 

have the following currents: 

2 1
1 2

1 2 1 2

4 1
, .

5 5

R R
I I I I I I

R R R R
   

 
 

The magnetic field at the center of a ring with current I  is determined by Eq. (2.14) 

0 2
(0) .

4

I
B

a

 


  

The net magnetic field at the center of the ring is the sum of the contributions from the two 

semicircles with currents that generate magnetic fields of opposite directions (see Fig. 2S.6): 

 0 0 01 2
1 2

3
(0) .

4 4 20

I I
B I I I

a a a a

   
     

 
 

 

Problem 2.9 A straight long thin wire carrying a current I is surrounded by a cylinder made of a 

magnetic material of uniform permeability m . A solenoid that carries a current I  is wound on 

the outer surface of the cylinder (see Fig. 2S.7). The number of turns per unit length of the 

solenoid is equal to n . Find the magnitude of the net magnetic field inside and outside the 

solenoid. 

Solution We neglect the edge effects and assume that the net magnetic field is a superposition of 

the fields of the infinitely long straight wire and the solenoid (see Fig. 2S.7). Inside the coil 

    r R  the straight wire generates a magnetic field which is perpendicular to the wire and has 

magnitude: 
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0 .
2

mκ I
B

r





  

 

 

 

 

Figure 2S.7 Calculation of the magnetic field of the straight wire and solenoid. 

 

The field of the coil is oriented along the axis of the coil and its magnitude is equal to: 

0 .z mB κ nI  

Thus, if     r R  the net magnetic field is equal to: 

2 2 2

0 2 2

1
.

4
z mB B B , B = κ I n

r
 


    

Outside the coil     r R  the magnetic field of the wire is: 

0 ,
2

I
B

r





  

and that of  the coil: 

0.zB   

Thus, when    r R  the net magnetic field is equal to: 

0 .
2

I
B B

r





   

 

Problem 2.10 A rectangular frame with height 65.0 cml   and width a  is placed so that its 

long sides are parallel to an infinitely long, straight wire that carries a current 50.0 AI  as 

shown in Fig. 2S.8. What is the magnetic flux Ф  through the frame? 
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Solution The magnetic flux Ф  through a surface of area A  is determined by integration of Eq. 

(2.23) over the area A : 

n

A

B dA    . 

 

 

 

 

 

 

 

Figure 2S.8 Calculation of the magnetic flux through frame of area A al . 

 

In this case, the magnetic field vector B  is perpendicular to the plane of the frame. Therefore, 

for all points of the frame we have nВ В . The magnetic field B  generated by an infinitely 

long straight current-carrying conductor is given by the equation: 

0 ,
2

I
B

x




   

where x is the distance from the wire to the point at which B is determined. 

In order to calculate the magnetic flux, we note that since B  depends on x , the elementary flux 

dФ  will also depend on x : 

( ) .d B x dA   

We divide the area of the frame to narrow elementary areas of height l , width dx , and area 

dA ldx . Within this area the magnetic field can be considered constant, since all the points 

within  dA  are at a distance  x  from the wire. The elementary magnetic flux can be written as: 

0 .
2

I
d ldx

x





  
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By integrating this expression between  
1  x a  and  

2 2  х а  we find: 

2
20 0 ln .

2 2

a
a

a

a

I l I ldx
x

x

 

 
    

By substituting the limits, we get: 

0 ln 2.
2

Il



   

Performing numerical calculations, we obtain 4.50 µWbФ  .  

 

Problem 2.11 An electron of velocity 
62.00 10  m/sv   , enters a uniform magnetic field of 

 30.0 mTB   at an angle 30    to the direction of the magnetic field lines. Determine the 

radius R  and pitch h  of the helical path followed by the electron (Fig. 2S.9). 

 

 

 

 

 

 

 

 

Figure 2S.9 Helical path of an electron in a magnetic field. 

 

Solution The Lorentz force which is perpendicular to the magnetic B  and the velocity v  of the 

particle is determined by the equation:  

( )L q q q       F v B v v B v B  ,                                                                          
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where q  is the charge of the particle. If the particle is an electron, the equation for the force may 

be written as 

sinLF ev B  , 

where e  is the electron charge. Since the Lorentz force vector is perpendicular to the velocity 

vector, the magnitude of the velocity will not change under the influence of this force, but its 

direction will change. From mechanics we know that a constant force perpendicular to the 

velocity results in circular motion. Therefore, an electron which enters a uniform magnetic field 

will move on a circular orbit in a plane perpendicular to the magnetic field, with a speed equal to 

the transverse velocity component v (see Fig. 2S.9); at the same time it will move along the 

field with a constant velocity v : 

cos , sin .v v v v    

The result of the simultaneous circular motion and this motion along a straight line is that the 

electron will move along a helical path shown in Fig. 2S.9. 

The radius of the circle can be calculated from the condition that the Lorentz force 
LF  is equal 

to the centripetal force: 

2

, ,n L

v
ma F m ev B

R


   

the radius of the helix: 

sin
.

mv mv
R

eB eB

   

By substituting the values of ,  ,  ,  ,т v e В  and   and performing calculations, we obtain                   

0.19 mmR  . The pitch of the helix is equal to the distance that electron covered along the 

field with speed v  for the time it takes an electron to complete one circle on the orbit, 

,h = v T  

where 2T = R / v   is the period of the electron rotation. With this in mind, we find the 

expression for the pitch h :  
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2 2 cos
2 cot .

sin

Rv Rv
h R

v v

  
 



    

By substituting into this equation the values of , ,R  and   we obtain 2.06 mm.h 


