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Agenda: Class 2

First order linear differential equations:  

(1) Engineering example: RC circuit 

(2) General solution of homogeneous equation 

(3) In-class homogeneous problems 

(4) Example: Exposed water pipe in cyclical air temperature 

(5) General solution of nonhomogeneous equation

(6) In-class nonhomogeneous problems

Homework Assignment 2  



First Order Linear Differential Equations

Example: The RC Electrical Circuit



Example: RC Electrical Circuit

Resistor  
R ohms

Capacitor 
C farads

Switch closes at t = 0

Voltage at t = 0

0
V



Example: RC Circuit (2)

Kirchhoff’s Law:

Sum of voltage drops around a 

closed circuit = 0

Voltage drop over a capacitor:

Voltage drop over a resistor:

Conservation of electrical charge:

Closes at t = 0 

0V

I
dt

dq


CqV /

IRV 

C R
charge on capacitorq

I current through resistor



Example: RC Circuit (3)
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Closes at t = 0 

0VC R
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RCdt
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VR
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VIR

Resulting differential equation

Initial condition:



Example: RC Circuit (4)

This is a linear first order ODE.  To solve it, we separate variables: i.e., 
we put all terms involving  V on the left side and all terms involving t
on the right: specifically, we divide by V, move 1/RC to the right side 
and multiply by dt :   

Closes at t = 0 

0VC R

dt
RCV
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V
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0
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

The text justifies this short-cut procedure



Example: RC Circuit (5)

Closes at t = 0 

0VC R

Next, we integrate both sides:

Taking the exponential of both sides:
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Example: RC Circuit (6)

Hence:

RCteVtV  )0()(

We require that the voltage over the capacitor at time 0 be given by

0)0( VV 

and so 

RCteVtV 
0

)(



Example: RC Circuit (7)

Closes at t = 0 

0VC R

0
1

 V
RCdt

dV

In summary, the solution to 

0
)0( VV 

is 

RCteVtV  0)(

RCThe product has the dimension of time and is called the

time constant for the circuit



Example: RC Circuit (8)

0
/VV

t2RC1RC5.0RC



First Order Linear Differential Equations

General Solution of Homogeneous Equation 



General Solution of Homogeneous Equation  

The general form of a first order linear time-varying 
ordinary differential equation (ODE) is  

0)(  ytp
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00

)( yty  Equation 1

How do we solve it?



General Solution of Homogeneous Equation (2)
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We separate variables

Integrate both sides

Take the exponential of both sides



General Solution of Homogeneous Equation (3)
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Summary:

The solution of 
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is 

Success depends entirely on being able to do the integral



Homogeneous First Order Linear ODEs: 
In-class problems
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First Order Linear Differential Equations

Example: Exposed water pipe in cyclical 
ambient temperature



Air at temperature 

tTTT sin
0




Water at temperature  

TTT
W



dWall thickness = 

Outer radius = r

Length = L

Exposed Water Pipe in Cyclical 
Ambient Temperature  

T = average daily temperature 



Exposed Water Pipe in Cyclical 
Ambient Temperature (2)

Assuming pipe wall is thin and made of material that is a good heat 
conductor, by Newton’s law of cooling, the heat transferred from 
air to water is

where   

)(
W

TThAq 


A Exposed surface area of the pipe  

h Convection coefficient



Exposed Water Pipe in Cyclical 
Ambient Temperature (3)

The thermal energy stored in the water is

where 
W

mcTE 

m mass of the water 

c specific heat of water 



Exposed Water Pipe in Cyclical 
Ambient Temperature (4)

Key physical principle:

which leads to 
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Exposed Water Pipe in Cyclical 
Ambient Temperature (5)

How do we solve

Let’s be more inclusive and ask how do we solve the general linear 
first order nonhomogeneous equation  

tTT
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0
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General Solution to Nonhomogeneous 
Linear First Order ODEs

We begin by searching for an integrating factor            that, 
when multiplied into the equation, turns the left-hand side into

Multiplying Equation 3 by           : 
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General Solution to Nonhomogeneous 
Linear First Order ODEs (2)
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General Solution to Nonhomogeneous 
Linear First Order ODEs (3)
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This is the desired integrating factor.

But we can simplify the form.  



General Solution to Nonhomogeneous 
Linear First Order ODEs (4)

It also suffices to use the indefinite integral form:

You should remember, or be able to derive, Equation 5 


t

duupt )(exp)(

We do not know what value to assign to             but it turns out not 
to matter.  (The value cancels out.)  So we set      
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Exposed Water Pipe in Cyclical 
Ambient Temperature (6)

For the water pipe temperature problem (Equation 2):
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Exposed Water Pipe in Cyclical 
Ambient Temperature (7)

Applying the integration factor to Equation 2:
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Now the value of the integration factor becomes clear:  
We can solve the problem with an integration:  
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Exposed Water Pipe in Cyclical 
Ambient Temperature (9)

where 
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After performing the integral we have 



Inhomogeneous First Order Linear ODEs: 
In-class Problems 
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Homework Assignment 2

In text:

Read:  Chapter 2

Work:  On course website: Homework Assignment #2 Problems 

Solutions for Homework Assignment #2 Problems will be provided 
on course website on (date) 

Always read over the day’s lecture notes and be sure you understand 
them.  


