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Differences Between Linear and Nonlinear  
ODEs in Their Input / Output Response  



Input / Output Characteristics 
for a Linear System

In a linear system of any order (time-varying or time-invariant): 

If the output is              when the input is              and the output is                  
when the input is

then the output is                                  when the input is

for any constants       and               
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In a linear time-invariant system of any order, after transients have 
died away, when the input is a sine-wave of a given frequency          
the output is a steady-state oscillation of only that frequency.

These characteristics are not generally true of nonlinear systems
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Existence and Uniqueness of 
Solutions to Linear ODEs 

Theorem:  Given a linear nth order ODE:

with initial conditions

If the coefficients           and the input           are continuous for all    then 
there exists a unique solution to the ODE satisfying the initial 
conditions for all    .  

(Stated without proof.) 

This is not generally true of nonlinear ODEs.           
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Key Points from the 
Following Nonlinear Example

The method of successive approximations (solving a sequence of 
linear equations to approximate the solution of a nonlinear 
equation) is a powerful tool.

Nonlinearities in systems designed to be linear cause distortions in 
the frequency response, introducing “harmonics” (oscillations 
that are multiples of the input frequency).     



Nonlinear Example: LR Circuit

L R

Kirchhoff’s Law:
Sum of voltage drops around a 
closed circuit = 0

Voltage drop over an inductor: 

Voltage drop over a resistor:

dt

dI
LV 

IRV 

Voltage drop over source: 
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Resulting equation :
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Nonlinear Example: LR Circuit (2) 

The solution to 
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Nonlinear Example: Recalling the LR Circuit (3)

Input / output response:  

The “input” to the “system” is the voltage source.  The “output” is 
the current (or voltage) over the resistor.  

Ignoring the transient,  the system passes the sine wave frequency
perfectly - it introduces no other frequencies. 

We only discuss frequency response in the context of time-invariant
systems.      



What if the Resistor is Slightly Nonlinear?
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What if the Resistor is Slightly Nonlinear? (2)

Nonlinear resistor characteristic 



Approach to Solution 
of Slightly Nonlinear ODE

Since         is small, consider the successive approximations
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Approach to Solution 
of Slightly Nonlinear ODE (2)

We are solving the nonlinear Equation 1 approximately by the sequential 
solution of a series of linear Equations 2, 3 and 4.

The general solution of

is                                                         Equation 5

Using Equation 5, we have already found that the solution to Equation (2) is

In what follows we will ignore the transient.  We are examining the steady 
state frequency response.   
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Approach to Solution 
of Slightly Nonlinear ODE (3)
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Repeating Equation 3:

This has solution 

Now

so 



Approach to Solution 
of Slightly Nonlinear ODE (4)
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Continuing in this way, we find
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which one can show can be written as 

where 

Note the higher frequencies – the harmonics   
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Approach to Solution 
of Slightly Nonlinear ODE (4)

Challenge problem:  

Given the steady state solution 
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